Articles | Volume 12, issue 15
Atmos. Chem. Phys., 12, 6845–6861, 2012
https://doi.org/10.5194/acp-12-6845-2012

Special issue: The Pan European Gas-Aerosols Climate Interaction Study...

Atmos. Chem. Phys., 12, 6845–6861, 2012
https://doi.org/10.5194/acp-12-6845-2012

Research article 01 Aug 2012

Research article | 01 Aug 2012

Determinants and predictability of global wildfire emissions

W. Knorr et al.

Related subject area

Subject: Biosphere Interactions | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The regional European atmospheric transport inversion comparison, EUROCOM: first results on European-wide terrestrial carbon fluxes for the period 2006–2015
Guillaume Monteil, Grégoire Broquet, Marko Scholze, Matthew Lang, Ute Karstens, Christoph Gerbig, Frank-Thomas Koch, Naomi E. Smith, Rona L. Thompson, Ingrid T. Luijkx, Emily White, Antoon Meesters, Philippe Ciais, Anita L. Ganesan, Alistair Manning, Michael Mischurow, Wouter Peters, Philippe Peylin, Jerôme Tarniewicz, Matt Rigby, Christian Rödenbeck, Alex Vermeulen, and Evie M. Walton
Atmos. Chem. Phys., 20, 12063–12091, https://doi.org/10.5194/acp-20-12063-2020,https://doi.org/10.5194/acp-20-12063-2020, 2020
Short summary
Quantifying the effects of environmental factors on wildfire burned area in the south central US using integrated machine learning techniques
Sally S.-C. Wang and Yuxuan Wang
Atmos. Chem. Phys., 20, 11065–11087, https://doi.org/10.5194/acp-20-11065-2020,https://doi.org/10.5194/acp-20-11065-2020, 2020
Short summary
Effects of fertilization and stand age on N2O and NO emissions from tea plantations: a site-scale study in a subtropical region using a modified biogeochemical model
Wei Zhang, Zhisheng Yao, Xunhua Zheng, Chunyan Liu, Rui Wang, Kai Wang, Siqi Li, Shenghui Han, Qiang Zuo, and Jianchu Shi
Atmos. Chem. Phys., 20, 6903–6919, https://doi.org/10.5194/acp-20-6903-2020,https://doi.org/10.5194/acp-20-6903-2020, 2020
Short summary
Temperature response measurements from eucalypts give insight into the impact of Australian isoprene emissions on air quality in 2050
Kathryn M. Emmerson, Malcolm Possell, Michael J. Aspinwall, Sebastian Pfautsch, and Mark G. Tjoelker
Atmos. Chem. Phys., 20, 6193–6206, https://doi.org/10.5194/acp-20-6193-2020,https://doi.org/10.5194/acp-20-6193-2020, 2020
Short summary
Data assimilation using an ensemble of models: a hierarchical approach
Peter Rayner
Atmos. Chem. Phys., 20, 3725–3737, https://doi.org/10.5194/acp-20-3725-2020,https://doi.org/10.5194/acp-20-3725-2020, 2020
Short summary

Cited articles

Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, 2001.
Arneth, A., Harrison, S. P., Zaehle, S., Tsigaridis, K., Menon, S., Bartlein, P. J., Feichter, J., Korhola, A., Kulmala, M., O'Donnell, D., Schurgers, G., Sorvari, S., and Vesala, T.: Terrestrial biogeochemical feedbacks in the climate system, Nat. Geosci., 3, 525–532, https://doi.org/10.1038/Ngeo905, 2010.
Arora, V. K. and Boer, G. J.: Fire as an interactive component of dynamic vegetation models, J. Geophys. Res., 110, G02008, https://doi.org/10.1029/2005jg000042, 2005.
Boschetti, L. and Roy, D. P.: Strategies for the fusion of satellite fire radiative power with burned area data for fire radiative energy derivation, J. Geophys. Res., 114, D20302, https://doi.org/10.1029/2008jd011645, 2009.
Download
Altmetrics
Final-revised paper
Preprint