Articles | Volume 17, issue 2
https://doi.org/10.5194/acp-17-911-2017
https://doi.org/10.5194/acp-17-911-2017
Research article
 | 
20 Jan 2017
Research article |  | 20 Jan 2017

Short-period mesospheric gravity waves and their sources at the South Pole

Dhvanit Mehta, Andrew J. Gerrard, Yusuke Ebihara, Allan T. Weatherwax, and Louis J. Lanzerotti

Related authors

Book review: Unleashing Yahweh: Ezekiel and the Northern Lights by George Siscoe
Louis J. Lanzerotti
Hist. Geo Space. Sci., 14, 121–122, https://doi.org/10.5194/hgss-14-121-2023,https://doi.org/10.5194/hgss-14-121-2023, 2023
High-speed stereoscopy of aurora
R. Kataoka, Y. Fukuda, H. A. Uchida, H. Yamada, Y. Miyoshi, Y. Ebihara, H. Dahlgren, and D. Hampton
Ann. Geophys., 34, 41–44, https://doi.org/10.5194/angeo-34-41-2016,https://doi.org/10.5194/angeo-34-41-2016, 2016
Short summary
Defining and resolving current systems in geospace
N. Y. Ganushkina, M. W. Liemohn, S. Dubyagin, I. A. Daglis, I. Dandouras, D. L. De Zeeuw, Y. Ebihara, R. Ilie, R. Katus, M. Kubyshkina, S. E. Milan, S. Ohtani, N. Ostgaard, J. P. Reistad, P. Tenfjord, F. Toffoletto, S. Zaharia, and O. Amariutei
Ann. Geophys., 33, 1369–1402, https://doi.org/10.5194/angeo-33-1369-2015,https://doi.org/10.5194/angeo-33-1369-2015, 2015
Short summary
Ion drift simulation of sudden appearance of sub-keV structured ions in the inner magnetosphere
M. Yamauchi, Y. Ebihara, H. Nilsson, and I. Dandouras
Ann. Geophys., 32, 83–90, https://doi.org/10.5194/angeo-32-83-2014,https://doi.org/10.5194/angeo-32-83-2014, 2014

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Long-term studies of the summer wind in the mesosphere and lower thermosphere at middle and high latitudes
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
EGUsphere, https://doi.org/10.5194/egusphere-2023-1465,https://doi.org/10.5194/egusphere-2023-1465, 2023
Short summary
Progress in investigating long-term trends in the mesosphere, thermosphere, and ionosphere
Jan Laštovička
Atmos. Chem. Phys., 23, 5783–5800, https://doi.org/10.5194/acp-23-5783-2023,https://doi.org/10.5194/acp-23-5783-2023, 2023
Short summary
Aura/MLS observes and SD-WACCM-X simulates the seasonality, quasi-biennial oscillation and El Niño–Southern Oscillation of the migrating diurnal tide driving upper mesospheric CO primarily through vertical advection
Cornelius Csar Jude H. Salinas, Dong L. Wu, Jae N. Lee, Loren C. Chang, Liying Qian, and Hanli Liu
Atmos. Chem. Phys., 23, 1705–1730, https://doi.org/10.5194/acp-23-1705-2023,https://doi.org/10.5194/acp-23-1705-2023, 2023
Short summary
Hydroxyl airglow observations for investigating atmospheric dynamics: results and challenges
Sabine Wüst, Michael Bittner, Patrick J. Espy, W. John R. French, and Frank J. Mulligan
Atmos. Chem. Phys., 23, 1599–1618, https://doi.org/10.5194/acp-23-1599-2023,https://doi.org/10.5194/acp-23-1599-2023, 2023
Short summary
Signatures of gravity wave-induced instabilities in balloon lidar soundings of polar mesospheric clouds
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Atmos. Chem. Phys., 23, 949–961, https://doi.org/10.5194/acp-23-949-2023,https://doi.org/10.5194/acp-23-949-2023, 2023
Short summary

Cited articles

Bhattacharya, Y. and Gerrard, A. J.: Correlations of mesospheric winds with subtle motion of the Arctic polar vortex, Atmos. Chem. Phys., 10, 431–436, https://doi.org/10.5194/acp-10-431-2010, 2010.
Brown, L., Gerrard, A., Meriwether, J., and Makela, J.: All-sky imaging observations of mesospheric fronts in OI 557.7 nm and broadband OH airglow emissions: Analysis of frontal structure, atmospheric background conditions, and potential sourcing mechanisms, J. Geophys. Res., 109, D19104, https://doi.org/10.1029/2003JD004223, 2004.
Chen, C., Chu, X. McDonald, A. J., Vadas, S. L., Yu, Z., Fong, W., and Lu, X.: Inertia-gravity waves in Antarctica: A case study using simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8° S, 166.7° E), J. Geophys. Res., 118, 2794–2808, https://doi.org/10.1002/jgrd.50318, 2013.
Chu, X., Yu, Z., Gardner, C. S., Chen, C., and Fong, W.: Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155 km) at McMurdo (77.8° S, 166.7° E), Antarctica, Geophys. Res. Lett., 38, L23807, https://doi.org/10.1029/2011GL050016, 2011.
Duck, T. J., Whiteway, J. A., and Carswell, A. I.: Lidar observations of gravity wave activity and Arctic stratospheric vortex core warming, Geophys. Res. Lett., 25, 2813–2816, 1998.
Download
Short summary
This paper presents an investigation into the sources of atmospheric gravity waves observed at 90 km above Amundsen-Scott South Pole Station, Antarctica. By combining gravity wave characteristics obtained from imager data and a numerical model for 3-D wave propagation through the atmosphere, we find that the development of baroclinic instabilities via displacement of the polar vortex is a significant and unique source of vertically propagating, short-period (< 1 h) gravity waves in the region.
Altmetrics
Final-revised paper
Preprint