Articles | Volume 18, issue 3
https://doi.org/10.5194/acp-18-1819-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-1819-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Age and gravitational separation of the stratospheric air over Indonesia
Satoshi Sugawara
CORRESPONDING AUTHOR
Miyagi University of Education, Sendai 980-0845, Japan
Shigeyuki Ishidoya
National Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba 305-8569, Japan
Shuji Aoki
Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai
980-8578, Japan
Shinji Morimoto
Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai
980-8578, Japan
Takakiyo Nakazawa
Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai
980-8578, Japan
Sakae Toyoda
Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
Yoichi Inai
Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai
980-8578, Japan
Faculty of Environmental Earth Science, Hokkaido University, Sapporo,
060-0810, Japan
Fumio Hasebe
Faculty of Environmental Earth Science, Hokkaido University, Sapporo,
060-0810, Japan
Chusaku Ikeda
Institute of Space and Astronautical Science, Japan Aerospace
Exploration Agency, Sagamihara 252-5210, Japan
Hideyuki Honda
Institute of Space and Astronautical Science, Japan Aerospace
Exploration Agency, Sagamihara 252-5210, Japan
Daisuke Goto
National Institute of Polar Research, Tokyo 190-8518, Japan
Fanny A. Putri
Indonesian National Institute of Aeronautics and Space (LAPAN), Bandung 40173, Indonesia
Related authors
Shigeyuki Ishidoya, Satoshi Sugawara, and Atsushi Okazaki
EGUsphere, https://doi.org/10.5194/egusphere-2024-654, https://doi.org/10.5194/egusphere-2024-654, 2024
Short summary
Short summary
Diurnal, seasonal, and interannual variations of the present-day stable isotopic ratio of atmospheric O2, in other words slight variations in the Dole-Morita effect, have been detected firstly. A box model that incorporated biological and water processes associated with the Dole-Morita effect reproduced the general characteristics of the observational results. Based on the findings, we proposed some applications to evaluate oxygen, carbon, and water cycles.
Taku Umezawa, Satoshi Sugawara, Kenji Kawamura, Ikumi Oyabu, Stephen J. Andrews, Takuya Saito, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Chem. Phys., 22, 6899–6917, https://doi.org/10.5194/acp-22-6899-2022, https://doi.org/10.5194/acp-22-6899-2022, 2022
Short summary
Short summary
Greenhouse gas methane in the Arctic atmosphere has not been accurately reported for 1900–1980 from either direct observations or ice core reconstructions. By using trace gas data from firn (compacted snow layers above ice sheet), air samples at two Greenland sites, and a firn air transport model, this study suggests a likely range of the Arctic methane reconstruction for the 20th century. Atmospheric scenarios from two previous studies are also evaluated for consistency with the firn data sets.
Shigeyuki Ishidoya, Satoshi Sugawara, Yasunori Tohjima, Daisuke Goto, Kentaro Ishijima, Yosuke Niwa, Nobuyuki Aoki, and Shohei Murayama
Atmos. Chem. Phys., 21, 1357–1373, https://doi.org/10.5194/acp-21-1357-2021, https://doi.org/10.5194/acp-21-1357-2021, 2021
Short summary
Short summary
The surface Ar / N2 ratio showed not only secular increasing trends, but also interannual variations in phase with the global ocean heat content (OHC). Sensitivity test by using a two-dimensional model indicated that the secular trend in the Ar / N2 ratio is modified by the gravitational separation in the stratosphere. The analytical results imply that the surface Ar/N2 ratio is an important tracer for detecting spatiotemporally integrated changes in OHC and stratospheric circulation.
Ikumi Oyabu, Kenji Kawamura, Kyotaro Kitamura, Remi Dallmayr, Akihiro Kitamura, Chikako Sawada, Jeffrey P. Severinghaus, Ross Beaudette, Anaïs Orsi, Satoshi Sugawara, Shigeyuki Ishidoya, Dorthe Dahl-Jensen, Kumiko Goto-Azuma, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Meas. Tech., 13, 6703–6731, https://doi.org/10.5194/amt-13-6703-2020, https://doi.org/10.5194/amt-13-6703-2020, 2020
Short summary
Short summary
Air in polar ice cores provides information on past atmosphere and climate. We present a new method for simultaneously measuring eight gases (CH4, N2O and CO2 concentrations; isotopic ratios of N2 and O2; elemental ratios between N2, O2 and Ar; and total air content) from single ice-core samples with high precision.
Hanh T. Nguyen, Kentaro Ishijima, Satoshi Sugawara, and Fumio Hasebe
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-380, https://doi.org/10.5194/acp-2020-380, 2020
Revised manuscript not accepted
Short summary
Short summary
The velocity of stratospheric circulation is often measured by the time since the air entered the stratosphere. This study tries to understand its vertical profile in the tropics by comparing observational data and model simulations. Our interpretation mutually consistent among them is encouraging, while some limitations such as the treatment of seasonal variation of CO2 and mesospheric loss of SF6 are reconfirmed stressing a need of using multiple variables in the future.
Dmitry Belikov, Satoshi Sugawara, Shigeyuki Ishidoya, Fumio Hasebe, Shamil Maksyutov, Shuji Aoki, Shinji Morimoto, and Takakiyo Nakazawa
Atmos. Chem. Phys., 19, 5349–5361, https://doi.org/10.5194/acp-19-5349-2019, https://doi.org/10.5194/acp-19-5349-2019, 2019
Sakae Toyoda, Naohiro Yoshida, Shinji Morimoto, Shuji Aoki, Takakiyo Nakazawa, Satoshi Sugawara, Shigeyuki Ishidoya, Mitsuo Uematsu, Yoichi Inai, Fumio Hasebe, Chusaku Ikeda, Hideyuki Honda, and Kentaro Ishijima
Atmos. Chem. Phys., 18, 833–844, https://doi.org/10.5194/acp-18-833-2018, https://doi.org/10.5194/acp-18-833-2018, 2018
Short summary
Short summary
By analysis of whole air samples collected by balloon-borne compact cryogenic samplers, we found that apparent isotope effect for stratospheric N2O between 25 and 30 km over the Equator is larger than that observed in other latitudes and that it is almost equal to the effect predicted by laboratory simulation experiments. These results suggest that equatorial middle stratosphere can be treated as an isolated region when we consider the decomposition of N2O by photochemical processes.
Kazuyuki Miyazaki, Toshiki Iwasaki, Yoshio Kawatani, Chiaki Kobayashi, Satoshi Sugawara, and Michaela I. Hegglin
Atmos. Chem. Phys., 16, 6131–6152, https://doi.org/10.5194/acp-16-6131-2016, https://doi.org/10.5194/acp-16-6131-2016, 2016
Short summary
Short summary
We report a comparison of the stratospheric mean-meridional circulation and eddy mixing in the stratospheric Brewer-Dobson circulation (BDC) among the six reanalysis products. Overall, discrepancies between the different variables and trends therein as derived from the different reanalyses are still relatively large, suggesting that more investments in these products are needed in order to obtain a consolidated picture of observed changes in the BDC and the mechanisms that drive them.
K. Ishijima, M. Takigawa, K. Sudo, S. Toyoda, N. Yoshida, T. Röckmann, J. Kaiser, S. Aoki, S. Morimoto, S. Sugawara, and T. Nakazawa
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-19947-2015, https://doi.org/10.5194/acpd-15-19947-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We developed an atmospheric N2O isotopocule model based on a chemistry-coupled atmospheric general circulation model and a simple method to optimize the model, and estimated the isotopic signatures of surface sources at the hemispheric scale. Data obtained from ground-based observations, measurements of firn air, and balloon and aircraft flights were used to optimize the long-term trends, interhemispheric gradients, and photolytic fractionation, respectively, in the model.
A. Ghosh, P. K. Patra, K. Ishijima, T. Umezawa, A. Ito, D. M. Etheridge, S. Sugawara, K. Kawamura, J. B. Miller, E. J. Dlugokencky, P. B. Krummel, P. J. Fraser, L. P. Steele, R. L. Langenfelds, C. M. Trudinger, J. W. C. White, B. Vaughn, T. Saeki, S. Aoki, and T. Nakazawa
Atmos. Chem. Phys., 15, 2595–2612, https://doi.org/10.5194/acp-15-2595-2015, https://doi.org/10.5194/acp-15-2595-2015, 2015
Short summary
Short summary
Atmospheric CH4 increased from 900ppb to 1800ppb during the period 1900–2010 at a rate unprecedented in any observational records. We use bottom-up emissions and a chemistry-transport model to simulate CH4. The optimized global total CH4 emission, estimated from the model–observation differences, increased at fastest rate during 1940–1990. Using δ13C of CH4 measurements we attribute this emission increase to biomass burning. Total CH4 lifetime is shortened by 4% over the simulation period.
S. Ishidoya, S. Sugawara, S. Morimoto, S. Aoki, T. Nakazawa, H. Honda, and S. Murayama
Atmos. Chem. Phys., 13, 8787–8796, https://doi.org/10.5194/acp-13-8787-2013, https://doi.org/10.5194/acp-13-8787-2013, 2013
Yosuke Niwa, Yasunori Tohjima, Yukio Terao, Tazu Saeki, Akihiko Ito, Taku Umezawa, Kyohei Yamada, Motoki Sasakawa, Toshinobu Machida, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Hitoshi Mukai, Yukio Yoshida, Shinji Morimoto, Shinya Takatsuji, Kazuhiro Tsuboi, Yousuke Sawa, Hidekazu Matsueda, Kentaro Ishijima, Ryo Fujita, Daisuke Goto, Xin Lan, Kenneth Schuldt, Michal Heliasz, Tobias Biermann, Lukasz Chmura, Jarsolaw Necki, and Irène Xueref-Remy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2457, https://doi.org/10.5194/egusphere-2024-2457, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study estimated regional and sectoral emission contributions to the unprecedented surge of atmospheric methane for 2020–2022. The methane is the second most important greenhouse gas and its emissions reduction is urgently required to mitigate the global warming. Numerical modeling-based estimates with three different sets of atmospheric observations consistently suggested large contributions of biogenic emissions from South Asia and Southeast Asia to the surge of atmospheric methane.
Shigeyuki Ishidoya, Satoshi Sugawara, and Atsushi Okazaki
EGUsphere, https://doi.org/10.5194/egusphere-2024-654, https://doi.org/10.5194/egusphere-2024-654, 2024
Short summary
Short summary
Diurnal, seasonal, and interannual variations of the present-day stable isotopic ratio of atmospheric O2, in other words slight variations in the Dole-Morita effect, have been detected firstly. A box model that incorporated biological and water processes associated with the Dole-Morita effect reproduced the general characteristics of the observational results. Based on the findings, we proposed some applications to evaluate oxygen, carbon, and water cycles.
Shigeyuki Ishidoya, Kazuhiro Tsuboi, Hiroaki Kondo, Kentaro Ishijima, Nobuyuki Aoki, Hidekazu Matsueda, and Kazuyuki Saito
Atmos. Chem. Phys., 24, 1059–1077, https://doi.org/10.5194/acp-24-1059-2024, https://doi.org/10.5194/acp-24-1059-2024, 2024
Short summary
Short summary
A method evaluating techniques for carbon neutrality, such as carbon capture and storage (CCS), is important. This study presents a method to evaluate CO2 emissions from a cement plant based on atmospheric O2 and CO2 measurements. The method will also be useful for evaluating CO2 capture from flue gas at CCS plants, since the plants remove CO2 from the atmosphere without causing any O2 changes, just as cement plants do, differing only in the direction of CO2 exchange with the atmosphere.
Kazuki Kamezaki, Sebastian O. Danielache, Shigeyuki Ishidoya, Takahisa Maeda, and Shohei Murayama
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-209, https://doi.org/10.5194/amt-2023-209, 2023
Revised manuscript not accepted
Short summary
Short summary
Recently, MIRA Pico, a portable continuous carbonyl sulfide (COS) concentration analyzer using mid-infrared absorption, has been released. MIRA Pico has a lower cost and is smaller than conventional laser COS analyzers. However, actual COS atmospheric measurement results using MIRA Pico have not yet been reported. In this study, we modified and tested the MIRA Pico for atmospheric COS concentration measurements. We used the modified MIRA Pico for observations at Tsukuba, Japan.
Sourish Basu, Xin Lan, Edward Dlugokencky, Sylvia Michel, Stefan Schwietzke, John B. Miller, Lori Bruhwiler, Youmi Oh, Pieter P. Tans, Francesco Apadula, Luciana V. Gatti, Armin Jordan, Jaroslaw Necki, Motoki Sasakawa, Shinji Morimoto, Tatiana Di Iorio, Haeyoung Lee, Jgor Arduini, and Giovanni Manca
Atmos. Chem. Phys., 22, 15351–15377, https://doi.org/10.5194/acp-22-15351-2022, https://doi.org/10.5194/acp-22-15351-2022, 2022
Short summary
Short summary
Atmospheric methane (CH4) has been growing steadily since 2007 for reasons that are not well understood. Here we determine sources of methane using a technique informed by atmospheric measurements of CH4 and its isotopologue 13CH4. Measurements of 13CH4 provide for better separation of microbial, fossil, and fire sources of methane than CH4 measurements alone. Compared to previous assessments such as the Global Carbon Project, we find a larger microbial contribution to the post-2007 increase.
Nobuyuki Aoki, Shigeyuki Ishidoya, Shohei Murayama, and Nobuhiro Matsumoto
Atmos. Meas. Tech., 15, 5969–5983, https://doi.org/10.5194/amt-15-5969-2022, https://doi.org/10.5194/amt-15-5969-2022, 2022
Short summary
Short summary
The CO2 concentration in a cylinder is affected by carbon dioxide (CO2) adsorption to a cylinder’s internal surface and fractionation of CO2 and air in the preparation of standard mixtures. We demonstrate that the effects make the CO2 molar fractions deviate in standard mixtures prepared by diluting pure CO2 with air three times. This means that CO2 standard gases are difficult to gravimetrically prepare through multistep dilution.
Naveen Chandra, Prabir K. Patra, Yousuke Niwa, Akihiko Ito, Yosuke Iida, Daisuke Goto, Shinji Morimoto, Masayuki Kondo, Masayuki Takigawa, Tomohiro Hajima, and Michio Watanabe
Atmos. Chem. Phys., 22, 9215–9243, https://doi.org/10.5194/acp-22-9215-2022, https://doi.org/10.5194/acp-22-9215-2022, 2022
Short summary
Short summary
This paper is intended to accomplish two goals: (1) quantify mean and uncertainty in non-fossil-fuel CO2 fluxes estimated by inverse modeling and (2) provide in-depth analyses of regional CO2 fluxes in support of emission mitigation policymaking. CO2 flux variability and trends are discussed concerning natural climate variability and human disturbances using multiple lines of evidence.
Shigeyuki Ishidoya, Kazuhiro Tsuboi, Yosuke Niwa, Hidekazu Matsueda, Shohei Murayama, Kentaro Ishijima, and Kazuyuki Saito
Atmos. Chem. Phys., 22, 6953–6970, https://doi.org/10.5194/acp-22-6953-2022, https://doi.org/10.5194/acp-22-6953-2022, 2022
Short summary
Short summary
The atmospheric O2 / N2 ratio and CO2 concentration over the western North Pacific are presented. We found significant modification of the seasonal APO cycle in the middle troposphere due to the interhemispheric mixing of air. APO driven by the net marine biological activities indicated annual sea–air O2 flux during El Niño. Terrestrial biospheric and oceanic CO2 uptakes during 2012–2019 were estimated to be 1.8 and 2.8 Pg C a−1, respectively.
Taku Umezawa, Satoshi Sugawara, Kenji Kawamura, Ikumi Oyabu, Stephen J. Andrews, Takuya Saito, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Chem. Phys., 22, 6899–6917, https://doi.org/10.5194/acp-22-6899-2022, https://doi.org/10.5194/acp-22-6899-2022, 2022
Short summary
Short summary
Greenhouse gas methane in the Arctic atmosphere has not been accurately reported for 1900–1980 from either direct observations or ice core reconstructions. By using trace gas data from firn (compacted snow layers above ice sheet), air samples at two Greenland sites, and a firn air transport model, this study suggests a likely range of the Arctic methane reconstruction for the 20th century. Atmospheric scenarios from two previous studies are also evaluated for consistency with the firn data sets.
Ikumi Oyabu, Kenji Kawamura, Tsutomu Uchida, Shuji Fujita, Kyotaro Kitamura, Motohiro Hirabayashi, Shuji Aoki, Shinji Morimoto, Takakiyo Nakazawa, Jeffrey P. Severinghaus, and Jacob D. Morgan
The Cryosphere, 15, 5529–5555, https://doi.org/10.5194/tc-15-5529-2021, https://doi.org/10.5194/tc-15-5529-2021, 2021
Short summary
Short summary
We present O2/N2 and Ar/N2 records from the Dome Fuji ice core through the bubbly ice, bubble–clathrate transition, and clathrate ice zones without gas-loss fractionation. The insolation signal is preserved through the clathrate formation. The relationship between Ar/Ν2 and Ο2/Ν2 suggests that the fractionation for the bubble–clathrate transition is mass independent, while the bubble close-off process involves a combination of mass-independent and mass-dependent fractionation for O2 and Ar.
Nobuyuki Aoki, Shigeyuki Ishidoya, Yasunori Tohjima, Shinji Morimoto, Ralph F. Keeling, Adam Cox, Shuichiro Takebayashi, and Shohei Murayama
Atmos. Meas. Tech., 14, 6181–6193, https://doi.org/10.5194/amt-14-6181-2021, https://doi.org/10.5194/amt-14-6181-2021, 2021
Short summary
Short summary
Observing the minimal long-term change in atmospheric O2 molar fraction combined with CO2 observation enables us to estimate terrestrial biospheric and oceanic CO2 uptakes separately. In this study, we firstly identified the span offset between the laboratory O2 scales using our developed high-precision standard mixtures, suggesting that the result may allow us to estimate terrestrial biospheric and oceanic CO2 uptakes precisely.
Masatomo Fujiwara, Tetsu Sakai, Tomohiro Nagai, Koichi Shiraishi, Yoichi Inai, Sergey Khaykin, Haosen Xi, Takashi Shibata, Masato Shiotani, and Laura L. Pan
Atmos. Chem. Phys., 21, 3073–3090, https://doi.org/10.5194/acp-21-3073-2021, https://doi.org/10.5194/acp-21-3073-2021, 2021
Short summary
Short summary
Lidar aerosol particle measurements in Japan during the summer of 2018 were found to detect the eastward extension of the Asian tropopause aerosol layer from the Asian summer monsoon anticyclone in the lower stratosphere. Analysis of various other data indicates that the observed enhanced particle levels are due to eastward-shedding vortices from the anticyclone, originating from pollutants emitted in Asian countries and transported vertically by convection in the Asian summer monsoon region.
Shigeyuki Ishidoya, Satoshi Sugawara, Yasunori Tohjima, Daisuke Goto, Kentaro Ishijima, Yosuke Niwa, Nobuyuki Aoki, and Shohei Murayama
Atmos. Chem. Phys., 21, 1357–1373, https://doi.org/10.5194/acp-21-1357-2021, https://doi.org/10.5194/acp-21-1357-2021, 2021
Short summary
Short summary
The surface Ar / N2 ratio showed not only secular increasing trends, but also interannual variations in phase with the global ocean heat content (OHC). Sensitivity test by using a two-dimensional model indicated that the secular trend in the Ar / N2 ratio is modified by the gravitational separation in the stratosphere. The analytical results imply that the surface Ar/N2 ratio is an important tracer for detecting spatiotemporally integrated changes in OHC and stratospheric circulation.
Shamil Maksyutov, Tomohiro Oda, Makoto Saito, Rajesh Janardanan, Dmitry Belikov, Johannes W. Kaiser, Ruslan Zhuravlev, Alexander Ganshin, Vinu K. Valsala, Arlyn Andrews, Lukasz Chmura, Edward Dlugokencky, László Haszpra, Ray L. Langenfelds, Toshinobu Machida, Takakiyo Nakazawa, Michel Ramonet, Colm Sweeney, and Douglas Worthy
Atmos. Chem. Phys., 21, 1245–1266, https://doi.org/10.5194/acp-21-1245-2021, https://doi.org/10.5194/acp-21-1245-2021, 2021
Short summary
Short summary
In order to improve the top-down estimation of the anthropogenic greenhouse gas emissions, a high-resolution inverse modelling technique was developed for applications to global transport modelling of carbon dioxide and other greenhouse gases. A coupled Eulerian–Lagrangian transport model and its adjoint are combined with surface fluxes at 0.1° resolution to provide high-resolution forward simulation and inverse modelling of surface fluxes accounting for signals from emission hot spots.
Ikumi Oyabu, Kenji Kawamura, Kyotaro Kitamura, Remi Dallmayr, Akihiro Kitamura, Chikako Sawada, Jeffrey P. Severinghaus, Ross Beaudette, Anaïs Orsi, Satoshi Sugawara, Shigeyuki Ishidoya, Dorthe Dahl-Jensen, Kumiko Goto-Azuma, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Meas. Tech., 13, 6703–6731, https://doi.org/10.5194/amt-13-6703-2020, https://doi.org/10.5194/amt-13-6703-2020, 2020
Short summary
Short summary
Air in polar ice cores provides information on past atmosphere and climate. We present a new method for simultaneously measuring eight gases (CH4, N2O and CO2 concentrations; isotopic ratios of N2 and O2; elemental ratios between N2, O2 and Ar; and total air content) from single ice-core samples with high precision.
Shigeyuki Ishidoya, Hirofumi Sugawara, Yukio Terao, Naoki Kaneyasu, Nobuyuki Aoki, Kazuhiro Tsuboi, and Hiroaki Kondo
Atmos. Chem. Phys., 20, 5293–5308, https://doi.org/10.5194/acp-20-5293-2020, https://doi.org/10.5194/acp-20-5293-2020, 2020
Short summary
Short summary
Atmospheric O2 and CO2 concentrations, along with CO2 flux, have been observed in a megacity, Tokyo, Japan. The O2 : CO2 exchange ratio for net turbulent O2 and CO2 fluxes (ORF) between the urban area and the overlaying atmosphere was obtained, and we applied it to estimate the diurnal cycles of CO2 fluxes from gas and liquid fuel consumption separately. We found simultaneous observations of ORF and CO2 flux are useful in validating CO2 emission inventories from statistical data.
Hanh T. Nguyen, Kentaro Ishijima, Satoshi Sugawara, and Fumio Hasebe
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-380, https://doi.org/10.5194/acp-2020-380, 2020
Revised manuscript not accepted
Short summary
Short summary
The velocity of stratospheric circulation is often measured by the time since the air entered the stratosphere. This study tries to understand its vertical profile in the tropics by comparing observational data and model simulations. Our interpretation mutually consistent among them is encouraging, while some limitations such as the treatment of seasonal variation of CO2 and mesospheric loss of SF6 are reconfirmed stressing a need of using multiple variables in the future.
Yoichi Inai, Ryo Fujita, Toshinobu Machida, Hidekazu Matsueda, Yousuke Sawa, Kazuhiro Tsuboi, Keiichi Katsumata, Shinji Morimoto, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Chem. Phys., 19, 7073–7103, https://doi.org/10.5194/acp-19-7073-2019, https://doi.org/10.5194/acp-19-7073-2019, 2019
Nobuyuki Aoki, Shigeyuki Ishidoya, Nobuhiro Matsumoto, Takuro Watanabe, Takuya Shimosaka, and Shohei Murayama
Atmos. Meas. Tech., 12, 2631–2646, https://doi.org/10.5194/amt-12-2631-2019, https://doi.org/10.5194/amt-12-2631-2019, 2019
Short summary
Short summary
Observation of atmospheric O2 requires highly precise standard gas mixtures with uncertainty of less than 1 ppm for the O2 mole fraction or 5 per meg for O2 / N2. The uncertainty had not been achieved due unknown uncertainty factors in mass determination of the filled source gases. We first developed the primary standard mixtures with 1 ppm for the O2 mole fraction or 5 per meg by identifying and reducing the unknown uncertainty factors.
Dmitry Belikov, Satoshi Sugawara, Shigeyuki Ishidoya, Fumio Hasebe, Shamil Maksyutov, Shuji Aoki, Shinji Morimoto, and Takakiyo Nakazawa
Atmos. Chem. Phys., 19, 5349–5361, https://doi.org/10.5194/acp-19-5349-2019, https://doi.org/10.5194/acp-19-5349-2019, 2019
Taku Umezawa, Carl A. M. Brenninkmeijer, Thomas Röckmann, Carina van der Veen, Stanley C. Tyler, Ryo Fujita, Shinji Morimoto, Shuji Aoki, Todd Sowers, Jochen Schmitt, Michael Bock, Jonas Beck, Hubertus Fischer, Sylvia E. Michel, Bruce H. Vaughn, John B. Miller, James W. C. White, Gordon Brailsford, Hinrich Schaefer, Peter Sperlich, Willi A. Brand, Michael Rothe, Thomas Blunier, David Lowry, Rebecca E. Fisher, Euan G. Nisbet, Andrew L. Rice, Peter Bergamaschi, Cordelia Veidt, and Ingeborg Levin
Atmos. Meas. Tech., 11, 1207–1231, https://doi.org/10.5194/amt-11-1207-2018, https://doi.org/10.5194/amt-11-1207-2018, 2018
Short summary
Short summary
Isotope measurements are useful for separating different methane sources. However, the lack of widely accepted standards and calibration methods for stable carbon and hydrogen isotopic ratios of methane in air has caused significant measurement offsets among laboratories. We conducted worldwide interlaboratory comparisons, surveyed the literature and assessed them systematically. This study may be of help in future attempts to harmonize data sets of isotopic composition of atmospheric methane.
Sakae Toyoda, Naohiro Yoshida, Shinji Morimoto, Shuji Aoki, Takakiyo Nakazawa, Satoshi Sugawara, Shigeyuki Ishidoya, Mitsuo Uematsu, Yoichi Inai, Fumio Hasebe, Chusaku Ikeda, Hideyuki Honda, and Kentaro Ishijima
Atmos. Chem. Phys., 18, 833–844, https://doi.org/10.5194/acp-18-833-2018, https://doi.org/10.5194/acp-18-833-2018, 2018
Short summary
Short summary
By analysis of whole air samples collected by balloon-borne compact cryogenic samplers, we found that apparent isotope effect for stratospheric N2O between 25 and 30 km over the Equator is larger than that observed in other latitudes and that it is almost equal to the effect predicted by laboratory simulation experiments. These results suggest that equatorial middle stratosphere can be treated as an isolated region when we consider the decomposition of N2O by photochemical processes.
Dmitry A. Belikov, Shamil Maksyutov, Alexander Ganshin, Ruslan Zhuravlev, Nicholas M. Deutscher, Debra Wunch, Dietrich G. Feist, Isamu Morino, Robert J. Parker, Kimberly Strong, Yukio Yoshida, Andrey Bril, Sergey Oshchepkov, Hartmut Boesch, Manvendra K. Dubey, David Griffith, Will Hewson, Rigel Kivi, Joseph Mendonca, Justus Notholt, Matthias Schneider, Ralf Sussmann, Voltaire A. Velazco, and Shuji Aoki
Atmos. Chem. Phys., 17, 143–157, https://doi.org/10.5194/acp-17-143-2017, https://doi.org/10.5194/acp-17-143-2017, 2017
Kazuyuki Miyazaki, Toshiki Iwasaki, Yoshio Kawatani, Chiaki Kobayashi, Satoshi Sugawara, and Michaela I. Hegglin
Atmos. Chem. Phys., 16, 6131–6152, https://doi.org/10.5194/acp-16-6131-2016, https://doi.org/10.5194/acp-16-6131-2016, 2016
Short summary
Short summary
We report a comparison of the stratospheric mean-meridional circulation and eddy mixing in the stratospheric Brewer-Dobson circulation (BDC) among the six reanalysis products. Overall, discrepancies between the different variables and trends therein as derived from the different reanalyses are still relatively large, suggesting that more investments in these products are needed in order to obtain a consolidated picture of observed changes in the BDC and the mechanisms that drive them.
Sakae Toyoda and Naohiro Yoshida
Atmos. Meas. Tech., 9, 2093–2101, https://doi.org/10.5194/amt-9-2093-2016, https://doi.org/10.5194/amt-9-2093-2016, 2016
Short summary
Short summary
Tiny variation in natural abundance ratios of stable isotopes of nitrogen and oxygen in nitrous oxide (N2O) can be used as a fingerprint of this trace gas that causes greenhouse effect and stratospheric ozone depletion. Toward the understanding of the global budget of N2O and its temporal change, we developed an automated sample preparation system that can be used to measure the stable isotope ratios in N2O in various air samples collected into flasks with high precision and less labor.
Fumio Hasebe and Taisuke Noguchi
Atmos. Chem. Phys., 16, 4235–4249, https://doi.org/10.5194/acp-16-4235-2016, https://doi.org/10.5194/acp-16-4235-2016, 2016
Short summary
Short summary
This paper tries to answer the long-standing question in middle-atmosphere science on the mechanism of the sudden drop in stratospheric water vapor around the year 2000. Our findings indicate that the location where the air experiences cold temperature before entering the stratosphere shifted in the northern summer of 2000. It may have been led by the eastward expansion of warm water in the tropical Pacific causing the interaction of the heating between Pacific Ocean and the Tibetan Plateau.
Koki Maeda, Sakae Toyoda, Midori Yano, Shohei Hattori, Makoto Fukasawa, Keiichi Nakajima, and Naohiro Yoshida
Biogeosciences, 13, 1341–1349, https://doi.org/10.5194/bg-13-1341-2016, https://doi.org/10.5194/bg-13-1341-2016, 2016
Short summary
Short summary
Nitrogen isotope ratios (δ15N) of NH4+ in dairy manure compost piles were studied. The δ15N–NH4+ values in different pile zones (top, side and core) show that extremely high nitrogen conversion, nitrification–denitrification activity of the microbes and NH3 volatilization occurred in pile top zone, which has very high NH4+ concentrations and significantly high 15N (δ15N: 12.7–29.8 ‰) values.
Y. Inai, M. Shiotani, M. Fujiwara, F. Hasebe, and H. Vömel
Atmos. Meas. Tech., 8, 4043–4054, https://doi.org/10.5194/amt-8-4043-2015, https://doi.org/10.5194/amt-8-4043-2015, 2015
Short summary
Short summary
For conventional soundings, the pressure bias of radiosonde leads to an altitude misestimation, which can lead to offsets in any meteorological profile. Therefore, we must take this issue into account to improve historical data sets.
K. Ishijima, M. Takigawa, K. Sudo, S. Toyoda, N. Yoshida, T. Röckmann, J. Kaiser, S. Aoki, S. Morimoto, S. Sugawara, and T. Nakazawa
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-19947-2015, https://doi.org/10.5194/acpd-15-19947-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We developed an atmospheric N2O isotopocule model based on a chemistry-coupled atmospheric general circulation model and a simple method to optimize the model, and estimated the isotopic signatures of surface sources at the hemispheric scale. Data obtained from ground-based observations, measurements of firn air, and balloon and aircraft flights were used to optimize the long-term trends, interhemispheric gradients, and photolytic fractionation, respectively, in the model.
A. Ghosh, P. K. Patra, K. Ishijima, T. Umezawa, A. Ito, D. M. Etheridge, S. Sugawara, K. Kawamura, J. B. Miller, E. J. Dlugokencky, P. B. Krummel, P. J. Fraser, L. P. Steele, R. L. Langenfelds, C. M. Trudinger, J. W. C. White, B. Vaughn, T. Saeki, S. Aoki, and T. Nakazawa
Atmos. Chem. Phys., 15, 2595–2612, https://doi.org/10.5194/acp-15-2595-2015, https://doi.org/10.5194/acp-15-2595-2015, 2015
Short summary
Short summary
Atmospheric CH4 increased from 900ppb to 1800ppb during the period 1900–2010 at a rate unprecedented in any observational records. We use bottom-up emissions and a chemistry-transport model to simulate CH4. The optimized global total CH4 emission, estimated from the model–observation differences, increased at fastest rate during 1940–1990. Using δ13C of CH4 measurements we attribute this emission increase to biomass burning. Total CH4 lifetime is shortened by 4% over the simulation period.
T. Yamazaki, T. Hozuki, K. Arai, S. Toyoda, K. Koba, T. Fujiwara, and N. Yoshida
Biogeosciences, 11, 2679–2689, https://doi.org/10.5194/bg-11-2679-2014, https://doi.org/10.5194/bg-11-2679-2014, 2014
E. Saikawa, R. G. Prinn, E. Dlugokencky, K. Ishijima, G. S. Dutton, B. D. Hall, R. Langenfelds, Y. Tohjima, T. Machida, M. Manizza, M. Rigby, S. O'Doherty, P. K. Patra, C. M. Harth, R. F. Weiss, P. B. Krummel, M. van der Schoot, P. J. Fraser, L. P. Steele, S. Aoki, T. Nakazawa, and J. W. Elkins
Atmos. Chem. Phys., 14, 4617–4641, https://doi.org/10.5194/acp-14-4617-2014, https://doi.org/10.5194/acp-14-4617-2014, 2014
S. Ishidoya, S. Sugawara, S. Morimoto, S. Aoki, T. Nakazawa, H. Honda, and S. Murayama
Atmos. Chem. Phys., 13, 8787–8796, https://doi.org/10.5194/acp-13-8787-2013, https://doi.org/10.5194/acp-13-8787-2013, 2013
Y. Inai, F. Hasebe, M. Fujiwara, M. Shiotani, N. Nishi, S.-Y. Ogino, H. Vömel, S. Iwasaki, and T. Shibata
Atmos. Chem. Phys., 13, 8623–8642, https://doi.org/10.5194/acp-13-8623-2013, https://doi.org/10.5194/acp-13-8623-2013, 2013
F. Hasebe, Y. Inai, M. Shiotani, M. Fujiwara, H. Vömel, N. Nishi, S.-Y. Ogino, T. Shibata, S. Iwasaki, N. Komala, T. Peter, and S. J. Oltmans
Atmos. Chem. Phys., 13, 4393–4411, https://doi.org/10.5194/acp-13-4393-2013, https://doi.org/10.5194/acp-13-4393-2013, 2013
G. A. Morris, G. Labow, H. Akimoto, M. Takigawa, M. Fujiwara, F. Hasebe, J. Hirokawa, and T. Koide
Atmos. Chem. Phys., 13, 1243–1260, https://doi.org/10.5194/acp-13-1243-2013, https://doi.org/10.5194/acp-13-1243-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Identification of stratospheric disturbance information in China based on the round-trip intelligent sounding system
Mean age from observations in the lowermost stratosphere: an improved method and interhemispheric differences
Possible influence of sudden stratospheric warmings on the atmospheric environment in the Beijing–Tianjin–Hebei region
In situ observations of CH2Cl2 and CHCl3 show efficient transport pathways for very short-lived species into the lower stratosphere via the Asian and the North American summer monsoon
A case study on the impact of severe convective storms on the water vapor mixing ratio in the lower mid-latitude stratosphere observed in 2019 over Europe
Upward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations
Seasonal characteristics of trace gas transport into the extratropical upper troposphere and lower stratosphere
Gravity waves excited during a minor sudden stratospheric warming
Mixing and ageing in the polar lower stratosphere in winter 2015–2016
Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations
Case study of wave breaking with high-resolution turbulence measurements with LITOS and WRF simulations
A comparison of Loon balloon observations and stratospheric reanalysis products
Stratospheric tropical warming event and its impact on the polar and tropical troposphere
Gravity-wave effects on tracer gases and stratospheric aerosol concentrations during the 2013 ChArMEx campaign
Transport of Antarctic stratospheric strongly dehydrated air into the troposphere observed during the HALO-ESMVal campaign 2012
Aircraft measurements of gravity waves in the upper troposphere and lower stratosphere during the START08 field experiment
Comparing turbulent parameters obtained from LITOS and radiosonde measurements
Northern Hemisphere stratospheric winds in higher midlatitudes: longitudinal distribution and long-term trends
On the structural changes in the Brewer-Dobson circulation after 2000
Temperature variability and trends in the UT-LS over a subtropical site: Reunion (20.8° S, 55.5° E)
Diagnostics of the Tropical Tropopause Layer from in-situ observations and CCM data
Increase of upper troposphere/lower stratosphere wave baroclinicity during the second half of the 20th century
Yang He, Xiaoqian Zhu, Zheng Sheng, and Mingyuan He
Atmos. Chem. Phys., 24, 3839–3856, https://doi.org/10.5194/acp-24-3839-2024, https://doi.org/10.5194/acp-24-3839-2024, 2024
Short summary
Short summary
The round-trip intelligent sounding system (RTISS) is a new detection technology, developed in recent years, that can capture atmospheric fine-structure information via three-stage (rising, flat-floating, and falling) detection. Based on the RTISS, we developed a method to quantify stratospheric atmospheric disturbance information; this method shows sufficient potential in the analysis of stratospheric disturbances and their role in material transport and energy transfer.
Thomas Wagenhäuser, Markus Jesswein, Timo Keber, Tanja Schuck, and Andreas Engel
Atmos. Chem. Phys., 23, 3887–3903, https://doi.org/10.5194/acp-23-3887-2023, https://doi.org/10.5194/acp-23-3887-2023, 2023
Short summary
Short summary
A common assumption to derive mean age from trace gas observations is that all air enters the stratosphere through the tropical tropopause. Using SF6 as an age tracer, this leads to negative mean age values close to the Northern Hemispheric extra-tropical tropopause. Our improved method also considers extra-tropical input into the stratosphere. More realistic values are derived using this method. Interhemispheric differences in mean age are found when comparing data from two aircraft campaigns.
Qian Lu, Jian Rao, Chunhua Shi, Dong Guo, Guiqin Fu, Ji Wang, and Zhuoqi Liang
Atmos. Chem. Phys., 22, 13087–13102, https://doi.org/10.5194/acp-22-13087-2022, https://doi.org/10.5194/acp-22-13087-2022, 2022
Short summary
Short summary
Existing evidence mainly focuses on the possible impact of tropospheric climate anomalies on the regional air pollutions, but few studies pay attention to the impact of stratospheric changes on haze pollutions in the Beijing–Tianjin–Hebei (BTH) region. Our study reveals the linkage between the stratospheric variability and the regional atmospheric environment. The downward-propagating stratospheric signals might have a cleaning effect on the atmospheric environment in the BTH region.
Valentin Lauther, Bärbel Vogel, Johannes Wintel, Andrea Rau, Peter Hoor, Vera Bense, Rolf Müller, and C. Michael Volk
Atmos. Chem. Phys., 22, 2049–2077, https://doi.org/10.5194/acp-22-2049-2022, https://doi.org/10.5194/acp-22-2049-2022, 2022
Short summary
Short summary
We show airborne in situ measurements of the very short-lived ozone-depleting substances CH2Cl2 and CHCl3, revealing particularly high concentrations of both species in the lower stratosphere. Back-trajectory calculations and 3D model simulations show that the air masses with high concentrations originated in the Asian boundary layer and were transported via the Asian summer monsoon. We also identify a fast transport pathway into the stratosphere via the North American monsoon and by hurricanes.
Dina Khordakova, Christian Rolf, Jens-Uwe Grooß, Rolf Müller, Paul Konopka, Andreas Wieser, Martina Krämer, and Martin Riese
Atmos. Chem. Phys., 22, 1059–1079, https://doi.org/10.5194/acp-22-1059-2022, https://doi.org/10.5194/acp-22-1059-2022, 2022
Short summary
Short summary
Extreme storms transport humidity from the troposphere to the stratosphere. Here it has a strong impact on the climate. With ongoing global warming, we expect more storms and, hence, an enhancement of this effect. A case study was performed in order to measure the impact of the direct injection of water vapor into the lower stratosphere. The measurements displayed a significant transport of water vapor into the lower stratosphere, and this was supported by satellite and reanalysis data.
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021, https://doi.org/10.5194/acp-21-1267-2021, 2021
Short summary
Short summary
The Asian summer monsoon (ASM) is known to foster transport of polluted tropospheric air into the stratosphere. To test and amend our picture of ASM vertical transport, we analyse distributions of airborne trace gas observations up to 20 km altitude near the main ASM vertical conduit south of the Himalayas. We also show that a new high-resolution version of the global chemistry climate model WACCM is able to reproduce the observations well.
Yoichi Inai, Ryo Fujita, Toshinobu Machida, Hidekazu Matsueda, Yousuke Sawa, Kazuhiro Tsuboi, Keiichi Katsumata, Shinji Morimoto, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Chem. Phys., 19, 7073–7103, https://doi.org/10.5194/acp-19-7073-2019, https://doi.org/10.5194/acp-19-7073-2019, 2019
Andreas Dörnbrack, Sonja Gisinger, Natalie Kaifler, Tanja Christina Portele, Martina Bramberger, Markus Rapp, Michael Gerding, Jens Faber, Nedjeljka Žagar, and Damjan Jelić
Atmos. Chem. Phys., 18, 12915–12931, https://doi.org/10.5194/acp-18-12915-2018, https://doi.org/10.5194/acp-18-12915-2018, 2018
Short summary
Short summary
A deep upper-air sounding stimulated the current investigation of internal gravity waves excited during a minor sudden stratospheric warming (SSW) in the Arctic winter 2015/16. The analysis of the radiosonde profile revealed large kinetic and potential energies in the upper stratosphere without any simultaneous enhancement of upper tropospheric and lower stratospheric values. In combination with high-resolution meteorological analyses we identified an elevated source of gravity wave excitation.
Jens Krause, Peter Hoor, Andreas Engel, Felix Plöger, Jens-Uwe Grooß, Harald Bönisch, Timo Keber, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 6057–6073, https://doi.org/10.5194/acp-18-6057-2018, https://doi.org/10.5194/acp-18-6057-2018, 2018
Short summary
Short summary
We present tracer measurements of CO and N2O measured during the POLSTRACC aircraft campaign in winter 2015–2016. We found enhanced CO values relative to N2O in the polar lower stratosphere in addition to the ageing of this region during winter. By using model simulations it was possible to link this enhancement to an increased mixing of the tropical tropopause. We thus conclude that the polar lower stratosphere in late winter is strongly influenced by quasi-isentropic mixing from the tropics.
Lars Hoffmann, Albert Hertzog, Thomas Rößler, Olaf Stein, and Xue Wu
Atmos. Chem. Phys., 17, 8045–8061, https://doi.org/10.5194/acp-17-8045-2017, https://doi.org/10.5194/acp-17-8045-2017, 2017
Short summary
Short summary
We present an intercomparison of temperatures and horizontal winds of five meteorological data sets (ECMWF operational analysis, ERA-Interim, MERRA, MERRA-2, and NCEP/NCAR) in the Antarctic lower stratosphere. The assessment is based on 19 superpressure balloon flights during the Concordiasi field campaign in September 2010 to January 2011. The balloon data are used to successfully validate trajectory calculations with the new Lagrangian particle dispersion model MPTRAC.
Andreas Schneider, Johannes Wagner, Jens Faber, Michael Gerding, and Franz-Josef Lübken
Atmos. Chem. Phys., 17, 7941–7954, https://doi.org/10.5194/acp-17-7941-2017, https://doi.org/10.5194/acp-17-7941-2017, 2017
Short summary
Short summary
Wave breaking is studied with a combination of high-resolution turbulence observations with the balloon-borne instrument LITOS and mesoscale simulations with the WRF model. A relation between observed turbulent energy dissipation rates and the occurrence of wave patterns in modelled vertical winds is found, which is interpreted as the effect of wave saturation. The change of stability plays less of a role for mean dissipation for the flights examined.
Leon S. Friedrich, Adrian J. McDonald, Gregory E. Bodeker, Kathy E. Cooper, Jared Lewis, and Alexander J. Paterson
Atmos. Chem. Phys., 17, 855–866, https://doi.org/10.5194/acp-17-855-2017, https://doi.org/10.5194/acp-17-855-2017, 2017
Short summary
Short summary
Information from long-duration balloons flying in the Southern Hemisphere stratosphere during 2014 as part of X Project Loon are used to assess the quality of a number of different reanalyses. This work assesses the potential of the X Project Loon observations to validate outputs from the reanalysis models. In particular, we examined how the model winds compared with those derived from the balloon GPS information. We also examined simulated trajectories compared with the true trajectories.
Kunihiko Kodera, Nawo Eguchi, Hitoshi Mukougawa, Tomoe Nasuno, and Toshihiko Hirooka
Atmos. Chem. Phys., 17, 615–625, https://doi.org/10.5194/acp-17-615-2017, https://doi.org/10.5194/acp-17-615-2017, 2017
Short summary
Short summary
An exceptional strengthening of the middle atmospheric subtropical jet occurred without an apparent relationship with the tropospheric circulation. The analysis of this event demonstrated downward penetration of stratospheric influence to the troposphere: in the north polar region amplification of planetary wave occurred due to a deflection by the strong middle atmospheric subtropical jet, whereas in the tropics, increased tropopause temperature suppressed equatorial convective activity.
Fabrice Chane Ming, Damien Vignelles, Fabrice Jegou, Gwenael Berthet, Jean-Baptiste Renard, François Gheusi, and Yuriy Kuleshov
Atmos. Chem. Phys., 16, 8023–8042, https://doi.org/10.5194/acp-16-8023-2016, https://doi.org/10.5194/acp-16-8023-2016, 2016
Short summary
Short summary
Coupled balloon-borne observations of Light Optical Aerosol Counter (LOAC), M10 meteorological GPS sondes, ozonesondes, and GPS radio occultation data are examined to identify gravity-wave (GW)-induced fluctuations on tracer gases and on the vertical distribution of stratospheric aerosol concentrations during the 2013 ChArMEx campaign. Observed mesoscale GWs induce a strong modulation of the amplitude of tracer gases and the stratospheric aerosol background.
C. Rolf, A. Afchine, H. Bozem, B. Buchholz, V. Ebert, T. Guggenmoser, P. Hoor, P. Konopka, E. Kretschmer, S. Müller, H. Schlager, N. Spelten, O. Sumińska-Ebersoldt, J. Ungermann, A. Zahn, and M. Krämer
Atmos. Chem. Phys., 15, 9143–9158, https://doi.org/10.5194/acp-15-9143-2015, https://doi.org/10.5194/acp-15-9143-2015, 2015
Fuqing Zhang, Junhong Wei, Meng Zhang, K. P. Bowman, L. L. Pan, E. Atlas, and S. C. Wofsy
Atmos. Chem. Phys., 15, 7667–7684, https://doi.org/10.5194/acp-15-7667-2015, https://doi.org/10.5194/acp-15-7667-2015, 2015
Short summary
Short summary
Based on spectral and wavelet analyses, along with a diagnosis of the polarization relations, this study analyzes in situ airborne measurements from the 2008 Stratosphere-Troposphere Analyses of Regional Transport (START08) experiment to characterize gravity waves in the extratropical upper troposphere and lower stratosphere (ExUTLS) region. The focus is on the second research flight (RF02), which was dedicated to probing gravity waves associated with strong upper-tropospheric jet-front systems.
A. Schneider, M. Gerding, and F.-J. Lübken
Atmos. Chem. Phys., 15, 2159–2166, https://doi.org/10.5194/acp-15-2159-2015, https://doi.org/10.5194/acp-15-2159-2015, 2015
Short summary
Short summary
Stratospheric turbulence is essential for the atmospheric energy budget. We compare in situ observations with our LITOS method based on spectral analysis of mm-scale wind fluctuations with the Thorpe method applied to standard radiosondes. Energy dissipations rates from both methods differ by up to 3 orders of magnitude. Nevertheless, mean values are in good agreement. We present case studies on both methods and examine the applicability of the Thorpe method for calculation of dissipation rates.
M. Kozubek, P. Krizan, and J. Lastovicka
Atmos. Chem. Phys., 15, 2203–2213, https://doi.org/10.5194/acp-15-2203-2015, https://doi.org/10.5194/acp-15-2203-2015, 2015
Short summary
Short summary
The main goal of this paper is to show the geographical distribution of meridional wind for several reanalyses and to analyse the wind trends in different areas. We show two areas (100°E-160°E and 140°W-80°W) where the meridional wind is as strong as zonal wind (which is normally dominant in the stratosphere). The trends of meridional wind are significant mostly at 99% level in these areas and insignificant outside. The problem with zonal averages could affect the results.
H. Bönisch, A. Engel, Th. Birner, P. Hoor, D. W. Tarasick, and E. A. Ray
Atmos. Chem. Phys., 11, 3937–3948, https://doi.org/10.5194/acp-11-3937-2011, https://doi.org/10.5194/acp-11-3937-2011, 2011
N. Bègue, H. Bencherif, V. Sivakumar, G. Kirgis, N. Mze, and J. Leclair de Bellevue
Atmos. Chem. Phys., 10, 8563–8574, https://doi.org/10.5194/acp-10-8563-2010, https://doi.org/10.5194/acp-10-8563-2010, 2010
E. Palazzi, F. Fierli, F. Cairo, C. Cagnazzo, G. Di Donfrancesco, E. Manzini, F. Ravegnani, C. Schiller, F. D'Amato, and C. M. Volk
Atmos. Chem. Phys., 9, 9349–9367, https://doi.org/10.5194/acp-9-9349-2009, https://doi.org/10.5194/acp-9-9349-2009, 2009
J. M. Castanheira, J. A. Añel, C. A. F. Marques, J. C. Antuña, M. L. R. Liberato, L. de la Torre, and L. Gimeno
Atmos. Chem. Phys., 9, 9143–9153, https://doi.org/10.5194/acp-9-9143-2009, https://doi.org/10.5194/acp-9-9143-2009, 2009
Cited articles
Andrews, A. E., Boering, K. A., Daube, B. C., Wofsy, S. C., Loewenstein, M.,
Jost, H., Podolske, J. R., Webster, C. R., Herman, R. L., Scott, D. C.,
Flesch, G. J., Moyer, E. J., Elkins, J. W., Dutton, G. S., Hurst, D. F.,
Moore, F. L., Ray, E. A., Romashkin, P. A., and Strahan, S. E.: Mean ages of
stratospheric air derived from in situ observations of CO2, CH4,
and N2O, J. Geophys. Res., 106, 32295–32314, 2001.
Aoki, S., Nakazawa, T., Machida, T., Sugawara, S., Morimoto, S., Hashida,
G., Yamanouchi, T., Kawamura, K., and Honda, H.: Carbon dioxide variations
in the stratosphere over Japan, Scandinavia and Antarctica, Tellus, 55B,
178–186, 2003.
Austin, J. and Li, F.: On the relationship between the strength of the
Brewer–Dobson circulation and the age of stratospheric air, Geophys. Res. Lett., 33,
L17807, https://doi.org/10.1029/2006GL026867, 2006.
Banks, P. M. and Kockarts, G.: Aeronomy, Parts A and B, Academic Press,
Inc. New York, 1973.
Bischof, W., Borchers, R., Fabian, P., and Kruger, B. C.: Increased
concentration and vertical distribution of carbon dioxide in the
stratosphere, Nature, 316, 708–710, 1985.
Bönisch, H., Engel, A., Birner, Th., Hoor, P., Tarasick, D. W., and Ray, E.
A.: On the structural changes in the Brewer-Dobson circulation after 2000,
Atmos. Chem. Phys., 11, 3937–3948, https://doi.org/10.5194/acp-11-3937-2011,
2011.
Brinckmann, S., Engel, A., Bönisch, H., Quack, B., and Atlas, E.:
Short-lived brominated hydrocarbons – observations in the source regions and
the tropical tropopause layer, Atmos. Chem. Phys., 12, 1213–1228,
https://doi.org/10.5194/acp-12-1213-2012, 2012.
Diallo, M., Legras, B., and Chédin, A.: Age of stratospheric air in the
ERA-Interim, Atmos. Chem. Phys., 12, 12133–12154,
https://doi.org/10.5194/acp-12-12133-2012, 2012.
Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin,
I., Atlas, E., Aoki, S., Nakazawa, T., Sugawara, S., Moore, F., Hurst, D.,
Elkins, J., Schauffler, S., Andrews, A., and Boering, K.: Age of
stratospheric air unchanged within uncertainties over the past 30 years,
Nature Geosci., 2, 28–31, https://doi.org/10.1038/Ngeo388, 2009.
Engel, A., Bönisch, H., Ullrich, M., Sitals, R., Membrive, O., Danis, F.,
and Crevoisier, C.: Mean age of stratospheric air derived from AirCore
observations, Atmos. Chem. Phys., 17, 6825–6838,
https://doi.org/10.5194/acp-17-6825-2017, 2017.
Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J.,
Barnola, J.-M., and Morgan, V. I.: Natural and anthropogenic changes in
atmospheric CO2 over the last 1000 years from air in Antarctic ice and
firn, J. Geophys. Res., 101, 4115–4128, 1996.
Garny, H., Birner, T., Bönisch, H., and Bunze, F.: The effects of mixing on
age of air, J. Geophys. Res.-Atmos., 119, 7015–7034,
https://doi.org/10.1002/2013JD021417, 2014.
Haenel, F. J., Stiller, G. P., von Clarmann, T., Funke, B., Eckert, E.,
Glatthor, N., Grabowski, U., Kellmann, S., Kiefer, M., Linden, A., and
Reddmann, T.: Reassessment of MIPAS age of air trends and variability, Atmos.
Chem. Phys., 15, 13161–13176, https://doi.org/10.5194/acp-15-13161-2015,
2015.
Hall, T. M. and Plumb, R. A.: Age as a diagnostic of stratospheric transport,
J. Geophys. Res., 99, 1059–1070, 1994.
Hall, T. M. and Waugh, D. W.: Influence of nonlocal chemistry on tracer
distributions: inferring mean age of air from SF6, J. Geophys. Res.,
103, 13327–13336, 1998.
Harnisch, J., Bischof, W., Borchers, R., Fabian, P., and Maiss, M.: A
stratospheric excess CO2 – due to tropical deep convection, Geophys.
Res. Lett., 25, 63–66, 1998.
Hasebe, F., Aoki, S., Morimoto, S., Inai, Y., Nakazawa, T., Sugawara, S.,
Ikeda, C., Honda, H., Yamazaki, H., Halimurrahman, Komala, N., Putri, F., Budiyono, A., Soedjarwo, M., Ishidoya, S.,
Toyoda, S., Shibata, T., Hayashi, M., Eguchi, N., Nishi, N., Fujiwara, M.,
Ogino, S., Shiotani, M., and Sugidachi, T.: Coordinated
Upper-troposphere-to-stratosphere Balloon Experiment in Biak (CUBE/Biak), B.
Am. Meteor. Soc., https://doi.org/10.1175/BAMS-D-16-0289.1, in press, 2018.
Honda, H., S. Aoki, T. Nakazawa, S. Morimoto, and N. Yajima: Cryogenic air
sampling system for measurements of the concentrations of stratospheric trace
gases and their isotopic ratios over Antarctica, J. Geomagn. Geoelectr.,
48, 1145–1155, 1996.
Huang, T. Walters, S., Brasseur, G., Hauglustaine, D., and Wu, W.:
Description of SOCRATES – A chemical dynamical radiative two-dimensional
model, NCAR/TN-440+EDD NCAR TECHNICAL NOTE, 1998.
Ishidoya, S. and Murayama, S.: Development of high precision continuous
measuring system of the atmospheric O2/N2 and Ar∕N2
ratios and its application to the observation in Tsukuba, Japan, Tellus
66B, 22574, https://doi.org/10.3402/tellusb.v66.22574, 2014.
Ishidoya, S., Sugawara, S., Hashida, G., Morimoto, S., Aoki, S., Nakazawa,
T., and Yamanouchi, T.: Vertical profiles of the O2/N2 ratio in
the stratosphere over Japan and Antarctica, Geophys. Res. Lett., 33, L13701,
https://doi.org/10.1029/2006GL025886, 2006.
Ishidoya, S., Sugawara, S., Morimoto, S., Aoki, S., and Nakazawa, T.:
Gravitational separation of major atmospheric components of nitrogen and
oxygen in the stratosphere, Geophys. Res. Lett., 35, L03811, https://doi.org/10.1029/2007GL030456,
2008a.
Ishidoya, S., Morimoto, S., Sugawara, S., Watai, T., Machida, T. Aoki, S.,
Nakazawa, T., and Yamanouchi, T.: Gravitational separation suggested by
O2/N2, δ15N of N2, δ18O of O2,
Ar∕N2 observed in the lowermost part of the stratosphere at northern
middle and high latitudes in the early spring of 2002, Geophys. Res. Lett., 35,
L03812, https://doi.org/10.1029/2007GL031526, 2008b.
Ishidoya, S., Sugawara, S., Morimoto, S., Aoki, S., Nakazawa, T., Honda, H.,
and Murayama, S.: Gravitational separation in the stratosphere – a new
indicator of atmospheric circulation, Atmos. Chem. Phys., 13, 8787–8796,
https://doi.org/10.5194/acp-13-8787-2013, 2013.
Kaiser, J., Engel, A., Borchers, R., and Röckmann, T.: Probing
stratospheric transport and chemistry with new balloon and aircraft
observations of the meridional and vertical N2O isotope distribution,
Atmos. Chem. Phys., 6, 3535–3556, https://doi.org/10.5194/acp-6-3535-2006,
2006.
Khosravi, R., Brasseur, G., Smith, A., Rusch, D., Walters, S., Chabrillat,
and Kockarts, G.: Response of the mesosphere to human-induced perturbations
and solar variability calculated by a 2-D model, J. Geophys. Res., 107,
4358, https://doi.org/10.1029/2001JD001235, 2002.
Laube, J. C., Engel, A., Bönisch, H., Möbius, T., Sturges, W. T.,
Braß, M., and Röckmann, T.: Fractional release factors of long-lived
halogenated organic compounds in the tropical stratosphere, Atmos. Chem.
Phys., 10, 1093–1103, https://doi.org/10.5194/acp-10-1093-2010, 2010.
Li, F., Austin, J., and Wilson, J.: The Strength of the Brewer–Dobson
Circulation in a changing climate: Coupled chemistry–climate model
simulations, J. Climate, 21, 40–57, https://doi.org/10.1175/2007JCLI1663.1, 2008.
Linz, M., Plumb, R. A., Gerber, E. P., and Sheshadri, A.: The relationship
between age of air and the diabatic circulation of the stratosphere, J.
Atmos. Sci., 73, 4507–4518, https://doi.org/10.1175/JAS-D-16-0125.1, 2016.
Machida, T., Matsueda, H., Sawa, Y., Nakagawa, Y., Hirotani, K., Kondo, N.,
Goto, K., Nakazawa, N., Ishikawa, K., and Ogawa, T.: Worldwide measurements
of atmospheric CO2 and other trace gas species using commercial
airlines, J. Atmos. Ocean. Tech., 25, 1744–1754,
https://doi.org/10.1175/2008JTECHA1082.1, 2008.
Matsueda, H., Machida, T., Sawa, Y., and Niwa, Y.: Long-term change of
CO2 latitudinal distribution in the upper troposphere, Geophys. Res.
Lett., 42, 2508–2514, https://doi.org/10.1002/2014GL062768, 2015.
Morimoto, S., Yamanouchi, T., Honda, H., Iijima, I., Yoshida, T., Aoki, S.,
Nakazawa, T., Ishidoya S., and Sugawara, S.: A new compact cryogenic air
sampler and its application in stratospheric greenhouse gas observation at
Syowa station, Antarctica. J. Atmos. Ocean. Tech., 26, 2182–2191,
https://doi.org/10.1175/2009JTECHA1283.1, 2009.
Mote, P. W., Rosenlof, K. H., McIntyre, M. E., Carr, E. S., Gille, J. C.,
Holton, J. R., Kinnersley, J. S., Pumphrey, H. C., Russell III, J. M., and
Waters, J. W.: An atmospheric tape recorder: The imprint of tropical
tropopause temperatures on stratospheric water vapor, J. Geophys. Res.,
101, 3989–4006, https://doi.org/10.1029/95JD03422, 1996.
Nakazawa, T., Machida, T., Sugawara, S., Murayama, S., Morimoto, S., Hashida,
G., Honda, H., and Itoh, T.: Measurements of the stratospheric carbon dioxide
concentration over Japan using a balloon-borne cryogenic sampler, Geophys.
Res. Lett., 22, 1229, https://doi.org/10.1029/95GL01188, 1995.
Nakazawa, T., Ishizawa, M., Higuchi K., and Trivett, B. A. N.: Two curve
fitting methods applied to CO2 flask data, Environmetrics, 8, 197–218,
1997.
Nakazawa, T., Aoki, S., Kawamura, K., Saeki, T., Sugawara, S., Honda, H.,
Hashida, G., Morimoto, S., Yoshida, N., Toyoda, S., Makide, Y., and Shirai,
T.: Variations of stratospheric trace gases measured using a balloon-borne
cryogenic sampler, Adv. Space Res., 30, 1349–1357,
https://doi.org/10.1016/S0273-1177(02)00551-3, 2002.
Park, J. H., Ko, M. K. W., Jackman, C. H., Plumb, R. A., Kaye, J. A., and
Sage, K. H.: Models and Measurements Intercomparison II, NASA/TM-1999-209554,
available at:
http://www.cs.odu.edu/~mln/ltrs-pdfs/NASA-99-tm209554.pdf, 1999.
Patra, P., Lal, S., Subbaraya, B., Jackman, C. H., and Rajaratnam, P.:
Observed vertical profile of sulfur hexafluoride (SF6) and its atmospheric
applications, J. Geophys. Res., 102, 8855–8859, 1997.
Ploeger, F., Abalos, M., Birner, T., Konopka, P., Legras, B., Müller, R.,
and Riese, M.: Quantifying the effects of mixing and residual circulation on
trends of stratospheric mean age of air, Geophys. Res. Lett., 42,
2047–2054, https://doi.org/10.1002/2014GL062927, 2015.
Randel, W. J., Wu, F., Gettelman, A., Russell III, J. M., Zawodny, J. M., and
Oltmans, S. J.: Seasonal variation of water vapor in the lower stratosphere
observed in Halogen Occultation Experiment data, J. Geophys. Res., 106,
14313–14325, 2001.
Ray, E. A., Moore, F. L., Elkins, J. W., Dutton, G. S., Fahey, D. W.,
Vömel, H., Oltmans, S. J., and Rosenlof, K. H.: Transport into the
northern hemisphere lowermost stratosphere revealed by in situ tracer
measurements, J. Geophys. Res., 104, 26565–26580, 1999.
Ray, E. A., Moore, F. L., Rosenlof, K. H., Davis, S. M., Boenisch, H.,
Morgenstern, O., Smale, D., Rozanov, E., Hegglin, M., Pitari, G., Mancini,
E., Braesicke, P., Butchart, N., Hardiman, S., Li, F., Shibata, K., and
Plummer, D. A.: Evidence for changes in stratospheric transport and mixing
over the past three decades based on multiple data sets and tropical leaky
pipe analysis, J. Geophys. Res., 115, D21304, https://doi.org/10.1029/2010JD014206, 2010.
Reddmann, T., Ruhnke, R., and Kouker, W.: Three-dimensional model simulations
of SF6 with mesospheric chemistry, J. Geophys. Res., 106,
14525–14537, 2001.
Sawa, Y., Machida, T., and Matsueda, H.: Seasonal variations of CO2 near
the tropopause observation by commercial aircraft, J. Geophys. Res., 113,
D23301, https://doi.org/10.1029/2008JD010568, 2008.
Schauffler, S. M., Atlas, E. L., Flocke, F., Lueb, R. A., Stroud, V., and
Travnicek, W.: Measurements of bromine containing organic compounds at the
tropical tropopause, Geophys. Res. Ltt., 25, 317–320, 1998.
Schmidt, U. and Kheidim, A.: In situ measurements of carbon dioxide in the
winter Arctic vortex and at midlatitudes: an indicator of the age of
stratospheric air, Geophys. Res. Lett., 18, 763–766, 1991.
Stiller, G. P., von Clarmann, T., Haenel, F., Funke, B., Glatthor, N.,
Grabowski, U., Kellmann, S., Kiefer, M., Linden, A., Lossow, S., and
López-Puertas, M.: Observed temporal evolution of global mean age of
stratospheric air for the 2002 to 2010 period, Atmos. Chem. Phys., 12,
3311–3331, https://doi.org/10.5194/acp-12-3311-2012, 2012.
Strunk, M., Engel, A., Schmidt, U., Volk, C. M., Wetter, T., Levin, I., and
Glatzel-Mattheier, H.: CO2 and SF6 as stratospheric age tracers:
Consistency and the effect of mesospheric SF6 loss, Geophys. Res.
Lett., 27, 341–344, 2000.
Sugawara, S., Nakazawa, T., Shirakawa, Y., Kawamura, K., and Aoki, S.:
Vertical profile of the carbon isotopic ratio of stratospheric methane over
Japan, Geophys. Res. Lett., 24, 2989–2992, 1997.
Volk, C. M., Elkins, J. W., Fahey, D. W., Salawitch, R. J., Dutton, G. S.,
Gilligan, J. M., Proffitt, M. H., Loewenstein, M., Podolske, J. R.,
Minschwaner, K., Margitan, J. J., and Chan, K. R.: Quantifying transport
between the tropical and mid-latitude lower stratosphere, Science, 272,
1763–1768, 1996.
Waugh, D. W. and Hall, T. M.: Age of stratospheric air: Theory,
observations, and models, Rev. Geophys., 40, 1010,
https://doi.org/10.1029/2000RG000101, 2002.
Short summary
This is the first research that shows concrete evidence of gravitational separation in the tropical stratosphere. This implies that gravitational separation occurs within the entire stratosphere, which gives us new insight into atmospheric dynamics.
This is the first research that shows concrete evidence of gravitational separation in the...
Altmetrics
Final-revised paper
Preprint