Articles | Volume 17, issue 1
Atmos. Chem. Phys., 17, 21–29, 2017
https://doi.org/10.5194/acp-17-21-2017
Atmos. Chem. Phys., 17, 21–29, 2017
https://doi.org/10.5194/acp-17-21-2017
Research article
02 Jan 2017
Research article | 02 Jan 2017

Why do general circulation models overestimate the aerosol cloud lifetime effect? A case study comparing CAM5 and a CRM

Cheng Zhou and Joyce E. Penner

Related authors

What controls the low ice number concentration in the upper troposphere?
Cheng Zhou, Joyce E. Penner, Guangxing Lin, Xiaohong Liu, and Minghuai Wang
Atmos. Chem. Phys., 16, 12411–12424, https://doi.org/10.5194/acp-16-12411-2016,https://doi.org/10.5194/acp-16-12411-2016, 2016
Short summary
Dehydration effects from contrails in a coupled contrail–climate model
U. Schumann, J. E. Penner, Yibin Chen, Cheng Zhou, and K. Graf
Atmos. Chem. Phys., 15, 11179–11199, https://doi.org/10.5194/acp-15-11179-2015,https://doi.org/10.5194/acp-15-11179-2015, 2015

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Impacts of combined microphysical and land-surface uncertainties on convective clouds and precipitation in different weather regimes
Christian Barthlott, Amirmahdi Zarboo, Takumi Matsunobu, and Christian Keil
Atmos. Chem. Phys., 22, 10841–10860, https://doi.org/10.5194/acp-22-10841-2022,https://doi.org/10.5194/acp-22-10841-2022, 2022
Short summary
Weakening of tropical sea breeze convective systems through interactions of aerosol, radiation, and soil moisture
J. Minnie Park and Susan C. van den Heever
Atmos. Chem. Phys., 22, 10527–10549, https://doi.org/10.5194/acp-22-10527-2022,https://doi.org/10.5194/acp-22-10527-2022, 2022
Short summary
Sensitivity analysis of an aerosol-aware microphysics scheme in Weather Research and Forecasting (WRF) during case studies of fog in Namibia
Michael John Weston, Stuart John Piketh, Frédéric Burnet, Stephen Broccardo, Cyrielle Denjean, Thierry Bourrianne, and Paola Formenti
Atmos. Chem. Phys., 22, 10221–10245, https://doi.org/10.5194/acp-22-10221-2022,https://doi.org/10.5194/acp-22-10221-2022, 2022
Short summary
Do Arctic mixed-phase clouds sometimes dissipate due to insufficient aerosol? Evidence from comparisons between observations and idealized simulations
Lucas J. Sterzinger, Joseph Sedlar, Heather Guy, Ryan R. Neely III, and Adele L. Igel
Atmos. Chem. Phys., 22, 8973–8988, https://doi.org/10.5194/acp-22-8973-2022,https://doi.org/10.5194/acp-22-8973-2022, 2022
Short summary
Contrail formation within cirrus: ICON-LEM simulations of the impact of cirrus cloud properties on contrail formation
Pooja Verma and Ulrike Burkhardt
Atmos. Chem. Phys., 22, 8819–8842, https://doi.org/10.5194/acp-22-8819-2022,https://doi.org/10.5194/acp-22-8819-2022, 2022
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S.: A parameterisation of aerosol activation 2. Multiple aerosol types, J. Geophys. Res., 105, 6837–6844, 2000.
Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, 2004.
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, in Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge Univ. Press, Cambridge, UK, 2013.
Bretherton, C. S., Blossey, P. N., and Uchida, J.: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo, Geophys. Res. Lett., 34, L03813, https://doi.org/10.1029/2006GL027648, 2007.
Download
Short summary
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water with increased aerosol loading may have been overestimated in climate models. Here, by simulating the same shallow, warm clouds using a global climate model (CAM5) and a cloud resolving model (CRM) which has more complete and detailed cloud physics, we show how a climate model can overestimate the aerosol cloud lifetime effect due to its simplified representation of cloud processes.
Altmetrics
Final-revised paper
Preprint