Articles | Volume 16, issue 8
Atmos. Chem. Phys., 16, 4885–4896, 2016
https://doi.org/10.5194/acp-16-4885-2016
Atmos. Chem. Phys., 16, 4885–4896, 2016
https://doi.org/10.5194/acp-16-4885-2016
Research article
20 Apr 2016
Research article | 20 Apr 2016

Influence of the sudden stratospheric warming on quasi-2-day waves

Sheng-Yang Gu et al.

Related authors

Investigation on the abnormal quasi-two day wave activities during sudden stratospheric warming period of January 2006
Sheng-Yang Gu, Xiankang Dou, and Dora Pancheva
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-563,https://doi.org/10.5194/acp-2017-563, 2017
Revised manuscript not accepted
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Decay times of atmospheric acoustic–gravity waves after deactivation of wave forcing
Nikolai M. Gavrilov, Sergey P. Kshevetskii, and Andrey V. Koval
Atmos. Chem. Phys., 22, 13713–13724, https://doi.org/10.5194/acp-22-13713-2022,https://doi.org/10.5194/acp-22-13713-2022, 2022
Short summary
Suppressed migrating diurnal tides in the mesosphere and lower thermosphere region during El Niño in northern winter and its possible mechanism
Yetao Cen, Chengyun Yang, Tao Li, James M. Russell III, and Xiankang Dou
Atmos. Chem. Phys., 22, 7861–7874, https://doi.org/10.5194/acp-22-7861-2022,https://doi.org/10.5194/acp-22-7861-2022, 2022
Short summary
Intercomparison of middle atmospheric meteorological analyses for the Northern Hemisphere winter 2009–2010
John P. McCormack, V. Lynn Harvey, Cora E. Randall, Nicholas Pedatella, Dai Koshin, Kaoru Sato, Lawrence Coy, Shingo Watanabe, Fabrizio Sassi, and Laura A. Holt
Atmos. Chem. Phys., 21, 17577–17605, https://doi.org/10.5194/acp-21-17577-2021,https://doi.org/10.5194/acp-21-17577-2021, 2021
Short summary
Self-consistent global transport of metallic ions with WACCM-X
Jianfei Wu, Wuhu Feng, Han-Li Liu, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 21, 15619–15630, https://doi.org/10.5194/acp-21-15619-2021,https://doi.org/10.5194/acp-21-15619-2021, 2021
Short summary
Does the coupling of the semiannual oscillation with the quasi-biennial oscillation provide predictability of Antarctic sudden stratospheric warmings?
Viktoria J. Nordström and Annika Seppälä
Atmos. Chem. Phys., 21, 12835–12853, https://doi.org/10.5194/acp-21-12835-2021,https://doi.org/10.5194/acp-21-12835-2021, 2021
Short summary

Cited articles

Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, Academic, San Diego, Calif, 489 pp., 1987.
Burks, D. and Leovy, C.: Planetary waves near the mesospheric easterly jet, Geophys. Res. Lett., 13, 193–196, 1986.
Chandran, A., Garcia, R. R., Collins, R. L., and Chang, L. C.: Secondary planetary waves in the middle and upper atmosphere following the stratospheric sudden warming event of January 2012, Geophys. Res. Lett., 40, 1861–1867, 2013.
Chang, L. C., Palo, S. E., and Liu, H. L.: Short-term variability in the migrating diurnal tide caused by interactions with the quasi 2 day wave, J. Geophys. Res., 116, D12112, https://doi.org/10.1029/2010JD014996, 2011.
Funke, B., López-Puertas, M., Bermejo-Pantaleón, D., García-Comas, M., Stiller, G. P., von Clarmann, T., Kiefer, M., and Linden, A.: Evidence for dynamical coupling from the lower atmosphere to the thermosphere during a major stratospheric warming, Geophys. Res. Lett., 37, L13803, https://doi.org/10.1029/2010GL043619, 2010.
Download
Short summary
The influences of sudden stratospheric warming in the Northern Hemisphere on quasi-2-day waves are studied with both observations and simulations. We found the energy of W3 is transferred to W2 through the nonlinear interaction with SPW1 and the instability at winter mesopause could provide additional amplification for W3. The summer easterly is enhanced during SSW, which is more favorable for the propagation of quasi-2-day waves.
Altmetrics
Final-revised paper
Preprint