Articles | Volume 15, issue 5
https://doi.org/10.5194/acp-15-2521-2015
https://doi.org/10.5194/acp-15-2521-2015
Research article
 | 
06 Mar 2015
Research article |  | 06 Mar 2015

A new method for measuring the imaginary part of the atmospheric refractive index structure parameter in the urban surface layer

R. Yuan, T. Luo, J. Sun, Z. Zeng, C. Ge, and Y. Fu

Related authors

Comparison of the imaginary parts of the atmospheric refractive index structure parameter and aerosol flux based on different measurement methods
Renmin Yuan, Hongsheng Zhang, Jiajia Hua, Hao Liu, Peizhe Wu, Xingyu Zhu, and Jianning Sun
Atmos. Meas. Tech., 17, 2089–2102, https://doi.org/10.5194/amt-17-2089-2024,https://doi.org/10.5194/amt-17-2089-2024, 2024
Short summary
Modeling diurnal variation of surface PM2.5 concentrations over East China with WRF-Chem: impacts from boundary-layer mixing and anthropogenic emission
Qiuyan Du, Chun Zhao, Mingshuai Zhang, Xue Dong, Yu Chen, Zhen Liu, Zhiyuan Hu, Qiang Zhang, Yubin Li, Renmin Yuan, and Shiguang Miao
Atmos. Chem. Phys., 20, 2839–2863, https://doi.org/10.5194/acp-20-2839-2020,https://doi.org/10.5194/acp-20-2839-2020, 2020
Short summary
Aerosol vertical mass flux measurements during heavy aerosol pollution episodes at a rural site and an urban site in the Beijing area of the North China Plain
Renmin Yuan, Xiaoye Zhang, Hao Liu, Yu Gui, Bohao Shao, Xiaoping Tao, Yaqiang Wang, Junting Zhong, Yubin Li, and Zhiqiu Gao
Atmos. Chem. Phys., 19, 12857–12874, https://doi.org/10.5194/acp-19-12857-2019,https://doi.org/10.5194/acp-19-12857-2019, 2019
Short summary
A new method for estimating aerosol mass flux in the urban surface layer using LAS technology
Renmin Yuan, Tao Luo, Jianning Sun, Hao Liu, Yunfei Fu, and Zhien Wang
Atmos. Meas. Tech., 9, 1925–1937, https://doi.org/10.5194/amt-9-1925-2016,https://doi.org/10.5194/amt-9-1925-2016, 2016
Short summary
Lidar-based remote sensing of atmospheric boundary layer height over land and ocean
T. Luo, R. Yuan, and Z. Wang
Atmos. Meas. Tech., 7, 173–182, https://doi.org/10.5194/amt-7-173-2014,https://doi.org/10.5194/amt-7-173-2014, 2014

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Source apportionment of particle number size distribution at the street canyon and urban background sites
Sami D. Harni, Minna Aurela, Sanna Saarikoski, Jarkko V. Niemi, Harri Portin, Hanna Manninen, Ville Leinonen, Pasi Aalto, Phil K. Hopke, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 24, 12143–12160, https://doi.org/10.5194/acp-24-12143-2024,https://doi.org/10.5194/acp-24-12143-2024, 2024
Short summary
Long-range transport of coarse mineral dust: an evaluation of the Met Office Unified Model against aircraft observations
Natalie G. Ratcliffe, Claire L. Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Lisa-Maria Wieland, Maximilian Dollner, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Chem. Phys., 24, 12161–12181, https://doi.org/10.5194/acp-24-12161-2024,https://doi.org/10.5194/acp-24-12161-2024, 2024
Short summary
Extreme Saharan dust events expand northward over the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 episodes
Sergio Rodríguez and Jessica López-Darias
Atmos. Chem. Phys., 24, 12031–12053, https://doi.org/10.5194/acp-24-12031-2024,https://doi.org/10.5194/acp-24-12031-2024, 2024
Short summary
Atmospheric black carbon in the metropolitan area of La Paz and El Alto, Bolivia: concentration levels and emission sources
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Wiedensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 24, 12055–12077, https://doi.org/10.5194/acp-24-12055-2024,https://doi.org/10.5194/acp-24-12055-2024, 2024
Short summary
Changing optical properties of black carbon and brown carbon aerosols during long-range transport from the Indo-Gangetic Plain to the equatorial Indian Ocean
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024,https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary

Cited articles

Andreas, E. L.: Two-wavelength method of measuring path-averaged turbulent surface heat fluxes, J. Atmos. Ocean Tech., 6, 280–292, 1989.
Andrews, L. C. and Phillips, R. L.: Laser beam propagation through random media, SPIE, Bellingham, Washington, USA, 782 pp., 2005.
Brion, J., Chakir, A., Charbonnier, J., Daumont, D., Parisse, C., and Malicet, J.: Absorption spectra measurements for the ozone molecule in the 350–830 nm region, J. Atmos. Chem., 30, 291–299, https://doi.org/10.1023/a:1006036924364, 1998.
Clifford, S. F.: Temporal-frequency spectra for a spherical wave propagating throught atmospheric turbulence, J. Opt. Soc. Am., 61, 1285–1292, 1971.
Consortini, A., Ronchi, L., and Stefanut.L: Investigation of atmospheric turbulence by narrow laser beams, Appl. Opt., 9, 2543–2547, https://doi.org/10.1364/ao.9.002543, 1970.
Short summary
This study developed a theoretical framework to analyse the contribution of absorption to scintillation, which can be used to derive the imaginary part of the ARISP in the urban atmospheric boundary layer from scintillation measurements. In this study, a simple expression for the imaginary part of the ARISP is obtained, which can be conveniently used to determine the imaginary part of the ARISP from LAS measurements. The experimental results showed good agreement with the presented theory.
Altmetrics
Final-revised paper
Preprint