Articles | Volume 14, issue 6
https://doi.org/10.5194/acp-14-2777-2014
https://doi.org/10.5194/acp-14-2777-2014
Research article
 | 
18 Mar 2014
Research article |  | 18 Mar 2014

Slower ozone production in Houston, Texas following emission reductions: evidence from Texas Air Quality Studies in 2000 and 2006

W. Zhou, D. S. Cohan, and B. H. Henderson

Related authors

Mechanistic representation of soil nitrogen emissions in the Community Multiscale Air Quality (CMAQ) model v 5.1
Quazi Z. Rasool, Jesse O. Bash, and Daniel S. Cohan
Geosci. Model Dev., 12, 849–878, https://doi.org/10.5194/gmd-12-849-2019,https://doi.org/10.5194/gmd-12-849-2019, 2019
Short summary
Enhanced representation of soil NO emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2
Quazi Z. Rasool, Rui Zhang, Benjamin Lash, Daniel S. Cohan, Ellen J. Cooter, Jesse O. Bash, and Lok N. Lamsal
Geosci. Model Dev., 9, 3177–3197, https://doi.org/10.5194/gmd-9-3177-2016,https://doi.org/10.5194/gmd-9-3177-2016, 2016
Short summary
Influence of satellite-derived photolysis rates and NOx emissions on Texas ozone modeling
W. Tang, D. S. Cohan, A. Pour-Biazar, L. N. Lamsal, A. T. White, X. Xiao, W. Zhou, B. H. Henderson, and B. F. Lash
Atmos. Chem. Phys., 15, 1601–1619, https://doi.org/10.5194/acp-15-1601-2015,https://doi.org/10.5194/acp-15-1601-2015, 2015
Short summary
A database and tool for boundary conditions for regional air quality modeling: description and evaluation
B. H. Henderson, F. Akhtar, H. O. T. Pye, S. L. Napelenok, and W. T. Hutzell
Geosci. Model Dev., 7, 339–360, https://doi.org/10.5194/gmd-7-339-2014,https://doi.org/10.5194/gmd-7-339-2014, 2014
Inverse modeling of Texas NOx emissions using space-based and ground-based NO2 observations
W. Tang, D. S. Cohan, L. N. Lamsal, X. Xiao, and W. Zhou
Atmos. Chem. Phys., 13, 11005–11018, https://doi.org/10.5194/acp-13-11005-2013,https://doi.org/10.5194/acp-13-11005-2013, 2013

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
An improved estimate of inorganic iodine emissions from the ocean using a coupled surface microlayer box model
Ryan J. Pound, Lucy V. Brown, Mat J. Evans, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 9899–9921, https://doi.org/10.5194/acp-24-9899-2024,https://doi.org/10.5194/acp-24-9899-2024, 2024
Short summary
Impact of improved representation of volatile organic compound emissions and production of NOx reservoirs on modeled urban ozone production
Katherine R. Travis, Benjamin A. Nault, James H. Crawford, Kelvin H. Bates, Donald R. Blake, Ronald C. Cohen, Alan Fried, Samuel R. Hall, L. Gregory Huey, Young Ro Lee, Simone Meinardi, Kyung-Eun Min, Isobel J. Simpson, and Kirk Ullman
Atmos. Chem. Phys., 24, 9555–9572, https://doi.org/10.5194/acp-24-9555-2024,https://doi.org/10.5194/acp-24-9555-2024, 2024
Short summary
The effect of different climate and air quality policies in China on in situ ozone production in Beijing
Beth S. Nelson, Zhenze Liu, Freya A. Squires, Marvin Shaw, James R. Hopkins, Jacqueline F. Hamilton, Andrew R. Rickard, Alastair C. Lewis, Zongbo Shi, and James D. Lee
Atmos. Chem. Phys., 24, 9031–9044, https://doi.org/10.5194/acp-24-9031-2024,https://doi.org/10.5194/acp-24-9031-2024, 2024
Short summary
Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) and its drivers from 2005 to 2019: a synergistic integration of model simulations and satellite observations
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024,https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Intercomparison of GEOS-Chem and CAM-chem tropospheric oxidant chemistry within the Community Earth System Model version 2 (CESM2)
Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob
Atmos. Chem. Phys., 24, 8607–8624, https://doi.org/10.5194/acp-24-8607-2024,https://doi.org/10.5194/acp-24-8607-2024, 2024
Short summary

Cited articles

Buzcu Guven, B., and Olaguer, E. P.: Ambient formaldehyde source attribution in Houston during TexAQS II and TRAMP, Atmos. Environ., 45, 4272–4280, 2011.
Cowling, E. B., Furiness, C., Dimitriades, B., Parrish, D., and Estes, M.: Final Rapid Science Synthesis Report: Findings from the Second Texas Air Quality Study (TexAQS II), 2007.
Daum, P. H., Kleinman, L. I., Springston, S. R., Nunnermacker, L. J., Lee, Y. N., Weinstein-Lloyd, J., Zheng, J., and Berkowitz, C. M.: Origin and properties of plumes of high ozone observed during the Texas 2000 Air Quality Study (TexAQS 2000), J. Geophys. Res.-Atmos., 109, D17306, https://doi.org/10.1029/2003jd004311, 2004.
Draxler, R.: Meteorological factors of ozone predictability at Houston, Texas, J. Air Waste Manage., 50, 259–271, 2000.
Emmerson, K. M. and Evans, M. J.: Comparison of tropospheric gas-phase chemistry schemes for use within global models, Atmos. Chem. Phys., 9, 1831–1845, https://doi.org/10.5194/acp-9-1831-2009, 2009.
Download
Altmetrics
Final-revised paper
Preprint