Articles | Volume 15, issue 5
https://doi.org/10.5194/acp-15-2521-2015
https://doi.org/10.5194/acp-15-2521-2015
Research article
 | 
06 Mar 2015
Research article |  | 06 Mar 2015

A new method for measuring the imaginary part of the atmospheric refractive index structure parameter in the urban surface layer

R. Yuan, T. Luo, J. Sun, Z. Zeng, C. Ge, and Y. Fu

Related authors

Modeling urban pollutant transport at multi-resolutions: Impacts of turbulent mixing
Zining Yang, Qiuyan Du, Qike Yang, Chun Zhao, Gudongze Li, Zihan Xia, Mingyue Xu, Renmin Yuan, Yubin Li, Kaihui Xia, Jun Gu, and Jiawang Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-3890,https://doi.org/10.5194/egusphere-2024-3890, 2025
Short summary
Comparison of the imaginary parts of the atmospheric refractive index structure parameter and aerosol flux based on different measurement methods
Renmin Yuan, Hongsheng Zhang, Jiajia Hua, Hao Liu, Peizhe Wu, Xingyu Zhu, and Jianning Sun
Atmos. Meas. Tech., 17, 2089–2102, https://doi.org/10.5194/amt-17-2089-2024,https://doi.org/10.5194/amt-17-2089-2024, 2024
Short summary
Modeling diurnal variation of surface PM2.5 concentrations over East China with WRF-Chem: impacts from boundary-layer mixing and anthropogenic emission
Qiuyan Du, Chun Zhao, Mingshuai Zhang, Xue Dong, Yu Chen, Zhen Liu, Zhiyuan Hu, Qiang Zhang, Yubin Li, Renmin Yuan, and Shiguang Miao
Atmos. Chem. Phys., 20, 2839–2863, https://doi.org/10.5194/acp-20-2839-2020,https://doi.org/10.5194/acp-20-2839-2020, 2020
Short summary
Aerosol vertical mass flux measurements during heavy aerosol pollution episodes at a rural site and an urban site in the Beijing area of the North China Plain
Renmin Yuan, Xiaoye Zhang, Hao Liu, Yu Gui, Bohao Shao, Xiaoping Tao, Yaqiang Wang, Junting Zhong, Yubin Li, and Zhiqiu Gao
Atmos. Chem. Phys., 19, 12857–12874, https://doi.org/10.5194/acp-19-12857-2019,https://doi.org/10.5194/acp-19-12857-2019, 2019
Short summary
A new method for estimating aerosol mass flux in the urban surface layer using LAS technology
Renmin Yuan, Tao Luo, Jianning Sun, Hao Liu, Yunfei Fu, and Zhien Wang
Atmos. Meas. Tech., 9, 1925–1937, https://doi.org/10.5194/amt-9-1925-2016,https://doi.org/10.5194/amt-9-1925-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Measurement report: Long-term assessment of primary and secondary organic aerosols in the Shanghai megacity throughout China's Clean Air actions since 2010
Haifeng Yu, Yunhua Chang, Lin Cheng, Yusen Duan, and Jianlin Hu
Atmos. Chem. Phys., 25, 5355–5369, https://doi.org/10.5194/acp-25-5355-2025,https://doi.org/10.5194/acp-25-5355-2025, 2025
Short summary
The evolution of aerosol mixing state derived from a field campaign in Beijing: implications for particle aging timescales in urban atmospheres
Jieyao Liu, Fang Zhang, Jingye Ren, Lu Chen, Anran Zhang, Zhe Wang, Songjian Zou, Honghao Xu, and Xingyan Yue
Atmos. Chem. Phys., 25, 5075–5086, https://doi.org/10.5194/acp-25-5075-2025,https://doi.org/10.5194/acp-25-5075-2025, 2025
Short summary
Measurement report: Size-resolved particle effective density measured by an AAC-SMPS and implications for chemical composition
Yao Song, Jing Wei, Wenlong Zhao, Jinmei Ding, Xiangyu Pei, Fei Zhang, Zhengning Xu, Ruifang Shi, Ya Wei, Lu Zhang, Lingling Jin, and Zhibin Wang
Atmos. Chem. Phys., 25, 4755–4766, https://doi.org/10.5194/acp-25-4755-2025,https://doi.org/10.5194/acp-25-4755-2025, 2025
Short summary
Measurement report: Aircraft observations of aerosol and microphysical quantities of stratocumulus in autumn over Guangxi Province, China – daylight variation, vertical distribution, and aerosol–cloud interactions
Sihan Liu, Honglei Wang, Delong Zhao, Wei Zhou, Yuanmou Du, Zhengguo Zhang, Peng Cheng, Tianliang Zhao, Yue Ke, Zihao Wu, and Mengyu Huang
Atmos. Chem. Phys., 25, 4151–4165, https://doi.org/10.5194/acp-25-4151-2025,https://doi.org/10.5194/acp-25-4151-2025, 2025
Short summary
Hygroscopic aerosols amplify longwave downward radiation in the Arctic
Denghui Ji, Mathias Palm, Matthias Buschmann, Kerstin Ebell, Marion Maturilli, Xiaoyu Sun, and Justus Notholt
Atmos. Chem. Phys., 25, 3889–3904, https://doi.org/10.5194/acp-25-3889-2025,https://doi.org/10.5194/acp-25-3889-2025, 2025
Short summary

Cited articles

Andreas, E. L.: Two-wavelength method of measuring path-averaged turbulent surface heat fluxes, J. Atmos. Ocean Tech., 6, 280–292, 1989.
Andrews, L. C. and Phillips, R. L.: Laser beam propagation through random media, SPIE, Bellingham, Washington, USA, 782 pp., 2005.
Brion, J., Chakir, A., Charbonnier, J., Daumont, D., Parisse, C., and Malicet, J.: Absorption spectra measurements for the ozone molecule in the 350–830 nm region, J. Atmos. Chem., 30, 291–299, https://doi.org/10.1023/a:1006036924364, 1998.
Clifford, S. F.: Temporal-frequency spectra for a spherical wave propagating throught atmospheric turbulence, J. Opt. Soc. Am., 61, 1285–1292, 1971.
Consortini, A., Ronchi, L., and Stefanut.L: Investigation of atmospheric turbulence by narrow laser beams, Appl. Opt., 9, 2543–2547, https://doi.org/10.1364/ao.9.002543, 1970.
Short summary
This study developed a theoretical framework to analyse the contribution of absorption to scintillation, which can be used to derive the imaginary part of the ARISP in the urban atmospheric boundary layer from scintillation measurements. In this study, a simple expression for the imaginary part of the ARISP is obtained, which can be conveniently used to determine the imaginary part of the ARISP from LAS measurements. The experimental results showed good agreement with the presented theory.
Share
Altmetrics
Final-revised paper
Preprint