Articles | Volume 10, issue 4
Atmos. Chem. Phys., 10, 1953–1967, 2010
https://doi.org/10.5194/acp-10-1953-2010
Atmos. Chem. Phys., 10, 1953–1967, 2010
https://doi.org/10.5194/acp-10-1953-2010

  19 Feb 2010

19 Feb 2010

Saharan dust infrared optical depth and altitude retrieved from AIRS: a focus over North Atlantic – comparison to MODIS and CALIPSO

S. Peyridieu et al.

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Aerosol vertical distribution and interactions with land/sea breezes over the eastern coast of the Red Sea from lidar data and high-resolution WRF-Chem simulations
Sagar P. Parajuli, Georgiy L. Stenchikov, Alexander Ukhov, Illia Shevchenko, Oleg Dubovik, and Anton Lopatin
Atmos. Chem. Phys., 20, 16089–16116, https://doi.org/10.5194/acp-20-16089-2020,https://doi.org/10.5194/acp-20-16089-2020, 2020
Short summary
Improved inversion of aerosol components in the atmospheric column from remote sensing data
Ying Zhang, Zhengqiang Li, Yu Chen, Gerrit de Leeuw, Chi Zhang, Yisong Xie, and Kaitao Li
Atmos. Chem. Phys., 20, 12795–12811, https://doi.org/10.5194/acp-20-12795-2020,https://doi.org/10.5194/acp-20-12795-2020, 2020
Short summary
Retrieval of aerosol components directly from satellite and ground-based measurements
Lei Li, Oleg Dubovik, Yevgeny Derimian, Gregory L. Schuster, Tatyana Lapyonok, Pavel Litvinov, Fabrice Ducos, David Fuertes, Cheng Chen, Zhengqiang Li, Anton Lopatin, Benjamin Torres, and Huizheng Che
Atmos. Chem. Phys., 19, 13409–13443, https://doi.org/10.5194/acp-19-13409-2019,https://doi.org/10.5194/acp-19-13409-2019, 2019
Short summary
Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance
Jin Liao, Thomas F. Hanisco, Glenn M. Wolfe, Jason St. Clair, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Alan Fried, Eloise A. Marais, Gonzalo Gonzalez Abad, Kelly Chance, Hiren T. Jethva, Thomas B. Ryerson, Carsten Warneke, and Armin Wisthaler
Atmos. Chem. Phys., 19, 2765–2785, https://doi.org/10.5194/acp-19-2765-2019,https://doi.org/10.5194/acp-19-2765-2019, 2019
Short summary
Retrieval of desert dust and carbonaceous aerosol emissions over Africa from POLDER/PARASOL products generated by the GRASP algorithm
Cheng Chen, Oleg Dubovik, Daven K. Henze, Tatyana Lapyonak, Mian Chin, Fabrice Ducos, Pavel Litvinov, Xin Huang, and Lei Li
Atmos. Chem. Phys., 18, 12551–12580, https://doi.org/10.5194/acp-18-12551-2018,https://doi.org/10.5194/acp-18-12551-2018, 2018
Short summary

Cited articles

Alpert, P., Kishcha, P., Shtivelman, A., Krichak, S., and Joseph, J.: Vertical distribution of Saharan dust based on 2.5-year model predictions, Atmos. Res., 70, 109–130, https://doi.org/{10.1016/j.atmosres.2003.11.001}, 2004.
Carlson, T.: Atmospheric turbidity in Saharan dust outbreaks as determined by analyses of satellite brightness data, Mon. Weather Rev., 107, 322–335, 1979.
Ch{é}din, A., Scott, N. A., Wahiche, C., and Moulinier, P.: The Improved Initialization Inversion Method: A high resolution physical method for temperature retrievals from satellites of the TIROS-N series, J. Clim. Appl. Meteorol., 24, 128–143, 1985.
Chevallier, F., Cheruy, F., Scott, N. A., and Ch{é}din, A.: A neural network approach for a fast and accurate computation of a longwave radiative budget, J. Appl. Meteorol., 37, 1385–1397, 1998.
Chiapello, I., Bergametti, G., Gomes, L., Chatenet, B., Dulac, F., Pimenta, J., and Santos Soares, E.: An additional low layer transport of Sahelian and Saharan dust over the North-Eastern Tropical Atlantic, Geophys. Res. Lett., 22, 3191–3194, https://doi.org/{0094-8534/95/95GL-0.3313}, 1995.
Download
Altmetrics
Final-revised paper
Preprint