Articles | Volume 15, issue 5
Research article
12 Mar 2015
Research article |  | 12 Mar 2015

Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer

Related authors

The HD(CP)2 Observational Prototype Experiment (HOPE) – an overview
Andreas Macke, Patric Seifert, Holger Baars, Christian Barthlott, Christoph Beekmans, Andreas Behrendt, Birger Bohn, Matthias Brueck, Johannes Bühl, Susanne Crewell, Thomas Damian, Hartwig Deneke, Sebastian Düsing, Andreas Foth, Paolo Di Girolamo, Eva Hammann, Rieke Heinze, Anne Hirsikko, John Kalisch, Norbert Kalthoff, Stefan Kinne, Martin Kohler, Ulrich Löhnert, Bomidi Lakshmi Madhavan, Vera Maurer, Shravan Kumar Muppa, Jan Schween, Ilya Serikov, Holger Siebert, Clemens Simmer, Florian Späth, Sandra Steinke, Katja Träumner, Silke Trömel, Birgit Wehner, Andreas Wieser, Volker Wulfmeyer, and Xinxin Xie
Atmos. Chem. Phys., 17, 4887–4914,,, 2017
Short summary
Profiles of second- to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar
A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal
Atmos. Chem. Phys., 15, 5485–5500,,, 2015
Short summary

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Equatorial waves resolved by balloon-borne Global Navigation Satellite System radio occultation in the Strateole-2 campaign
Bing Cao, Jennifer S. Haase, Michael J. Murphy, M. Joan Alexander, Martina Bramberger, and Albert Hertzog
Atmos. Chem. Phys., 22, 15379–15402,,, 2022
Short summary
Wind lidars reveal turbulence transport mechanism in the wake of a tree
Nikolas Angelou, Jakob Mann, and Ebba Dellwik
Atmos. Chem. Phys., 22, 2255–2268,,, 2022
Short summary
On the role of aerosol radiative effect in the wet season onset timing over the Congo rainforest during boreal autumn
Sudip Chakraborty, Jonathon H. Jiang, Hui Su, and Rong Fu
Atmos. Chem. Phys., 21, 12855–12866,,, 2021
Short summary
Study of the seasonal variation in Aeolus wind product performance over China using ERA5 and radiosonde data
Siying Chen, Rongzheng Cao, Yixuan Xie, Yinchao Zhang, Wangshu Tan, He Chen, Pan Guo, and Peitao Zhao
Atmos. Chem. Phys., 21, 11489–11504,,, 2021
Short summary
Measurement report: characteristics of clear-day convective boundary layer and associated entrainment zone as observed by a ground-based polarization lidar over Wuhan (30.5° N, 114.4° E)
Fuchao Liu, Fan Yi, Zhenping Yin, Yunpeng Zhang, Yun He, and Yang Yi
Atmos. Chem. Phys., 21, 2981–2998,,, 2021
Short summary

Cited articles

Achtert, P., Khaplanov, M., Khosrawi, F., and Gumbel, J.: Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere, Atmos. Meas. Tech., 6, 91–98,, 2013.
Arshinov, J., Bobrovnikov, S., Serikov, I., Ansmann, A., Wandinger, U., Althausen, D., Mattis, I., and Müller, D.: Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer, Appl. Optics, 44, 17, 3593–3603,, 2005.
Avila, G., Fernandez, J. M., Tejeda, G., and Montero, S.: The Raman Spectra and cross-sections of H2O, D2O, and HDO in the OH/OD-stretching regions, J. Mol. Spectrosc., 228, 38–65, 2004.
Balin, I., Serikov, I., Bobrovnikov, S., Simeonov, V., Calpini, B., Arshinov, Y., and van der Bergh, H.: Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar, Appl. Phys. B, 79, 775–782, 2004.
Behrendt, A.: Temperature Measurements with Lidar, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Springer, New York, 2005.
Short summary
Measurements and upgrades of the rotational Raman lidar of the University of Hohenheim during the HD(CP)2 Observational Prototype Experiment are presented in this paper. This includes 25h long time series of temperature gradients and water vapor mixing ratio. Through simulation, optimum wavelengths for high- and low-background cases were identified and tested successfully. Low-elevation measurements were performed to measure temperature gradients at altitudes around 100m above ground level.
Final-revised paper