Articles | Volume 25, issue 2
https://doi.org/10.5194/acp-25-1273-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-1273-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quasi-weekly oscillation of regional PM2.5 transport over China driven by the synoptic-scale disturbance of the East Asian winter monsoon circulation
Yongqing Bai
China Meteorological Administration Basin Heavy Rainfall Key Laboratory, Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China
Tianliang Zhao
CORRESPONDING AUTHOR
Climate and Weather Disasters Collaborative Innovation Center, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
Kai Meng
CORRESPONDING AUTHOR
Key Laboratory of Meteorology and Ecological Environment of Hebei Province, Hebei Provincial Institute of Meteorological Sciences, Shijiazhuang 050021, China
Yue Zhou
China Meteorological Administration Basin Heavy Rainfall Key Laboratory, Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China
Jie Xiong
China Meteorological Administration Basin Heavy Rainfall Key Laboratory, Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China
Xiaoyun Sun
Anhui Province Key Laboratory of Atmospheric Science and Satellite Remote Sensing, Anhui Institute of Meteorological Sciences, Hefei 230031, China
Lijuan Shen
School of Atmosphere and Remote Sensing, Wuxi University, Wuxi 214105, China
Yanyu Yue
China Meteorological Administration Basin Heavy Rainfall Key Laboratory, Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China
Yan Zhu
China Meteorological Administration Basin Heavy Rainfall Key Laboratory, Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China
Weiyang Hu
State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, Nanjing 210023, China
Jingyan Yao
Climate and Weather Disasters Collaborative Innovation Center, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
Related authors
Qingjian Yang, Tianliang Zhao, Yongqing Bai, Kai Meng, Yuehan Luo, Zhijie Tian, Xiaoyun Sun, Weikang Fu, Kai Yang, and Jun Hu
Atmos. Chem. Phys., 25, 8029–8042, https://doi.org/10.5194/acp-25-8029-2025, https://doi.org/10.5194/acp-25-8029-2025, 2025
Short summary
Short summary
This study reveals a unique driver of the Tibetan Plateau (TP) thermal forcing of the interannual variations in stratosphere-to-troposphere transport (STT) of ozone with diverse structures. Anomalous strong TP thermal forcing induces anticyclonic anomalies in the upper troposphere over the TP, which strengthens and attenuates the northern and southern branches of the westerly jet, intensifying (weakening) the westerly trough for more (fewer) tropopause folds of ozone STT over the East Asian region.
Zhenzhen Niu, Shaofei Kong, Qin Yan, Yi Cheng, Huang Zheng, Yao Hu, Jian Wu, Xujing Qin, Haoyu Dong, Weisi Jiang, Yingying Yan, Wei Liu, Feng Ding, Yongqing Bai, and Shihua Qi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-354, https://doi.org/10.5194/essd-2025-354, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Trichlorofluoromethane (CFC-11) is usually recognized from CFC-11 production and use sources. In this study, we established CFC-11 emission inventory from coal combustion in China during 2000~2021. We found that CFC-11 emissions from coal combustion exhibited fluctuations and an overall upward trend, peaking in 2016, and Hebei and Shandong provinces had higher emissions. The CFC-11 emissions from coal combustion in the coastal regions might influence the monitored CFC-11 concentrations.
Kai Meng, Tianliang Zhao, Yongqing Bai, Ming Wu, Le Cao, Xuewei Hou, Yuehan Luo, and Yongcheng Jiang
Atmos. Chem. Phys., 24, 12623–12642, https://doi.org/10.5194/acp-24-12623-2024, https://doi.org/10.5194/acp-24-12623-2024, 2024
Short summary
Short summary
We studied the impact of stratospheric intrusions (SIs) on tropospheric and near-surface ozone in Central and Eastern China from a stratospheric source tracing perspective. SIs contribute the most in the eastern plains, with a contribution exceeding 15 %, and have a small contribution to the west and south. Western Siberia and Mongolia are the most critical source areas for indirect and direct SIs, with the Rossby wave and northeast cold vortex being important driving circulation systems.
Yuehan Luo, Tianliang Zhao, Kai Meng, Jun Hu, Qingjian Yang, Yongqing Bai, Kai Yang, Weikang Fu, Chenghao Tan, Yifan Zhang, Yanzhe Zhang, and Zhikuan Li
Atmos. Chem. Phys., 24, 7013–7026, https://doi.org/10.5194/acp-24-7013-2024, https://doi.org/10.5194/acp-24-7013-2024, 2024
Short summary
Short summary
We reveal a significant mechanism of stratospheric O3 intrusion (SI) into the atmospheric environment induced by an extratropical cyclone system. This system facilitates the downward transport of stratospheric O3 to the near-surface layer by vertical coupling, involving the upper westerly trough, the middle northeast cold vortex, and the lower extratropical cyclone in the troposphere. On average, stratospheric O3 contributed 26.77 % to near-surface O3 levels over the North China Plain.
Xiaoyun Sun, Tianliang Zhao, Yongqing Bai, Shaofei Kong, Huang Zheng, Weiyang Hu, Xiaodan Ma, and Jie Xiong
Atmos. Chem. Phys., 22, 3579–3593, https://doi.org/10.5194/acp-22-3579-2022, https://doi.org/10.5194/acp-22-3579-2022, 2022
Short summary
Short summary
This study revealed the impact of anthropogenic emissions and meteorological conditions on PM2.5 decline in the regional transport of air pollutants over a receptor region in central China. The meteorological drivers led to upwind accelerating and downward offsetting of the effects of emission reductions over the receptor region in regional PM2.5 transport, and the contribution of gaseous precursor emissions to PM2.5 pollution was enhanced with reduced anthropogenic emissions in recent years.
Yingying Yan, Yue Zhou, Shaofei Kong, Jintai Lin, Jian Wu, Huang Zheng, Zexuan Zhang, Aili Song, Yongqing Bai, Zhang Ling, Dantong Liu, and Tianliang Zhao
Atmos. Chem. Phys., 21, 3143–3162, https://doi.org/10.5194/acp-21-3143-2021, https://doi.org/10.5194/acp-21-3143-2021, 2021
Short summary
Short summary
We analyze the effectiveness of emission reduction for local and upwind regions during winter haze episodes controlled by the main potential synoptic patterns over central China, a regional pollutant transport hub with sub-basin topography. Our results provide an opportunity to effectively mitigate haze pollution via local emission control actions in coordination with regional collaborative actions according to different synoptic patterns.
Yongqing Bai, Tianliang Zhao, Yue Zhou, Jie Xiong, Weiyang Hu, Yao Gu, Lin Liu, Shaofei Kong, and Huang Zheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-708, https://doi.org/10.5194/acp-2020-708, 2020
Revised manuscript not accepted
Short summary
Short summary
Heavy air pollution over central China with regional transport of PM2.5 during January of 2015-2019 were studied by using MV-EOF with multi-source observation data. It is revealed that the 3-D meteorological structure biulding a receptor region in regional transport of air pollutants over China for improving our our understanding on meteorological mechanism of regional transport of source-receptor air pollutants.
Qingjian Yang, Tianliang Zhao, Yongqing Bai, Kai Meng, Yuehan Luo, Zhijie Tian, Xiaoyun Sun, Weikang Fu, Kai Yang, and Jun Hu
Atmos. Chem. Phys., 25, 8029–8042, https://doi.org/10.5194/acp-25-8029-2025, https://doi.org/10.5194/acp-25-8029-2025, 2025
Short summary
Short summary
This study reveals a unique driver of the Tibetan Plateau (TP) thermal forcing of the interannual variations in stratosphere-to-troposphere transport (STT) of ozone with diverse structures. Anomalous strong TP thermal forcing induces anticyclonic anomalies in the upper troposphere over the TP, which strengthens and attenuates the northern and southern branches of the westerly jet, intensifying (weakening) the westerly trough for more (fewer) tropopause folds of ozone STT over the East Asian region.
Zhenzhen Niu, Shaofei Kong, Qin Yan, Yi Cheng, Huang Zheng, Yao Hu, Jian Wu, Xujing Qin, Haoyu Dong, Weisi Jiang, Yingying Yan, Wei Liu, Feng Ding, Yongqing Bai, and Shihua Qi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-354, https://doi.org/10.5194/essd-2025-354, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Trichlorofluoromethane (CFC-11) is usually recognized from CFC-11 production and use sources. In this study, we established CFC-11 emission inventory from coal combustion in China during 2000~2021. We found that CFC-11 emissions from coal combustion exhibited fluctuations and an overall upward trend, peaking in 2016, and Hebei and Shandong provinces had higher emissions. The CFC-11 emissions from coal combustion in the coastal regions might influence the monitored CFC-11 concentrations.
Zhuozhi Shu, Fumo Yang, Guangming Shi, Yuqing Zhang, Yongjie Huang, Xinning Yu, Baiwan Pan, and Tianliang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-2628, https://doi.org/10.5194/egusphere-2025-2628, 2025
Short summary
Short summary
We targeted four stratospheric intrusion episodes to investigate the impacts of cross-layer transport of stratospheric O3 on the near-surface environmental atmosphere over Sichuan Basin and uncover multi-scale atmospheric circulation coupling mechanisms with the seasonally discrepant terrain effects of Tibetan Plateau. Results provided the critical insights into understanding of regional O3 pollution genesis with the exceptional natural sources contribution derived from the stratosphere.
Xiaochun Zhu, Le Cao, Xin Yang, Simeng Li, Jiandong Wang, and Tianliang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3873, https://doi.org/10.5194/egusphere-2024-3873, 2025
Short summary
Short summary
We applied various criteria to identify springtime ODEs at Utqiagvik, Arctic, and investigated the influences of using different criteria on conclusions regarding the characteristics of ODEs. We found criteria using a constant threshold and using thresholds based on the monthly averaged ozone more suitable for identifying ODEs than the others. Applying a threshold varying with the monthly average or stricter thresholds also signifies a more significant reduction in the ODE occurrences.
Sihan Liu, Honglei Wang, Delong Zhao, Wei Zhou, Yuanmou Du, Zhengguo Zhang, Peng Cheng, Tianliang Zhao, Yue Ke, Zihao Wu, and Mengyu Huang
Atmos. Chem. Phys., 25, 4151–4165, https://doi.org/10.5194/acp-25-4151-2025, https://doi.org/10.5194/acp-25-4151-2025, 2025
Short summary
Short summary
To understand the effect of aerosols on the vertical distribution of stratocumulus microphysical quantities in southwest China, the daily variation characteristics and formation mechanism of the vertical profiles of stratocumulus microphysical characteristics in this region were described using the data of nine cloud-crossing aircraft observations over Guangxi from 10 October to 3 November 2020.
Xiaodan Ma, Jianping Huang, Michaela I. Hegglin, Patrick Jöckel, and Tianliang Zhao
Atmos. Chem. Phys., 25, 943–958, https://doi.org/10.5194/acp-25-943-2025, https://doi.org/10.5194/acp-25-943-2025, 2025
Short summary
Short summary
Our research explored changes in ozone levels in the northwest Pacific region over 30 years, revealing a significant increase in the middle-to-upper troposphere, especially during spring and summer. This rise is influenced by both stratospheric and tropospheric sources, which affect climate and air quality in East Asia. This work underscores the need for continued study to understand underlying mechanisms.
Zhuang Wang, Chune Shi, Hao Zhang, Xianguang Ji, Yizhi Zhu, Congzi Xia, Xiaoyun Sun, Xinfeng Lin, Shaowei Yan, Suyao Wang, Yuan Zhou, Chengzhi Xing, Yujia Chen, and Cheng Liu
Atmos. Chem. Phys., 25, 347–366, https://doi.org/10.5194/acp-25-347-2025, https://doi.org/10.5194/acp-25-347-2025, 2025
Short summary
Short summary
This study attempts to explain the surface ozone background and typical and peak trends in eastern China by combining a large number of ground-based and satellite observations. We found diametrically opposed trends in peak (decreasing) and low (increasing) ozone concentrations. Anthropogenic emissions primarily drive trends in low and peak ozone concentrations in eastern China, though meteorological effects also play a role.
Kai Meng, Tianliang Zhao, Yongqing Bai, Ming Wu, Le Cao, Xuewei Hou, Yuehan Luo, and Yongcheng Jiang
Atmos. Chem. Phys., 24, 12623–12642, https://doi.org/10.5194/acp-24-12623-2024, https://doi.org/10.5194/acp-24-12623-2024, 2024
Short summary
Short summary
We studied the impact of stratospheric intrusions (SIs) on tropospheric and near-surface ozone in Central and Eastern China from a stratospheric source tracing perspective. SIs contribute the most in the eastern plains, with a contribution exceeding 15 %, and have a small contribution to the west and south. Western Siberia and Mongolia are the most critical source areas for indirect and direct SIs, with the Rossby wave and northeast cold vortex being important driving circulation systems.
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, Romain Blot, and Tianliang Zhao
Atmos. Chem. Phys., 24, 11927–11942, https://doi.org/10.5194/acp-24-11927-2024, https://doi.org/10.5194/acp-24-11927-2024, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and In-service Aircraft for a Global Observing System (IAGOS) datasets (1995 to 2021), compare the average vertical distributions of tropospheric O3 from ozonesonde and aircraft measurements, and analyze the differences based on ozonesonde type and station–airport distance.
Yuehan Luo, Tianliang Zhao, Kai Meng, Jun Hu, Qingjian Yang, Yongqing Bai, Kai Yang, Weikang Fu, Chenghao Tan, Yifan Zhang, Yanzhe Zhang, and Zhikuan Li
Atmos. Chem. Phys., 24, 7013–7026, https://doi.org/10.5194/acp-24-7013-2024, https://doi.org/10.5194/acp-24-7013-2024, 2024
Short summary
Short summary
We reveal a significant mechanism of stratospheric O3 intrusion (SI) into the atmospheric environment induced by an extratropical cyclone system. This system facilitates the downward transport of stratospheric O3 to the near-surface layer by vertical coupling, involving the upper westerly trough, the middle northeast cold vortex, and the lower extratropical cyclone in the troposphere. On average, stratospheric O3 contributed 26.77 % to near-surface O3 levels over the North China Plain.
Naifu Shao, Chunsong Lu, Xingcan Jia, Yuan Wang, Yubin Li, Yan Yin, Bin Zhu, Tianliang Zhao, Duanyang Liu, Shengjie Niu, Shuxian Fan, Shuqi Yan, and Jingjing Lv
Atmos. Chem. Phys., 23, 9873–9890, https://doi.org/10.5194/acp-23-9873-2023, https://doi.org/10.5194/acp-23-9873-2023, 2023
Short summary
Short summary
Fog is an important meteorological phenomenon that affects visibility. Aerosols and the planetary boundary layer (PBL) play critical roles in the fog life cycle. In this study, aerosol-induced changes in fog properties become more remarkable in the second fog (Fog2) than in the first fog (Fog1). The reason is that aerosol–cloud interaction (ACI) delays Fog1 dissipation, leading to the PBL meteorological conditions being more conducive to Fog2 formation and to stronger ACI in Fog2.
Chenglong Zhou, Yuzhi Liu, Qingzhe Zhu, Qing He, Tianliang Zhao, Fan Yang, Wen Huo, Xinghua Yang, and Ali Mamtimin
Atmos. Chem. Phys., 22, 5195–5207, https://doi.org/10.5194/acp-22-5195-2022, https://doi.org/10.5194/acp-22-5195-2022, 2022
Short summary
Short summary
Based on the radiosonde observations, an anomalously warm layer is measured at altitudes between 500 and 300 hPa over the Tarim Basin (TB) with an average intensity of 2.53 and 1.39 K in the spring and summer, respectively. The heat contributions of dust to this anomalously warm atmospheric layer in spring and summer were 13.77 and 10.25 %, respectively. Topographically, the TB is adjacent to the Tibetan Plateau; we propose the concept of the Tibetan heat source’s northward extension.
Xiaoyun Sun, Tianliang Zhao, Yongqing Bai, Shaofei Kong, Huang Zheng, Weiyang Hu, Xiaodan Ma, and Jie Xiong
Atmos. Chem. Phys., 22, 3579–3593, https://doi.org/10.5194/acp-22-3579-2022, https://doi.org/10.5194/acp-22-3579-2022, 2022
Short summary
Short summary
This study revealed the impact of anthropogenic emissions and meteorological conditions on PM2.5 decline in the regional transport of air pollutants over a receptor region in central China. The meteorological drivers led to upwind accelerating and downward offsetting of the effects of emission reductions over the receptor region in regional PM2.5 transport, and the contribution of gaseous precursor emissions to PM2.5 pollution was enhanced with reduced anthropogenic emissions in recent years.
Xiangde Xu, Chan Sun, Deliang Chen, Tianliang Zhao, Jianjun Xu, Shengjun Zhang, Juan Li, Bin Chen, Yang Zhao, Hongxiong Xu, Lili Dong, Xiaoyun Sun, and Yan Zhu
Atmos. Chem. Phys., 22, 1149–1157, https://doi.org/10.5194/acp-22-1149-2022, https://doi.org/10.5194/acp-22-1149-2022, 2022
Short summary
Short summary
A vertical transport window of tropospheric vapor exists on the Tibetan Plateau (TP). The TP's thermal forcing drives the vertical transport
windowof vapor in the troposphere. The effects of the TP's vertical transport window of vapor are of importance in global climate change.
Xiangde Xu, Wenyue Cai, Tianliang Zhao, Xinfa Qiu, Wenhui Zhu, Chan Sun, Peng Yan, Chunzhu Wang, and Fei Ge
Atmos. Chem. Phys., 21, 14131–14139, https://doi.org/10.5194/acp-21-14131-2021, https://doi.org/10.5194/acp-21-14131-2021, 2021
Short summary
Short summary
We found that the structure of atmospheric thermodynamics in the troposphere can be regarded as a strong forewarning signal for variations of surface PM2.5 concentration in heavy air pollution.
Zhuozhi Shu, Yubao Liu, Tianliang Zhao, Junrong Xia, Chenggang Wang, Le Cao, Haoliang Wang, Lei Zhang, Yu Zheng, Lijuan Shen, Lei Luo, and Yueqing Li
Atmos. Chem. Phys., 21, 9253–9268, https://doi.org/10.5194/acp-21-9253-2021, https://doi.org/10.5194/acp-21-9253-2021, 2021
Short summary
Short summary
Focusing on a heavy haze pollution event in the Sichuan Basin (SCB), we investigated the elevated 3D structure of PM2.5 and trans-boundary transport with the WRF-Chem simulation. It is remarkable for vertical PM2.5 that the unique hollows were structured, which which occurred by the interaction of vortex circulations and topographic effects. The SCB was regarded as the major air pollutant source with the trans-boundary transport of PM2.5 affecting atmospheric environment changes.
Yingying Yan, Yue Zhou, Shaofei Kong, Jintai Lin, Jian Wu, Huang Zheng, Zexuan Zhang, Aili Song, Yongqing Bai, Zhang Ling, Dantong Liu, and Tianliang Zhao
Atmos. Chem. Phys., 21, 3143–3162, https://doi.org/10.5194/acp-21-3143-2021, https://doi.org/10.5194/acp-21-3143-2021, 2021
Short summary
Short summary
We analyze the effectiveness of emission reduction for local and upwind regions during winter haze episodes controlled by the main potential synoptic patterns over central China, a regional pollutant transport hub with sub-basin topography. Our results provide an opportunity to effectively mitigate haze pollution via local emission control actions in coordination with regional collaborative actions according to different synoptic patterns.
Lei Zhang, Sunling Gong, Tianliang Zhao, Chunhong Zhou, Yuesi Wang, Jiawei Li, Dongsheng Ji, Jianjun He, Hongli Liu, Ke Gui, Xiaomei Guo, Jinhui Gao, Yunpeng Shan, Hong Wang, Yaqiang Wang, Huizheng Che, and Xiaoye Zhang
Geosci. Model Dev., 14, 703–718, https://doi.org/10.5194/gmd-14-703-2021, https://doi.org/10.5194/gmd-14-703-2021, 2021
Short summary
Short summary
Development of chemical transport models with advanced physics and chemical schemes is important for improving air-quality forecasts. This study develops the chemical module CUACE by updating with a new particle dry deposition scheme and adding heterogenous chemical reactions and couples it with the WRF model. The coupled model (WRF/CUACE) was able to capture well the variations of PM2.5, O3, NO2, and secondary inorganic aerosols in eastern China.
Xiaodan Ma, Jianping Huang, Tianliang Zhao, Cheng Liu, Kaihui Zhao, Jia Xing, and Wei Xiao
Atmos. Chem. Phys., 21, 1–16, https://doi.org/10.5194/acp-21-1-2021, https://doi.org/10.5194/acp-21-1-2021, 2021
Short summary
Short summary
The present work aims at identifying and quantifying the relative contributions of the key factors in driving a rapid increase in summertime surface O3 over the North China Plain during 2013–2019. In addition to anthropogenic emission reduction and meteorological variabilities, our study highlights the importance of inclusion of aerosol absorption and scattering properties rather than aerosol abundance only in accurate assessment of aerosol radiative effect on surface O3 formation and change.
Yongqing Bai, Tianliang Zhao, Yue Zhou, Jie Xiong, Weiyang Hu, Yao Gu, Lin Liu, Shaofei Kong, and Huang Zheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-708, https://doi.org/10.5194/acp-2020-708, 2020
Revised manuscript not accepted
Short summary
Short summary
Heavy air pollution over central China with regional transport of PM2.5 during January of 2015-2019 were studied by using MV-EOF with multi-source observation data. It is revealed that the 3-D meteorological structure biulding a receptor region in regional transport of air pollutants over China for improving our our understanding on meteorological mechanism of regional transport of source-receptor air pollutants.
Xiaoning Xie, Anmin Duan, Zhengguo Shi, Xinzhou Li, Hui Sun, Xiaodong Liu, Xugeng Cheng, Tianliang Zhao, Huizheng Che, and Yangang Liu
Atmos. Chem. Phys., 20, 11143–11159, https://doi.org/10.5194/acp-20-11143-2020, https://doi.org/10.5194/acp-20-11143-2020, 2020
Short summary
Short summary
Observational and modeling results both show that the surface dust concentrations over the East Asian (EA) dust source region and over the northwestern Pacific (NP) in MAM are significantly positively correlated with TPSH. These atmospheric circulation anomalies induced by the increased TPSH result in increasing westerly winds over both EA and NP, which in turn increases dust emissions over the dust source and dust transport over these two regions, as well as the regional dust cycles.
Cited articles
An, X., Chen, W., Hu, P., Chen, S., and Sheng, L.: Intraseasonal variation of the northeast Asian anomalous anticyclone and its impacts on PM2.5 pollution in the North China Plain in early winter, Atmos. Chem. Phys., 22, 6507–6521, https://doi.org/10.5194/acp-22-6507-2022, 2022.
An, Z., Huang, R., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes, P. Natl. Acad. Sci. USA, 116, 8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019.
Bai, Y., Zhao, T., Zhou, Y., Kong, S., Hu, W., Xiong, J., Liu, L., Zheng, H., and Meng, K.: Aggravation effect of regional transport on wintertime PM2.5 over the middle reaches of the Yangtze River under China's air pollutant emission reduction process, Atmos. Pollut. Res., 12, 101111, https://doi.org/10.1016/j.apr.2021.101111, 2021.
Bai, Y., Zhao, T., Hu, W., Zhou, Y., Xiong, J., Wang, Y., Liu, L., Shen, L., Kong, S., Meng, K., and Zheng, H.: Meteorological mechanism of regional PM2.5 transport building a receptor region for heavy air pollution over Central China, Sci. Total Environ., 808, 151951, https://doi.org/10.1016/j.scitotenv.2021.151951, 2022.
Bäumer, D. and Vogel, B.: An unexpected pattern of distinct weekly periodicities in climatological variables in Germany, Geophys. Res. Lett., 34, L03819, https://doi.org/10.1029/2006gl028559, 2007.
Cai, W., Li, K., Liao, H., Wang, H., and Wu, L.: Weather conditions conducive to Beijing severe haze more frequent under climate change, Nat. Clim. Change, 7, 257–262, https://doi.org/10.1038/nclimate3249, 2017.
Chen, X., Yin, L., Fan Y., Song, L., Ji, T., Liu, Y., Tian, J., and Zheng, W.: Temporal evolution characteristics of PM2.5 concentration based on continuous wavelet transform, Sci. Total Environ., 699, 134244, https://doi.org/10.1016/j.scitotenv.2019.134244, 2020.
Chin, M.: Dirtier air from a weaker monsoon, Nat. Geosci., 5, 449–450, https://doi.org/10.1038/ngeo1513, 2012.
Compo, G. P., Kiladis, G. N., and Webster, P. J.: The horizontal and vertical structure of east Asian winter monsoon pressure surges, Q. J. Roy. Meteor. Soc., 125, 29–54, https://doi.org/10.1256/smsqj.55302, 1999.
Dey, A., Chattopadhyay, R., Sahai, A. K., Mandal, R., Joseph, S., Phani, R., and Abhilash, S.: An operational tracking method for the MJO using extended empirical orthogonal functions, Pure. Appl. Geophys., 176, 2697–2717, https://doi.org/10.1007/s00024-018-2066-8, 2018.
Ding, A., Huang, X., and Fu, C.: Air Pollution and Weather Interaction in East Asia, Oxford Research Encyclopedia-Environmental Science, https://doi.org/10.1093/acrefore/9780199389414.013.536, 2017.
Dong, Y., Zhou, H., Fu, Y., Li, X., and Geng, H.: Wavelet periodic and compositional characteristics of atmospheric PM2.5 in a typical air pollution event at Jinzhong city, China, Atmos. Pollut. Res., 12, 245–254, https://doi.org/10.1016/j.apr.2020.09.013, 2021.
Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.: Review of aerosol–cloud interactions: Mechanisms, significance, and challenges, J. Atmos. Sci., 73, 4221–4252, https://doi.org/10.1175/jas-d-16-0037.1, 2016.
Feng, J., Zhu, J., Li, J., and Liao, H.: Aerosol concentrations variability over China: two distinct leading modes, Atmos. Chem. Phys., 20, 9883–9893, https://doi.org/10.5194/acp-20-9883-2020, 2020.
Fu, H., Zhang, Y., Liao C., Mao, L., Wang, Z., and Hong, N.: Investigating PM2.5 responses to other air pollutants and meteorological factors across multiple temporal scales, Sci. Rep., 10, 15639, https://doi.org/10.1038/s41598-020-72722-z , 2020.
Gao, L., Wang, T., Ren X., Zhuang, B., Li, S., Yao, R., and Yang, X.: Impact of atmospheric quasi-biweekly oscillation on the persistent heavy PM2.5 pollution over Beijing-Tianjin-Hebei region, China during winter, Atmos. Res., 242, 105017, https://doi.org/10.1016/j.atmosres.2020.105017, 2020.
Ge, B., Wang, Z., Lin, W., Xu, X., Li, J., Ji, D., and Ma, Z.: Air pollution over the North China Plain and its implication of regional transport: A new sight from the observed evidences, Environ. Pollut., 234, 29–38, https://doi.org/10.1016/j.envpol.2017.10.084, 2018.
Geng, G., Zheng, Y., Zhang Q., Xue, T., Zhao, H., Tong, D., Zheng, B., Li, M., Liu, F., Hong, C., He, K., and Davis, S. J.: Drivers of PM2.5 air pollution deaths in China 2002–2017, Nat. Geosci., 14, 645–650, https://doi.org/10.1038/s41561-021-00792-3, 2021.
Georgoulias, A. K. and Kourtidis, K. A.: A high resolution satellite view of the aerosol weekly cycle variability over Central Europe, Atmos. Res., 107, 145–160, https://doi.org/10.1016/j.atmosres.2012.01.003, 2012.
Gouirand, I., Jury, M. R., and Sing, B.: An analysis of low- and high-frequency summer climate variability around the Caribbean Antilles, J. Climate, 25, 3942–3952, https://doi.org/10.1175/jcli-d-11-00269.1, 2012.
Guo, S., Hu, M., Zamora, M. L., Peng, J., and Zhang, R.: Elucidating severe urban haze formation in China, P. Natl. Acad. Sci. USA, 111, 17373–17378, https://doi.org/10.1073/pnas.1419604111, 2014.
Hou, X., Zhu, B., Kumar, K. R., de Leeuw, G., Lu, W., Huang, Q., and Zhu, X.: Establishment of conceptual schemas of surface synoptic meteorological situations affecting fine particulate pollution across eastern China in the winter, J. Geophys. Res.-Atmos., 125, e2020JD033153, https://doi.org/10.1029/2020jd033153, 2020.
Hu, W., Zhao, T., Bai, Y., Kong, S., Xiong, J., Sun, X., Yang, Q., Gu, Y., and Lu, H.: Importance of regional PM2.5 transport and precipitation washout in heavy air pollution in the Twain-Hu Basin over Central China: Observational analysis and WRF-Chem simulation, Sci. Total Environ., 758, 143710, https://doi.org/10.1016/j.scitotenv.2020.143710, 2021.
Hu, W., Zhao, T., Bai, Y., Kong, S., Shen, L., Xiong, J., Zhou, Y., Gu, Y., Shi, J., Zheng, H., Sun, X., and Meng, K.: Regulation of synoptic circulation in regional PM2.5 transport for heavy air pollution: Study of 5-year observation over central China, J. Geophys. Res.-Atmos., 127, e2021JD035937, https://doi.org/10.1029/2021JD035937, 2022.
Huang, H., Wang, S., Huang, W., Lin, N., Chuang, M., Silva, A. M., and Peng. C.: Influence of synoptic-dynamic meteorology on the long-range transport of Indochin biomass burning aerosols, J. Geophys. Res.-Atmos., 125, e2019JD031260, https://doi.org/10.1029/2019jd031260, 2020a.
Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., Daellenbach. K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E., A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski. M., Abbaszade, G., Kreis, J. S., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Prevot, A. S. H.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2014.
Huang, X., Wang, Z., and Ding, A.: Impact of aerosol-PBL interaction on haze pollution: Multiyear observational evidences in North China, Geophys. Res. Lett., 45, 8596–8603, https://doi.org/10.1029/2018gl079239, 2018.
Huang, X., Ding, A., Wang, Z., Ding, K., Gao, J., Chai, F., and Fu, C.: Amplified transboundary transport of haze by aerosol–boundary layer interaction in china, Nat. Geosci., 13, 428–434, https://doi.org/10.1038/s41561-020-0583-4, 2020b.
Jia, B., Wang, Y., Yao, Y., and Xie, Y.: A new indicator on the impact of large-scale circulation on wintertime particulate matter pollution over China, Atmos. Chem. Phys., 15, 11919–11929, https://doi.org/10.5194/acp-15-11919-2015, 2015.
Kang, H., Zhu, B., Gao, J., He, Y., Wang, H., Su, J., Pan, C., Zhu, T., and Yu, B.: Potential impacts of cold frontal passage on air quality over the Yangtze River Delta, China, Atmos. Chem. Phys., 19, 3673–3685, https://doi.org/10.5194/acp-19-3673-2019, 2019.
Kim, B. H. and Ha, K. J.: Observed changes of global and western Pacific precipitation associated with global warming SST mode and mega-ENSO SST mode, Clim. Dynam., 45, 3067–3075, https://doi.org/10.1007/s00382-015-2524-2, 2015.
Li, Q., Zhang, R., and Wang, Y.: Interannual variation of the wintertime fog-haze days across central and eastern China and its relation with EAWM, Int. J. Climatol., 36, 346–354, https://doi.org/10.1002/joc.4350, 2016.
Li, X., Gereon, G., Greatbatch, R. J., and Lu, R.: Impact of the MJO on the interannual variation of the Pacific–Japan mode of the East Asian summer monsoon, Clim. Dynam., 52, 3489–3501, https://doi.org/10.1007/s00382-018-4328-7, 2019.
Li, X., Yu, C., Deng, X., He, D., Zhao, Z., Mo, H., Mo, J., and Wu, Y.: Mechanism for synoptic and intra-seasonal oscillation of visibility in Beijing-Tianjin-Hebei region, Theor. Appl. Climatol., 143, 1005–1015, https://doi.org/10.1007/s00704-020-03466-z, 2021.
Lin, Y., Zou, J., Yang, W., and Li, C. Q.: A Review of Recent Advances in Research on PM2.5 in China, Int. J. Env. Res. Pub. He., 15, 438, https://doi.org/10.3390/ijerph15030438, 2018.
Liu, J., Mauzerall, D. L., Chen, Q., Zhang, Q., Song, Y, Peng, W., Klimont. Z., Qiu, X., Zhang, S., Hu, M., Lin, W., Smith, K. R., and Zhu, T.: Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution sources, P. Natl. Acad. Sci. USA, 113, 7756–7761, https://doi.org/10.1073/pnas.1604537113, 2016.
Liu, J., Huang, W., and Zhang, Q.: The quasi-biweekly oscillation of eastern China PM2.5 in response to different Rossby wave trains over the Eurasian continent, Atmos. Res., 267, 105990, https://doi.org/10.1016/j.atmosres.2021.105990, 2022.
Liu, Q., Jia, X., Quan, J., Li, J., Li, X., Wu, Y., Chen, D., Wang, Z., and Liu, Y.: New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events, Sci. Rep., 8, 6095, https://doi.org/10.1038/s41598-018-24366-3, 2018.
Liu, Y., Tang, G., Zhou, L., Hu, B., Liu, B., Li, Y., Liu, S., and Wang, Y.: Mixing layer transport flux of particulate matter in Beijing, China, Atmos. Chem. Phys., 19, 9531–9540, https://doi.org/10.5194/acp-19-9531-2019, 2019.
Lu, M., Tang, X., Wang, Z., Gbaguidi, A., Liang, S., Hu, K., Wu, L., Wu, H., Huang, Z., and Shen, L.: Source tagging modeling study of heavy haze episodes under complex regional transport processes over Wuhan megacity, Central China, Environ. Pollut., 231, 612–621, https://doi.org/10.1016/j.envpol.2017.08.046, 2017.
Ma, Y., Zhu, Y., Liu, B., Li, H., Jin, S., Zhang, Y., Fan, R., and Gong, W.: Estimation of the vertical distribution of particle matter (PM2.5) concentration and its transport flux from lidar measurements based on machine learning algorithms, Atmos. Chem. Phys., 21, 17003–17016, https://doi.org/10.5194/acp-21-17003-2021, 2021.
Merrill, J. T. and Kim, J.: Meteorological events and transport patterns in ACE-Asia, J. Geophys. Res.-Atmos., 109, D19S18, https://doi.org/10.1029/2003jd004124, 2004.
Miao, Y., Hu, X. M., Liu, S., Qian, T., Xue, M., Zheng, Y., and Wang, S.: Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality, J. Adv. Model. Earth Sy., 7, 1602–1626, 2015.
Miao, Y., Li, J., Miao, S., Che, H., Wang, Y., Zhang, X., Zhu, R., and Liu, S.: Interaction between planetary boundary layer and PM2.5 pollution in megacities in China: a review, Curr. Pollut. Rep., 5, 261–271, https://doi.org/10.1002/2015ms000522, 2019.
Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019.
Murakami, T.: Winter monsoonal surges over East and Southeast Asia, J. Meteor. Soc. Jpn., 57, 133–158, https://doi.org/10.2151/jmsj1965.57.2_133, 1979.
Nie, W., Ding, A., Wang, T., Kerminen, V. M., George, C., Xue, L., Wang, W., Zhang, Q., Petäjä, T., Qi, X., Gao, X., Wang, X., Yang, X., Fu, C., and Kulmala, M.: Polluted dust promotes new particle formation and growth, Sci. Rep., 4, 6634, https://doi.org/10.1038/srep06634, 2014.
NOAA: Gridded Climate Datasets, https://psl.noaa.gov/data/gridded/tables/daily.html, last access: 27 January 2025.
Park, T. W., Ho, C. H., and Deng, Y.: A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia, Clim. Dynam., 43, 753–770, https://doi.org/10.1007/s00382-013-1817-6, 2014.
Perrone, M. R., Vecchi, R., Romano, S., Becagli, S., Traversi, R., and Paladini, F.: Weekly cycle assessment of PM mass concentrations and sources, and impacts on temperature and wind speed in Southern Italy, Atmos. Res., 218, 129–144, https://doi.org/10.1016/j.atmosres.2018.11.013, 2018.
Qian, Y., Hsu, P. C., and Kazuyoshi, K.: New real-time indices for the quasi-biweekly oscillation over the Asian summer monsoon region, Clim. Dynam., 53, 2603–2624, https://doi.org/10.1007/s00382-019-04644-0, 2019.
Quan, J., Tie, X., Zhang, Q., Liu, Q., Li, X., Gao,Y., and Zhao, D.: Characteristics of heavy aerosol pollution during the 2012–2013 winter in Beijing, China, Atmos. Environ., 88, 83–89, https://doi.org/10.1016/j.atmosenv.2014.01.058, 2014.
Quan, J., Xu, X., Jia, X.. Liu, S., Miao, S., Xin, J., Hu, F., Wang, Z., Fan, S., Zhang, H., Mu, Y., Dou, Y., and Cheng, Z.: Multi-scale processes in severe haze events in China and their interactions with aerosols: Mechanisms and progresses, Chin. Sci. Bull., 65, 810–824, https://doi.org/10.1360/tb-2019-0197, 2020.
Schepanski, K., Mallet, M., Heinold, B., and Ulrich, M.: North African dust transport toward the western Mediterranean basin: atmospheric controls on dust source activation and transport pathways during June–July 2013, Atmos. Chem. Phys., 16, 14147–14168, https://doi.org/10.5194/acp-16-14147-2016, 2016.
Shen, L., Hu, W., Zhao, T., Bai, Y., Wang, H., Kong, S., and Zhu, Y.: Changes in the Distribution Pattern of PM2.5 Pollution over Central China, Remote. Sens., 13, 4855, https://doi.org/10.3390/rs13234855, 2021.
Shen, L., Zhao, T., Liu, J., Wang, H., Bai, Y., Kong, S., and Shu, Z.: Regional transport patterns for heavy PM2.5 pollution driven by strong cold airflows in Twain-Hu Basin, Central China, Atmos. Environ., 269, 118847, https://doi.org/10.1016/j.atmosenv.2021.118847, 2022.
Shu, Z., Liu, Y., Zhao, T., Xia, J., Wang, C., Cao, L., Wang, H., Zhang, L., Zheng, Y., Shen, L., Luo, L., and Li, Y.: Elevated 3D structures of PM2.5 and impact of complex terrain-forcing circulations on heavy haze pollution over Sichuan Basin, China, Atmos. Chem. Phys., 21, 9253–9268, https://doi.org/10.5194/acp-21-9253-2021, 2021.
Tan, Q., Ge, B., Xu, X., Gan, L., Yang, W., Chen, X., Pan, X., Wang, W., Li, J., and Wang, Z.: Increasing impacts of the relative contributions of regional transport on air pollution in Beijing: Observational evidence, Environ. Pollut., 292, 118407, https://doi.org/10.1016/j.envpol.2021.118407, 2021.
Tao, M., Chen, L., Li, R., Wang, L., Wang, J., Wang, Z., Tang, G., and Tao, J.: Spatial oscillation of the particle pollution in eastern China during winter: Implications for regional air quality and climate, Atmos. Environ., 144, 100–110, https://doi.org/10.1016/j.atmosenv.2016.08.049, 2016.
Wang, H., Kumar, A., Murtugudde, R., Narapusetty, B., and Seip, K. L.: Covariations between the Indian Ocean dipole and ENSO: a modeling study, Clim. Dynam., 53, 5743–5761, https://doi.org/10.1007/s00382-019-04895-x, 2019.
Wang, J., Lu, X., Yan, Y., Zhou, L., and Ma, W.: Spatiotemporal characteristics of PM2.5 concentration in the Yangtze River Delta urban agglomeration, China on the application of big data and wavelet analysis, Sci. Total Environ., 724, 138134, https://doi.org/10.1016/j.scitotenv.2020.138134, 2020.
Wang, X.: Air Quality and Weather, https://quotsoft.net/air/, last access: 27 January 2025.
Wang, X., Zhang, R., Tan, Y., and Yu, W.: Dominant synoptic patterns associated with the decay process of PM2.5 pollution episodes around Beijing, Atmos. Chem. Phys., 21, 2491–2508, https://doi.org/10.5194/acp-21-2491-2021, 2021.
Weare, B. C. and Nasstrom, J. S.: Examples of extended empirical orthogonal function analyses, Mon. Weatheer Rev., 110, 481–485, https://doi.org/10.1175/1520-0493(1982)110<0481:EOEEOF>2.0.CO;2, 1982.
Wu, B. and Wang, J.: Winter Arctic oscillation, Siberian High and EAWM, Geophys. Res. Lett., 29, 1897, https://doi.org/10.1029/2002gl015373, 2002.
Wu, D., Zhao, S., Li, J., and Wang, W.: Influences of atmospheric intraseasonal oscillation in mid–high latitudes on winter haze pollution over the Beijing-Tianjin-Hebei region, Int. J. Climatol., 43, 3173–3188, https://doi.org/10.1002/joc.8023, 2023.
Wu, G., Li, Z., Fu, C., Zhang, X., and Huang, R.: Advances in studying interactions between aerosols and monsoon in China, Sci. China. Earth. Sci., 59, 1–16, https://doi.org/10.1007/s11430-015-5198-z, 2016.
Wu, X., He, S., Guo, J., and Sun, W.: A multi-scale periodic study of PM2.5 concentration in the Yangtze River Delta of China based on Empirical Mode Decomposition-Wavelet Analysis, China, J. Clean. Prod., 281, 124853, https://doi.org/10.1016/j.jclepro.2020.124853, 2021.
Xu, C., Ma, Y. M., Panday, A., Cong, Z. Y., Yang, K., Zhu, Z. K., Wang, J. M., Amatya, P. M., and Zhao, L.: Similarities and differences of aerosol optical properties between southern and northern sides of the Himalayas, Atmos. Chem. Phys., 14, 3133–3149, https://doi.org/10.5194/acp-14-3133-2014, 2014.
Xu, X., Zhao, T., Liu, F., Gong, S. L., Kristovich, D., Lu, C., Guo, Y., Cheng, X., Wang, Y., and Ding, G.: Climate modulation of the Tibetan Plateau on haze in China, Atmos. Chem. Phys., 16, 1365–1375, https://doi.org/10.5194/acp-16-1365-2016, 2016.
Yang, Q., Zhao, T., Bai, Y., Wei, J., Sun, X., Tian, Z., Hu, J., Ma, X., Luo, Y., Fu, W., and Yang, K.: Interannual variations in ozone pollution with a dipole structure over Eastern China associated with springtime thermal forcing over the Tibetan Plateau, Sci. Total Environ., 923, 171527, https://doi.org/10.1016/j.scitotenv.2024.171527, 2024a.
Yang, S., Liu, Y., Zhu, Z., and Qi, Y.: Infuence of the midhighlatitude Eurasian ISO on PM2.5 concentration anomaly in North China during boreal winter, Clim. Dynam., 62, 2455–2474, https://doi.org/10.1007/s00382-023-07033-w, 2024b.
Yang, W., Li. J., Wang, Z., Wang, L., Dao, X., Zhu, L., Pan, X., Li, Y., Sun, Y., Ma, S., Wang, W., Chen, X., and Wu, J.: Source apportionment of PM2.5 in the most polluted Central Plains Economic Region in China: Implications for joint prevention and control of atmospheric pollution, J. Clean. Prod., 283, 124557, https://doi.org/10.1016/j.jclepro.2020.124557, 2021a.
Yang, Y., Zhou, Y., Li, K., Wang, H., Ren, L., Zeng, L., Li, H., Wang, P., Li, B., and Liao, H.: Atmospheric circulation patterns conducive to severe haze in eastern China have shifted under climate change, Geophys. Res. Lett., 48, e2021GL095011, https://doi.org/10.1029/2021gl095011, 2021b.
Yu, C., Zhao, T., Bai, Y., Zhang, L., Kong, S., Yu, X., He, J., Cui, C., Yang, J., You, Y., Ma, G., Wu, M., and Chang, J.: Heavy air pollution with a unique “non-stagnant” atmospheric boundary layer in the Yangtze River middle basin aggravated by regional transport of PM2.5 over China, Atmos. Chem. Phys., 20, 7217–7230, https://doi.org/10.5194/acp-20-7217-2020, 2020.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang, Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu, F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu, Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air quality in China from 2013 to 2017, P. Natl. Acad. Sci. USA, 116, 24463–24469, https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, X., Xu, X., Ding, Y., Liu, Y., Zhang, H., Wang, Y., and Zhong, J.: The impact of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key regions in China, Sci. China Earth Sci., 62, 1885–1902, https://doi.org/10.1007/s11430-019-9343-3, 2019.
Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., and Sun, J. Y.: Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols, Atmos. Chem. Phys., 12, 779–799, https://doi.org/10.5194/acp-12-779-2012, 2012.
Zhang, Y., Ding, A., Mao, H., Nie, W., Zhou, D., Liu, L., Huang, X., and Fu, C.: Impact of synoptic weather patterns and inter-decadal climate variability on air quality in the North China Plain during 1980–2013, Atmos. Environ., 124, 119–128, https://doi.org/10.1016/j.atmosenv.2015.05.063, 2016.
Zhao, S., Feng, T., Tie, X., Dai, W., Zhou, J., Long, X., Li, G., and Cao, J.: Short-term weather patterns modulate air quality in eastern China during 2015–2016 winter, J. Geophys. Res.-Atmos., 124, 986–1002, https://doi.org/10.1029/2018jd029409, 2019.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018a.
Zheng, Z., Ren, G., Wang, H., Dou, J., Gao, Z., Duan, C., Li, Y., Ngarukiyimana, J. P., Zhao, C., Cao, C., Jiang, M., and Yang, Y.: Relationship between fine-particle pollution and the urban heat island in Beijing, China: observational evidence, Bound.-Lay. Meteorol., 169, 93–113, https://doi.org/10.1007/s10546-018-0362-6, 2018b.
Zhong, J., Zhang, X., Dong, Y., Wang, Y., Liu, C., Wang, J., Zhang, Y., and Che, H.: Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016, Atmos. Chem. Phys., 18, 247–258, https://doi.org/10.5194/acp-18-247-2018, 2018.
Zhu, W., Xu, X., Zheng, J., Yan, P., Wang, Y., and Cai, W.: The characteristics of abnormal wintertime pollution events in the Jing-Jin-Ji region and its relationships with meteorological factors, Sci. Total Environ., 626, 887–898, https://doi.org/10.1016/j.scitotenv.2018.01.083, 2018.
Short summary
We proposed a composite statistical method to identify the quasi-weekly oscillation (QWO) of regional PM2.5 transport over China in winter from 2015 to 2019. The QWO of regional PM2.5 transport is constrained by synoptic-scale disturbances of the East Asian winter monsoon circulation with the periodic activities of the Siberian high, providing a new insight into the understanding of regional pollutant transport with meteorological drivers in atmospheric environment changes.
We proposed a composite statistical method to identify the quasi-weekly oscillation (QWO) of...
Altmetrics
Final-revised paper
Preprint