Articles | Volume 10, issue 20
Atmos. Chem. Phys., 10, 10085–10092, 2010
https://doi.org/10.5194/acp-10-10085-2010

Special issue: Atmospheric implications of the volcanic eruptions of Eyjafjallajökull,...

Atmos. Chem. Phys., 10, 10085–10092, 2010
https://doi.org/10.5194/acp-10-10085-2010

Research article 26 Oct 2010

Research article | 26 Oct 2010

The Eyjafjallajökull eruption in April 2010 – detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles

H. Flentje et al.

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Aerosol vertical distribution and interactions with land/sea breezes over the eastern coast of the Red Sea from lidar data and high-resolution WRF-Chem simulations
Sagar P. Parajuli, Georgiy L. Stenchikov, Alexander Ukhov, Illia Shevchenko, Oleg Dubovik, and Anton Lopatin
Atmos. Chem. Phys., 20, 16089–16116, https://doi.org/10.5194/acp-20-16089-2020,https://doi.org/10.5194/acp-20-16089-2020, 2020
Short summary
Improved inversion of aerosol components in the atmospheric column from remote sensing data
Ying Zhang, Zhengqiang Li, Yu Chen, Gerrit de Leeuw, Chi Zhang, Yisong Xie, and Kaitao Li
Atmos. Chem. Phys., 20, 12795–12811, https://doi.org/10.5194/acp-20-12795-2020,https://doi.org/10.5194/acp-20-12795-2020, 2020
Short summary
Retrieval of aerosol components directly from satellite and ground-based measurements
Lei Li, Oleg Dubovik, Yevgeny Derimian, Gregory L. Schuster, Tatyana Lapyonok, Pavel Litvinov, Fabrice Ducos, David Fuertes, Cheng Chen, Zhengqiang Li, Anton Lopatin, Benjamin Torres, and Huizheng Che
Atmos. Chem. Phys., 19, 13409–13443, https://doi.org/10.5194/acp-19-13409-2019,https://doi.org/10.5194/acp-19-13409-2019, 2019
Short summary
Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance
Jin Liao, Thomas F. Hanisco, Glenn M. Wolfe, Jason St. Clair, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Alan Fried, Eloise A. Marais, Gonzalo Gonzalez Abad, Kelly Chance, Hiren T. Jethva, Thomas B. Ryerson, Carsten Warneke, and Armin Wisthaler
Atmos. Chem. Phys., 19, 2765–2785, https://doi.org/10.5194/acp-19-2765-2019,https://doi.org/10.5194/acp-19-2765-2019, 2019
Short summary
Retrieval of desert dust and carbonaceous aerosol emissions over Africa from POLDER/PARASOL products generated by the GRASP algorithm
Cheng Chen, Oleg Dubovik, Daven K. Henze, Tatyana Lapyonak, Mian Chin, Fabrice Ducos, Pavel Litvinov, Xin Huang, and Lei Li
Atmos. Chem. Phys., 18, 12551–12580, https://doi.org/10.5194/acp-18-12551-2018,https://doi.org/10.5194/acp-18-12551-2018, 2018
Short summary

Cited articles

Ansmann, A., Tesche, M., Gross, S., Freudenthaler, V., Seifert, P., Hiebsch, A., Schmidt, J., Wandinger, U., Mattis, I., Müller, D., and Wiegner, M.: The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany, Geophys. Res. Lett., 37, L13810, https://doi.org/10.1029/2010GL043809, 2010.
Berresheim, H., Plass-Dülmer, C., Elste, T., Mihalopoulos, N., and Rohrer, F.: OH in the coastal boundary layer of Crete during MINOS: Measurements and relationship with ozone photolysis, Atmos. Chem. Phys., 3, 639–649, https://doi.org/10.5194/acp-3-639-2003, 2003.
Böckman, C., Wandinger, U., Ansmann, A., et al.: Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol Backscatter Algorithms, Appl. Opt., 43, 977–989, 2004.
Carn, S., Krueger, A., Krotkov, N., Yang, K., and Evans, K.: Tracking volcanic sulfur dioxide clouds for aviation hazard mitigation, Nat. Hazards, 51, 325–343, https://doi.org/10.1007/s11096-008-9228-4, 2008.
Fernald, F.: Analysis of atmospheric lidar observations: some comments, Appl. Optics, 23, 652–653, 1984.
Download
Altmetrics
Final-revised paper
Preprint