Articles | Volume 18, issue 9
https://doi.org/10.5194/acp-18-6923-2018
https://doi.org/10.5194/acp-18-6923-2018
Research article
 | 
17 May 2018
Research article |  | 17 May 2018

Fluxes of gaseous elemental mercury (GEM) in the High Arctic during atmospheric mercury depletion events (AMDEs)

Jesper Kamp, Henrik Skov, Bjarne Jensen, and Lise Lotte Sørensen

Related authors

Evaluation of optimized flux chamber design for measurement of ammonia emission after field application of slurry with full-scale farm machinery
Johanna Pedersen, Sasha D. Hafner, Andreas Pacholski, Valthor I. Karlsson, Li Rong, Rodrigo Labouriau, and Jesper N. Kamp
Atmos. Meas. Tech., 17, 4493–4505, https://doi.org/10.5194/amt-17-4493-2024,https://doi.org/10.5194/amt-17-4493-2024, 2024
Short summary
Evaluation of open- and closed-path sampling systems for the determination of emission rates of NH3 and CH4 with inverse dispersion modeling
Yolanda Maria Lemes, Christoph Häni, Jesper Nørlem Kamp, and Anders Feilberg
Atmos. Meas. Tech., 16, 1295–1309, https://doi.org/10.5194/amt-16-1295-2023,https://doi.org/10.5194/amt-16-1295-2023, 2023
Short summary
Photoacoustic measurement with infrared band-pass filters significantly overestimates NH3 emissions from cattle houses due to volatile organic compound (VOC) interferences
Dezhao Liu, Li Rong, Jesper Kamp, Xianwang Kong, Anders Peter S. Adamsen, Albarune Chowdhury, and Anders Feilberg
Atmos. Meas. Tech., 13, 259–272, https://doi.org/10.5194/amt-13-259-2020,https://doi.org/10.5194/amt-13-259-2020, 2020
Negligible influence of livestock contaminants and sampling system on ammonia measurements with cavity ring-down spectroscopy
Jesper Nørlem Kamp, Albarune Chowdhury, Anders Peter S. Adamsen, and Anders Feilberg
Atmos. Meas. Tech., 12, 2837–2850, https://doi.org/10.5194/amt-12-2837-2019,https://doi.org/10.5194/amt-12-2837-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Sources, sinks, and lifetime of NOx in a suburban temperate forest at night
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 11603–11618, https://doi.org/10.5194/acp-24-11603-2024,https://doi.org/10.5194/acp-24-11603-2024, 2024
Short summary
Measurement report: Urban ammonia and amines in Houston, Texas
Lee Tiszenkel, James H. Flynn, and Shan-Hu Lee
Atmos. Chem. Phys., 24, 11351–11363, https://doi.org/10.5194/acp-24-11351-2024,https://doi.org/10.5194/acp-24-11351-2024, 2024
Short summary
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024,https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Multi-year observations of variable incomplete combustion in the New York megacity
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024,https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024,https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary

Cited articles

AMAP: AMAP Assessment 2011: Mercury in the Arctic, xiv, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 193 pp., 2011. 
Ammann, C. and Meixner, F. X.: Stability dependence of the relaxed eddy accumulation coefficient for various scalar quantities, J. Geophys. Res., 107, 4071, https://doi.org/10.1029/2001jd000649, 2002. 
Andreas, E. L., Hill, R. J., Gosz, J. R., Moore, D. I., Otto, W. D., and Sarma, A. D.: Stability Dependence of the Eddy-Accumulation Coefficients for Momentum and Scalars, Int. J. Phys. Biol. Proc. Atmos. Bound. Lay., 86, 409–420, https://doi.org/10.1023/A:1000625502550, 1998. 
Berg, T., Sekkesæter, S., Steinnes, E., Valdal, A., and Wibetoe, G.: Springtime depletion of mercury in the European Arctic as observed at Svalbard, Sci. Total Environ., 304, 43–51, https://doi.org/10.1016/S0048-9697(02)00555-7, 2003. 
Bowling, D. R., Turnipseed, A. A., Delany, A. C., Baldocchi, D. D., Greenberg, J. P., and Monson, R. K.: The use of relaxed eddy accumulation to measure biosphere–atmosphere exchange of isoprene and other biological trace gases, Oecologia, 116, 306–315, https://doi.org/10.1007/s004420050592, 1998. 
Download
Short summary
Measurements of mercury fluxes over snow surfaces are carried out at the High Arctic site at Villum Research Station in North Greenland. The measurements were carried out from 23 April to 12 May during spring 2016, where atmospheric mercury depletion events (AMDEs) took place. The measurements showed a net emission of 8.9 ng m−2 min−1, with only a few depositional fluxes. GEM fluxes and atmospheric temperature measurements suggest that GEM emission partly could be affected by surface heating.
Altmetrics
Final-revised paper
Preprint