Articles | Volume 24, issue 1
https://doi.org/10.5194/acp-24-235-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-235-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the assimilation of Himawari-8 observations on aerosol forecasts and radiative effects during pollution transport from South Asia to the Tibetan Plateau
Min Zhao
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/ Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
Daisuke Goto
National Institute for Environmental Studies, Tsukuba, Japan
International Center for Climate and Environment Science, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Guangyu Shi
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Related authors
Zhe Jin, Xiangjun Tian, Yilong Wang, Hongqin Zhang, Min Zhao, Tao Wang, Jinzhi Ding, and Shilong Piao
Earth Syst. Sci. Data, 16, 2857–2876, https://doi.org/10.5194/essd-16-2857-2024, https://doi.org/10.5194/essd-16-2857-2024, 2024
Short summary
Short summary
An accurate estimate of spatial distribution and temporal evolution of CO2 fluxes is a critical foundation for providing information regarding global carbon cycle and climate mitigation. Here, we present a global carbon flux dataset for 2015–2022, derived by assimilating satellite CO2 observations into the GONGGA inversion system. This dataset will help improve the broader understanding of global carbon cycle dynamics and their response to climate change.
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
Geosci. Model Dev., 18, 2231–2248, https://doi.org/10.5194/gmd-18-2231-2025, https://doi.org/10.5194/gmd-18-2231-2025, 2025
Short summary
Short summary
The effectiveness of this assimilation system and its sensitivity to the ensemble member size and length of the assimilation window are investigated. This study advances our understanding of the selection of basic parameters in the four-dimensional local ensemble transform Kalman filter assimilation system and the performance of ensemble simulation in a particulate-matter-polluted environment.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024, https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Short summary
In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification.
Zhe Jin, Xiangjun Tian, Yilong Wang, Hongqin Zhang, Min Zhao, Tao Wang, Jinzhi Ding, and Shilong Piao
Earth Syst. Sci. Data, 16, 2857–2876, https://doi.org/10.5194/essd-16-2857-2024, https://doi.org/10.5194/essd-16-2857-2024, 2024
Short summary
Short summary
An accurate estimate of spatial distribution and temporal evolution of CO2 fluxes is a critical foundation for providing information regarding global carbon cycle and climate mitigation. Here, we present a global carbon flux dataset for 2015–2022, derived by assimilating satellite CO2 observations into the GONGGA inversion system. This dataset will help improve the broader understanding of global carbon cycle dynamics and their response to climate change.
Hao Wang, Xiaohong Liu, Chenglai Wu, and Guangxing Lin
Atmos. Chem. Phys., 24, 3309–3328, https://doi.org/10.5194/acp-24-3309-2024, https://doi.org/10.5194/acp-24-3309-2024, 2024
Short summary
Short summary
We quantified different global- and regional-scale drivers of biogenic volatile organic compound (BVOC) emission trends over the past 20 years. The results show that global greening trends significantly boost BVOC emissions and deforestation reduces BVOC emissions in South America and Southeast Asia. Elevated temperature in Europe and increased soil moisture in East and South Asia enhance BVOC emissions. The results deepen our understanding of long-term BVOC emission trends in hotspots.
Daisuke Goto, Tatsuya Seiki, Kentaroh Suzuki, Hisashi Yashiro, and Toshihiko Takemura
Geosci. Model Dev., 17, 651–684, https://doi.org/10.5194/gmd-17-651-2024, https://doi.org/10.5194/gmd-17-651-2024, 2024
Short summary
Short summary
Global climate models with coarse grid sizes include uncertainties about the processes in aerosol–cloud–precipitation interactions. To reduce these uncertainties, here we performed numerical simulations using a new version of our global aerosol transport model with a finer grid size over a longer period than in our previous study. As a result, we found that the cloud microphysics module influences the aerosol distributions through both aerosol wet deposition and aerosol–cloud interactions.
Qiuyan Wang, Hua Zhang, Su Yang, Qi Chen, Xixun Zhou, Bing Xie, Yuying Wang, Guangyu Shi, and Martin Wild
Atmos. Chem. Phys., 22, 15867–15886, https://doi.org/10.5194/acp-22-15867-2022, https://doi.org/10.5194/acp-22-15867-2022, 2022
Short summary
Short summary
The present-day land energy balance over East Asia is estimated for the first time. Results indicate that high aerosol loadings, clouds, and the Tibet Plateau (TP) over East Asia play vital roles in the shortwave budgets, while the TP is responsible for the longwave budgets during this regional energy budget assessment. This study provides a perspective to understand fully how the potential factors influence the diversifying regional energy budget assessments.
Tie Dai, Yueming Cheng, Daisuke Goto, Yingruo Li, Xiao Tang, Guangyu Shi, and Teruyuki Nakajima
Atmos. Chem. Phys., 21, 4357–4379, https://doi.org/10.5194/acp-21-4357-2021, https://doi.org/10.5194/acp-21-4357-2021, 2021
Short summary
Short summary
The anthropogenic emission of sulfur dioxide (SO2) over China has significantly declined as a consequence of the clean air actions. We have developed a new emission inversion system to dynamically update the SO2 emission grid by grid over China by assimilating ground-based SO2 observations. The inverted SO2 emission over China in November 2016 on average had declined by 49.4 % since 2010, which is well in agreement with the bottom-up estimation of 48.0 %.
Chihiro Kodama, Tomoki Ohno, Tatsuya Seiki, Hisashi Yashiro, Akira T. Noda, Masuo Nakano, Yohei Yamada, Woosub Roh, Masaki Satoh, Tomoko Nitta, Daisuke Goto, Hiroaki Miura, Tomoe Nasuno, Tomoki Miyakawa, Ying-Wen Chen, and Masato Sugi
Geosci. Model Dev., 14, 795–820, https://doi.org/10.5194/gmd-14-795-2021, https://doi.org/10.5194/gmd-14-795-2021, 2021
Short summary
Short summary
This paper describes the latest stable version of NICAM, a global atmospheric model, developed for high-resolution climate simulations toward the IPCC Assessment Report. Our model explicitly treats convection, clouds, and precipitation and could reduce the uncertainty of climate change projection. A series of test simulations demonstrated improvements (e.g., high cloud) and issues (e.g., low cloud, precipitation pattern), suggesting further necessity for model improvement and higher resolutions.
Yueming Cheng, Tie Dai, Jiming Li, and Guangyu Shi
Atmos. Chem. Phys., 20, 15307–15322, https://doi.org/10.5194/acp-20-15307-2020, https://doi.org/10.5194/acp-20-15307-2020, 2020
Short summary
Short summary
In this paper we present the analysis of the aerosol vertical features observed by CATS collected from 2015 to 2017 over three selected regions (North China, the Tibetan Plateau, and the Tarim Basin) over different timescales. This comprehensive information provides insights into the seasonal variations and diurnal cycles of the aerosol vertical features across East Asia.
Daisuke Goto, Yousuke Sato, Hisashi Yashiro, Kentaroh Suzuki, Eiji Oikawa, Rei Kudo, Takashi M. Nagao, and Teruyuki Nakajima
Geosci. Model Dev., 13, 3731–3768, https://doi.org/10.5194/gmd-13-3731-2020, https://doi.org/10.5194/gmd-13-3731-2020, 2020
Short summary
Short summary
We executed a global aerosol model over 3 years with the finest grid size in the world. The results elucidated that global annual averages of parameters associated with the aerosols were generally comparable to those obtained from a low-resolution model (LRM), but spatiotemporal variabilities of the aerosol components and their associated parameters provided better results closer to the observations than those from the LRM. This study clarified the advantages of the high-resolution model.
Daisuke Goto, Yu Morino, Toshimasa Ohara, Tsuyoshi Thomas Sekiyama, Junya Uchida, and Teruyuki Nakajima
Atmos. Chem. Phys., 20, 3589–3607, https://doi.org/10.5194/acp-20-3589-2020, https://doi.org/10.5194/acp-20-3589-2020, 2020
Short summary
Short summary
To obtain reliable distribution of atmospheric Cs-137 emitted from the Fukushima accident, we proposed a multi-model ensemble (MME) method using observations. We found the MME-estimated Cs-137 concentrations using all available observations had lower bias, lower uncertainty, higher correlation and higher precision against the observations compared to single-model results. It can be applied not only to the Cs-137 distribution but also any atmospheric materials such as PM2.5 distribution.
Yueming Cheng, Tie Dai, Daisuke Goto, Nick A. J. Schutgens, Guangyu Shi, and Teruyuki Nakajima
Atmos. Chem. Phys., 19, 13445–13467, https://doi.org/10.5194/acp-19-13445-2019, https://doi.org/10.5194/acp-19-13445-2019, 2019
Short summary
Short summary
Aerosol vertical information is critical to quantify the influences of aerosol on the climate and environment; however, large uncertainties still persist in model simulations. Global aerosol vertical distributions are more accurately simulated by assimilating the vertical aerosol extinction coefficients from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP).
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Huizheng Che, Bing Qi, Hujia Zhao, Xiangao Xia, Thomas F. Eck, Philippe Goloub, Oleg Dubovik, Victor Estelles, Emilio Cuevas-Agulló, Luc Blarel, Yunfei Wu, Jun Zhu, Rongguang Du, Yaqiang Wang, Hong Wang, Ke Gui, Jie Yu, Yu Zheng, Tianze Sun, Quanliang Chen, Guangyu Shi, and Xiaoye Zhang
Atmos. Chem. Phys., 18, 405–425, https://doi.org/10.5194/acp-18-405-2018, https://doi.org/10.5194/acp-18-405-2018, 2018
Short summary
Short summary
Sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify aerosols based on size and absorption. This study contributes to our understanding of aerosols and regional climate/air quality, and the results will be useful for validating satellite retrievals and for improving climate models and remote sensing.
Nick Schutgens, Svetlana Tsyro, Edward Gryspeerdt, Daisuke Goto, Natalie Weigum, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 17, 9761–9780, https://doi.org/10.5194/acp-17-9761-2017, https://doi.org/10.5194/acp-17-9761-2017, 2017
Short summary
Short summary
We estimate representativeness errors in observations due to mismatching spatio-temporal sampling, on timescales of hours to a year and length scales of 50 to 200 km, for a variety of observing systems (in situ or remote sensing ground sites, satellites with imagers or lidar, etc.) and develop strategies to reduce them. This study is relevant to the use of observations in constructing satellite L3 products, observational intercomparison and model evaluation.
Nick A. J. Schutgens, Edward Gryspeerdt, Natalie Weigum, Svetlana Tsyro, Daisuke Goto, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 16, 6335–6353, https://doi.org/10.5194/acp-16-6335-2016, https://doi.org/10.5194/acp-16-6335-2016, 2016
Short summary
Short summary
We show that evaluating global aerosol model data with observations of very different spatial scales (200 vs. 10 km) can lead to large discrepancies, solely due to different spatial sampling. Strategies for reducing these sampling errors are developed and tested using a set of high-resolution model simulations.
Josiane Mélançon, Maurice Levasseur, Martine Lizotte, Michael Scarratt, Jean-Éric Tremblay, Philippe Tortell, Gui-Peng Yang, Guang-Yu Shi, Huiwang Gao, David Semeniuk, Marie Robert, Michael Arychuk, Keith Johnson, Nes Sutherland, Marty Davelaar, Nina Nemcek, Angelica Peña, and Wendy Richardson
Biogeosciences, 13, 1677–1692, https://doi.org/10.5194/bg-13-1677-2016, https://doi.org/10.5194/bg-13-1677-2016, 2016
Short summary
Short summary
Ocean acidification is likely to affect iron-limited phytoplankton fertilization by desert dust. Short incubations of northeast subarctic Pacific waters enriched with dust and set at pH 8.0 and 7.8 were conducted. Acidification led to a significant reduction (by 16–38 %) of the final concentration of chl a reached after enrichment. These results show that dust deposition events in a low-pH iron-limited ocean are likely to stimulate phytoplankton growth to a lesser extent than in today's ocean.
Z. Wang, D. Liu, Y. Wang, Z. Wang, and G. Shi
Atmos. Meas. Tech., 8, 2901–2907, https://doi.org/10.5194/amt-8-2901-2015, https://doi.org/10.5194/amt-8-2901-2015, 2015
H. Che, X.-Y. Zhang, X. Xia, P. Goloub, B. Holben, H. Zhao, Y. Wang, X.-C. Zhang, H. Wang, L. Blarel, B. Damiri, R. Zhang, X. Deng, Y. Ma, T. Wang, F. Geng, B. Qi, J. Zhu, J. Yu, Q. Chen, and G. Shi
Atmos. Chem. Phys., 15, 7619–7652, https://doi.org/10.5194/acp-15-7619-2015, https://doi.org/10.5194/acp-15-7619-2015, 2015
Short summary
Short summary
This work studied more than 10 years of measurements of aerosol optical depths (AODs) made for 50 sites of CARSNET compiled into a climatology of aerosol optical properties for China. It lets us see a detailed full-scale description of AOD observations over China. The results would benefit us a lot in comprehending the temporal and special distribution aerosol optical property over China. Also the data would be valuable to communities of aerosol satellite retrieval, modelling, etc.
H. Wang, G. Y. Shi, X. Y. Zhang, S. L. Gong, S. C. Tan, B. Chen, H. Z. Che, and T. Li
Atmos. Chem. Phys., 15, 3277–3287, https://doi.org/10.5194/acp-15-3277-2015, https://doi.org/10.5194/acp-15-3277-2015, 2015
Short summary
Short summary
Solar radiation reaching the ground decreases about 15% in Chinese 3JNS region and by 20 to 25% in the region with the highest AOD. Aerosol cools the PBL atmosphere but warms the atmosphere above it, leading to a more stable atmosphere that causes a decrease in turbulence diffusion of about 52% and in PBL height of about 33%; this results in a positive feedback on the PM2.5 concentration within the PBL and the surface as well as the haze formation.
D. Goto, T. Dai, M. Satoh, H. Tomita, J. Uchida, S. Misawa, T. Inoue, H. Tsuruta, K. Ueda, C. F. S. Ng, A. Takami, N. Sugimoto, A. Shimizu, T. Ohara, and T. Nakajima
Geosci. Model Dev., 8, 235–259, https://doi.org/10.5194/gmd-8-235-2015, https://doi.org/10.5194/gmd-8-235-2015, 2015
Short summary
Short summary
An aerosol-coupled global non-hydrostatic model with a stretched-grid system has been developed to simulate aerosols on a region scale of 10 km grids. The regional simulation does require either a nesting technique or lateral boundary conditions, as opposed to general regional models. It generally reproduces monthly mean distributions of the observed sulfate and SO2 over East Asia as well as the diurnal and synoptic variations of the observed ones around the main target region, Tokyo/Japan.
H. Che, X. Xia, J. Zhu, Z. Li, O. Dubovik, B. Holben, P. Goloub, H. Chen, V. Estelles, E. Cuevas-Agulló, L. Blarel, H. Wang, H. Zhao, X. Zhang, Y. Wang, J. Sun, R. Tao, X. Zhang, and G. Shi
Atmos. Chem. Phys., 14, 2125–2138, https://doi.org/10.5194/acp-14-2125-2014, https://doi.org/10.5194/acp-14-2125-2014, 2014
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Exploring the aerosol activation properties in coastal shallow convection using cloud- and particle-resolving models
Machine-learning-assisted inference of the particle charge fraction and the ion-induced nucleation rates during new particle formation events
Modeling CMAQ dry deposition treatment over the western Pacific: a distinct characteristic of mineral dust and anthropogenic aerosols
Impact of post-monsoon crop residue burning on PM2.5 over northern India: optimizing emissions using a high-density in situ surface observation network
Modeling simulation of aerosol light absorption over the Beijing–Tianjin–Hebei region: the impact of mixing state and aging processes
An investigation of the impact of Canadian wildfires on US air quality using model, satellite, and ground measurements
How to trace the origins of short-lived atmospheric species: an Arctic example
Dust-producing weather patterns of the North American Great Plains
High-resolution air quality maps for Bucharest using a mixed-effects modeling framework
Interdecadal shift in the impact of winter land-sea thermal contrasts on following spring transcontinental dust transport pathways in North Africa
Anthropogenic and Natural Causes for the Interannual Variation of PM2.5 in East Asia During Summer Monsoon Periods From 2008 to 2018
Construction and application of a pollen emissions model based on phenology and random forests
An uncertain future for the climate and health impacts of anthropogenic aerosols in Africa
The impact of uncertainty in black carbon's refractive index on simulated optical depth and radiative forcing
Gas-phase collision rate enhancement factors for acid-base clusters up to 2 nm in diameter from atomistic simulation and the interacting hard sphere model
Characterization of brown carbon absorption in different European environments through source contribution analysis
Accounting for the black carbon aging process in a two-way coupled meteorology–air quality model
The effectiveness of solar radiation management using fine sea spray across multiple climatic regions
A global dust emission dataset for estimating dust radiative forcings in climate models
Tropospheric aerosols over the western North Atlantic Ocean during the winter and summer deployments of ACTIVATE 2020: life cycle, transport, and distribution
Spatial and temporal evolution of future atmospheric reactive nitrogen deposition in China under different climate change mitigation strategies
Steady-state mixing state of black carbon aerosols from a particle-resolved model
Direct radiative forcing of light-absorbing carbonaceous aerosol and the influencing factors over China
Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies
Biomass burning emission analysis based on MODIS aerosol optical depth and AeroCom multi-model simulations: implications for model constraints and emission inventories
Quasi-weekly oscillation of regional PM2.5 transport over China driven by the synoptic-scale disturbance of the East Asian winter monsoon circulation
Solar radiation estimation in West Africa: impact of dust conditions during the 2021 dry season
Modeling urban pollutant transport at multi-resolutions: Impacts of turbulent mixing
Homogeneous ice nucleation in adsorbed water films: A theoretical approach
Gaps in our understanding of ice-nucleating particle sources exposed by global simulation of the UK Earth System Model
The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles
Impact of Topographic Wind Conditions on Dust Particle Size Distribution: Insights from a Regional Dust Reanalysis Dataset
Uncovering the Impact of Urban Functional Zones on Air Quality in China
Seasonal differences in observed versus modeled new particle formation over boreal regions
Warming effects of reduced sulfur emissions from shipping
The key role of atmospheric absorption in the Asian summer monsoon response to dust emissions in CMIP6 models
Multi-model effective radiative forcing of the 2020 sulfur cap for shipping
Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Radiative and climate effects of aerosol scattering in long-wave radiation based on global climate modeling
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
A Novel Method to Quantify the Uncertainty Contribution of Aerosol-Radiative Interaction Factors
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Strong inter-model differences and biases in CMIP6 simulations of PM2.5, aerosol optical depth, and precipitation over Africa
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Synergistic effects of the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on dust activities in North China during the following spring
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Ge Yu, Yueya Wang, Zhe Wang, and Xiaoming Shi
Atmos. Chem. Phys., 25, 7527–7542, https://doi.org/10.5194/acp-25-7527-2025, https://doi.org/10.5194/acp-25-7527-2025, 2025
Short summary
Short summary
Studying the cloud-forming capacity of aerosols is crucial in climate research. The PartMC model can provide detailed particle information and help these studies. This model is integrated with the ideal meteorological Cloud Model 1 (CM1) to simulate the aerosols at cloud-forming locations. Significant changes are revealed in the hygroscopicity distribution of aerosols within ascending air parcels. Additionally, different ascent times also affect aerosol aging processes.
Pan Wang, Yue Zhao, Jiandong Wang, Veli-Matti Kerminen, Jingkun Jiang, and Chenxi Li
Atmos. Chem. Phys., 25, 7431–7446, https://doi.org/10.5194/acp-25-7431-2025, https://doi.org/10.5194/acp-25-7431-2025, 2025
Short summary
Short summary
We developed a numerical model to investigate the evolution of the charge state of newly formed atmospheric particles. Based on the simulation results, we successfully employed neural networks to predict particle charge states and estimate ion-induced nucleation rates. This study provides new insights into the dynamics of particle charging and introduces advanced methods for evaluating ion-induced nucleation in atmospheric research.
Steven Soon-Kai Kong, Joshua S. Fu, Neng-Huei Lin, Guey-Rong Sheu, and Wei-Syun Huang
Atmos. Chem. Phys., 25, 7245–7268, https://doi.org/10.5194/acp-25-7245-2025, https://doi.org/10.5194/acp-25-7245-2025, 2025
Short summary
Short summary
The accuracy of the chemical transport model, a key focus of our research, is strongly dependent on the dry deposition parameterization. Our findings show that the refined CMAQ dust model correlated well with ground-based and high-altitude in situ measurements by implementing the suggested dry deposition schemes. Furthermore, we reveal the mixing state of two types of aerosols at the upper level, a finding supported by both the optimized model and measurements.
Mizuo Kajino, Kentaro Ishijima, Joseph Ching, Kazuyo Yamaji, Rio Ishikawa, Tomoki Kajikawa, Tanbir Singh, Tomoki Nakayama, Yutaka Matsumi, Koyo Kojima, Taisei Machida, Takashi Maki, Prabir K. Patra, and Sachiko Hayashida
Atmos. Chem. Phys., 25, 7137–7160, https://doi.org/10.5194/acp-25-7137-2025, https://doi.org/10.5194/acp-25-7137-2025, 2025
Short summary
Short summary
Air pollution in Delhi during the post-monsoon period is severe, and association with intensive crop residue burning (CRB) over Punjab state has attracted attention. However, the relationship has been unclear as the CRB emissions conventionally derived from satellites were underestimated due to clouds or thick smoke/haze over the region. We evaluated the impact of CRB on PM2.5 to be about 50 %, based on a combination of numerical modeling and an observation network using low-cost sensors we installed.
Huiyun Du, Jie Li, Xueshun Chen, Gabriele Curci, Fangqun Yu, Yele Sun, Xu Dao, Song Guo, Zhe Wang, Wenyi Yang, Lianfang Wei, and Zifa Wang
Atmos. Chem. Phys., 25, 5665–5681, https://doi.org/10.5194/acp-25-5665-2025, https://doi.org/10.5194/acp-25-5665-2025, 2025
Short summary
Short summary
Inadequate consideration of mixing states and coatings on black carbon (BC) hinders aerosol radiation forcing quantification. Core–shell mixing aligns well with observations, but partial internal mixing is a more realistic representation. We used a microphysics module to determine the fraction of embedded BC and coating aerosols, constraining the mixing state. This reduced absorption enhancement by 30 %–43 % in northern China, offering insights into BC's radiative effects.
Zhixin Xue, Nair Udaysankar, and Sundar A. Christopher
Atmos. Chem. Phys., 25, 5497–5517, https://doi.org/10.5194/acp-25-5497-2025, https://doi.org/10.5194/acp-25-5497-2025, 2025
Short summary
Short summary
Canadian wildfires in August 2018 significantly increased surface air pollution across the United States (US) – by up to 69 % in some areas. Using model, satellite, and ground measurements, the study highlights how weather patterns and long-range smoke transport drive pollution. The northwestern US was most affected by Canadian wildfire smoke, while the northeastern US experienced the least impact. These findings indicate the growing concern that wildfire smoke poses to air quality across the US.
Anderson Da Silva, Louis Marelle, Jean-Christophe Raut, Yvette Gramlich, Karolina Siegel, Sophie L. Haslett, Claudia Mohr, and Jennie L. Thomas
Atmos. Chem. Phys., 25, 5331–5354, https://doi.org/10.5194/acp-25-5331-2025, https://doi.org/10.5194/acp-25-5331-2025, 2025
Short summary
Short summary
Particle sources in polar climates are unclear, affecting climate representation in models. This study introduces an evaluated method for tracking particles with backward modeling. Tests on simulated particles allowed us to show that traditional detection methods often misidentify sources. An improved method that accurately traces the origins of aerosol particles in the Arctic is presented. The study recommends using this enhanced method for better source identification of atmospheric species.
Stuart Evans
Atmos. Chem. Phys., 25, 4833–4845, https://doi.org/10.5194/acp-25-4833-2025, https://doi.org/10.5194/acp-25-4833-2025, 2025
Short summary
Short summary
This study of the North American Great Plains identifies the various weather patterns responsible for blowing dust in all parts of the region using a weather pattern classification. In the southwestern plains passing cold fronts are the primary cause of dust; in the understudied northern plains, summertime patterns and southerly pre-frontal winds are most important in the west and east, respectively. These results are valuable to understanding and forecasting dust in this complex source region.
Camelia Talianu, Jeni Vasilescu, Doina Nicolae, Alexandru Ilie, Andrei Dandocsi, Anca Nemuc, and Livio Belegante
Atmos. Chem. Phys., 25, 4639–4654, https://doi.org/10.5194/acp-25-4639-2025, https://doi.org/10.5194/acp-25-4639-2025, 2025
Short summary
Short summary
For Bucharest, Romania's capital, mobile measurements during two intensive campaigns and mixed-effect LUR (land-use regression) models to derive seasonal maps of near-surface PM10, NO2 and UFPs (ultrafine particles) have successfully been used. The model's performance was evaluated, demonstrating its potential for high-resolution mapping in other cities with well-characterized urban structures and diverse in situ monitoring stations.
Qi Wen, Yan Li, Mengying Du, Wenjun Song, Linbo Wei, Zhilan Wang, and Xu Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-826, https://doi.org/10.5194/egusphere-2025-826, 2025
Short summary
Short summary
We find that, through an interdecadal phase-locking effect of sea-land thermal forcing-North Atlantic Oscillation-Westerly Jet coupling, springtime dust from North Africa is more likely to be transported eastwards (extending into North America) after the late 1990s, whereas before that time westward transport paths for dust were more frequent. Subject to thermal forcing, wind speed and drought contribute to dust emissions in the two periods, respectively.
Danyang Ma, Min Xie, Huan He, Tijian Wang, Mengzhu Xi, Lingyun Feng, Shuxian Zhang, and Shitong Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-10, https://doi.org/10.5194/egusphere-2025-10, 2025
Short summary
Short summary
The PM2.5 concentration in China underwent significant changes in 2013. We examined the underlying causes from three perspectives: anthropogenic pollutant emissions, meteorological conditions, and CO2 concentration variations. Our study highlighted the importance of considering the role of CO2 on vegetation when predicting PM2.5 concentrations and developing corresponding control strategies.
Jiangtao Li, Xingqin An, Zhaobin Sun, Caihua Ye, Qing Hou, Yuxin Zhao, and Zhe Liu
Atmos. Chem. Phys., 25, 3583–3602, https://doi.org/10.5194/acp-25-3583-2025, https://doi.org/10.5194/acp-25-3583-2025, 2025
Short summary
Short summary
Climate change and pollution have intensified pollen allergies. We developed a pollen emissions model using phenology and random forests. Key factors affecting annual pollen emissions include temperature, relative humidity and sunshine hours. Pollen dispersal starts around 10 August, peaks around 30 August and ends by 25 September, lasting about 45 d. Over time, annual pollen emissions exhibit significant fluctuations and a downward trend.
Joe Adabouk Amooli, Marianne T. Lund, Sourangsu Chowdhury, Gunnar Myhre, Ane N. Johansen, Bjørn H. Samset, and Daniel M. Westervelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-948, https://doi.org/10.5194/egusphere-2025-948, 2025
Short summary
Short summary
We analyze various projections of African aerosol emissions and their potential impacts on climate and public health. We find that future emissions vary widely across emission projections, with differences in sectoral emission distributions. Using the Oslo chemical transport model, we show that air pollution exposure in some regions of Africa could increase significantly by 2050, increasing pollution-related deaths, with most scenarios projecting aerosol-induced warming over sub-Saharan Africa.
Ruth A. R. Digby, Knut von Salzen, Adam H. Monahan, Nathan P. Gillett, and Jiangnan Li
Atmos. Chem. Phys., 25, 3109–3130, https://doi.org/10.5194/acp-25-3109-2025, https://doi.org/10.5194/acp-25-3109-2025, 2025
Short summary
Short summary
The refractive index of black carbon (BCRI), which determines how much energy black carbon absorbs and scatters, is difficult to measure, and different climate models use different values. We show that varying the BCRI across commonly used values can increase absorbing aerosol optical depth by 42 % and the warming effect from interactions between black carbon and radiation by 47 %, an appreciable fraction of the overall spread between models reported in recent literature assessments.
Valtteri Tikkanen, Huan Yang, Hanna Vehkamäki, and Bernhard Reischl
EGUsphere, https://doi.org/10.5194/egusphere-2025-507, https://doi.org/10.5194/egusphere-2025-507, 2025
Short summary
Short summary
Collisions of neutral molecules and clusters is the prevalent pathway in atmospheric new particle formation. In heavily polluted urban areas, where clusters are formed rapidly and in large number, cluster-cluster collisions also become relevant. We calculate cluster-cluster collision rates from atomistic molecular dynamics simulations and an interacting hard sphere model. Not accounting for long-range attractive interactions underestimates collision and particle formation rates significantly.
Hector Navarro-Barboza, Jordi Rovira, Vincenzo Obiso, Andrea Pozzer, Marta Via, Andres Alastuey, Xavier Querol, Noemi Perez, Marjan Savadkoohi, Gang Chen, Jesus Yus-Díez, Matic Ivancic, Martin Rigler, Konstantinos Eleftheriadis, Stergios Vratolis, Olga Zografou, Maria Gini, Benjamin Chazeau, Nicolas Marchand, Andre S. H. Prevot, Kaspar Dallenbach, Mikael Ehn, Krista Luoma, Tuukka Petäjä, Anna Tobler, Jaroslaw Necki, Minna Aurela, Hilkka Timonen, Jarkko Niemi, Olivier Favez, Jean-Eudes Petit, Jean-Philippe Putaud, Christoph Hueglin, Nicolas Pascal, Aurélien Chauvigné, Sébastien Conil, Marco Pandolfi, and Oriol Jorba
Atmos. Chem. Phys., 25, 2667–2694, https://doi.org/10.5194/acp-25-2667-2025, https://doi.org/10.5194/acp-25-2667-2025, 2025
Short summary
Short summary
Brown carbon (BrC) absorbs ultraviolet (UV) and visible light, influencing climate. This study explores BrC's imaginary refractive index (k) using data from 12 European sites. Residential emissions are a major organic aerosol (OA) source in winter, while secondary organic aerosol (SOA) dominates in summer. Source-specific k values were derived, improving model accuracy. The findings highlight BrC's climate impact and emphasize source-specific constraints in atmospheric models.
Yuzhi Jin, Jiandong Wang, Chao Liu, David C. Wong, Golam Sarwar, Kathleen M. Fahey, Shang Wu, Jiaping Wang, Jing Cai, Zeyuan Tian, Zhouyang Zhang, Jia Xing, Aijun Ding, and Shuxiao Wang
Atmos. Chem. Phys., 25, 2613–2630, https://doi.org/10.5194/acp-25-2613-2025, https://doi.org/10.5194/acp-25-2613-2025, 2025
Short summary
Short summary
Black carbon (BC) affects climate and the environment, and its aging process alters its properties. Current models, like WRF-CMAQ, lack full accounting for it. We developed the WRF-CMAQ-BCG model to better represent BC aging by introducing bare and coated BC species and their conversion. The WRF-CMAQ-BCG model introduces the capability to simulate BC mixing states and bare and coated BC wet deposition, and it improves the accuracy of BC mass concentration and aerosol optics.
Zhe Song, Shaocai Yu, Pengfei Li, Ningning Yao, Lang Chen, Yuhai Sun, Boqiong Jiang, and Daniel Rosenfeld
Atmos. Chem. Phys., 25, 2473–2494, https://doi.org/10.5194/acp-25-2473-2025, https://doi.org/10.5194/acp-25-2473-2025, 2025
Short summary
Short summary
Our results with injected sea salt aerosols for five open oceans show that sea salt aerosols with low injection amounts dominate shortwave radiation, mainly through indirect effects. As indirect aerosol effects saturate with increasing injection rates, direct effects exceed indirect effects. This implies that marine cloud brightening is best implemented in areas with extensive cloud cover, while aerosol direct scattering effects remain dominant when clouds are scarce.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
Atmos. Chem. Phys., 25, 2311–2331, https://doi.org/10.5194/acp-25-2311-2025, https://doi.org/10.5194/acp-25-2311-2025, 2025
Short summary
Short summary
This study derives a gridded dust emission dataset for 1841–2000 by employing a combination of observed dust from core records and reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to better match observations than other mechanistic models.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2087–2121, https://doi.org/10.5194/acp-25-2087-2025, https://doi.org/10.5194/acp-25-2087-2025, 2025
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosol distributions and properties over the western North Atlantic Ocean (WNAO) during the winter and summer deployments in 2020 of the NASA ACTIVATE mission. Model results are evaluated against aircraft, ground-based, and satellite observations. The improved understanding of life cycle, composition, transport pathways, and distribution of aerosols has important implications for characterizing aerosol–cloud–meteorology interactions over WNAO.
Mingrui Ma, Jiachen Cao, Dan Tong, Bo Zheng, and Yu Zhao
Atmos. Chem. Phys., 25, 2147–2166, https://doi.org/10.5194/acp-25-2147-2025, https://doi.org/10.5194/acp-25-2147-2025, 2025
Short summary
Short summary
We combined two global climate change pathways and three national emission control scenarios to analyze the future evolution of reactive nitrogen (Nr) deposition till the 2060s in China with air quality modeling. We show China’s clean air and carbon neutrality policies would overcome the adverse effects of climate change and efficiently reduce Nr deposition. The outflow of Nr fluxes from mainland China to the west Pacific would also be clearly reduced from continuous stringent emission controls.
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
Atmos. Chem. Phys., 25, 1869–1881, https://doi.org/10.5194/acp-25-1869-2025, https://doi.org/10.5194/acp-25-1869-2025, 2025
Short summary
Short summary
Black carbon (BC) exerts notable warming effects. We use a particle-resolved model to investigate the long-term behavior of the BC mixing state, revealing its compositions, coating thickness distribution, and optical properties all stabilize with a characteristic time of less than 1 d. This study can effectively simplify the description of the BC mixing state, which facilitates the precise assessment of the optical properties of BC aerosols in global and chemical transport models.
Shuangqin Yang, Yusi Liu, Li Chen, Nan Cao, Jing Wang, and Shuang Gao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3705, https://doi.org/10.5194/egusphere-2024-3705, 2025
Short summary
Short summary
Black carbon, primary brown carbon, and secondary brown carbon are the leading light-absorbing carbonaceous aerosols (LACs) that contribute significantly to climate change. We modified the GEOS-Chem model to simulate the climate change by LACs based on local emission inventory, and explored the impacts of LACs properties and atmospheric variables on the corresponding DRFs in seven regions of China. The study confirms the warming effect of LACs and deepens our knowledge of their climatic effects.
Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang
Atmos. Chem. Phys., 25, 1711–1724, https://doi.org/10.5194/acp-25-1711-2025, https://doi.org/10.5194/acp-25-1711-2025, 2025
Short summary
Short summary
Dust days during the spring seasons of 2015–2023 in North China were classified into Mongolian cyclone and cold high types depending on the presence of the Mongolian cyclone. The Mongolian cyclone type led to more frequent and severe dust weather, indicated by PM10 concentrations. To comprehensively forecast the two types of dust weather, a common predictor was established based on 500 hPa anomalous circulation systems, offering insights for dust weather forecasting and climate prediction.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes W. Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
Atmos. Chem. Phys., 25, 1545–1567, https://doi.org/10.5194/acp-25-1545-2025, https://doi.org/10.5194/acp-25-1545-2025, 2025
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke amount observations aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss rate assumptions vary enormously among models, causing uncertainties that require systematic in situ measurements to resolve.
Yongqing Bai, Tianliang Zhao, Kai Meng, Yue Zhou, Jie Xiong, Xiaoyun Sun, Lijuan Shen, Yanyu Yue, Yan Zhu, Weiyang Hu, and Jingyan Yao
Atmos. Chem. Phys., 25, 1273–1287, https://doi.org/10.5194/acp-25-1273-2025, https://doi.org/10.5194/acp-25-1273-2025, 2025
Short summary
Short summary
We proposed a composite statistical method to identify the quasi-weekly oscillation (QWO) of regional PM2.5 transport over China in winter from 2015 to 2019. The QWO of regional PM2.5 transport is constrained by synoptic-scale disturbances of the East Asian winter monsoon circulation with the periodic activities of the Siberian high, providing a new insight into the understanding of regional pollutant transport with meteorological drivers in atmospheric environment changes.
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
Atmos. Chem. Phys., 25, 997–1021, https://doi.org/10.5194/acp-25-997-2025, https://doi.org/10.5194/acp-25-997-2025, 2025
Short summary
Short summary
Solar energy production in West Africa is set to rise and needs accurate solar radiation estimates which are affected by desert dust. This work analyses a March 2021 dust event using a modelling strategy incorporating desert dust. Results show that considering desert dust cuts errors in solar radiation estimates by 75 % and reduces surface solar radiation by 18 %. This highlights the importance of incorporating dust aerosols into solar forecasting for better accuracy.
Zining Yang, Qiuyan Du, Qike Yang, Chun Zhao, Gudongze Li, Zihan Xia, Mingyue Xu, Renmin Yuan, Yubin Li, Kaihui Xia, Jun Gu, and Jiawang Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-3890, https://doi.org/10.5194/egusphere-2024-3890, 2025
Short summary
Short summary
This study investigates the impact of turbulent mixing on black carbon (BC) concentrations in urban areas using WRF-Chem at 25, 5, and 1 km resolutions. Significant variations in BC and turbulent mixing occur mainly at night. Higher resolutions reduce BC overestimation due to enhanced PBL mixing coefficients and vertical wind fluxes. Small-scale eddies at higher resolutions increase BC lifetime and column concentrations. Land use and terrain variations across multi-resolutions affect PBL mixing.
Ari Laaksonen, Golnaz Roudsari, Ana A. Piedehierro, and André Welti
EGUsphere, https://doi.org/10.5194/egusphere-2024-4095, https://doi.org/10.5194/egusphere-2024-4095, 2025
Short summary
Short summary
The mechanisms of ice nucleation at temperatures below 235 K have remained unclear for the past century. We suggest that ice nucleation is caused by the freezing of water adsorbed on aerosol surfaces. To test this hypothesis, we derived theoretical equations to predict the exact atmospheric conditions under which ice nucleation occurs. Our predictions agree well with experiments. The new theory thus provides a basis for an improved description of ice nucleation in the atmosphere.
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
Atmos. Chem. Phys., 25, 291–325, https://doi.org/10.5194/acp-25-291-2025, https://doi.org/10.5194/acp-25-291-2025, 2025
Short summary
Short summary
Aerosol particles that help form ice in clouds vary in number and type around the world and with time. However, in many weather and climate models cloud ice is not linked to aerosols that are known to nucleate ice. Here we report the first steps towards representing ice-nucleating particles within the UK Earth System Model. We conclude that in addition to ice nucleation by sea spray and mineral components of soil dust, we also need to represent ice nucleation by the organic components of soils.
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 25, 327–346, https://doi.org/10.5194/acp-25-327-2025, https://doi.org/10.5194/acp-25-327-2025, 2025
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Xinyue Huang, Wenyu Gao, and Hosein Foroutan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3076, https://doi.org/10.5194/egusphere-2024-3076, 2024
Short summary
Short summary
This study investigates the relationship between wind-blown dust aerosols size distribution and wind conditions over topography at a regional scale, utilizing 10 years of dust reanalysis data. Linear regression models suggest that higher wind speeds and steeper land slopes, particularly under uphill winds, are associated with increased fractions of coarser dust particles. Moreover, these positive correlations weaken during summer and afternoon events, likely related to the haboob storms.
Lulu Yuan, Wenchao Han, Jiachen Meng, Yang Wang, Haojie Yu, and Wenze Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3350, https://doi.org/10.5194/egusphere-2024-3350, 2024
Short summary
Short summary
This study utilizes multi-source data to reveal the impact of various urban functional zones in China on the spatial distribution of pollutants. The findings indicate that the residential and commercial zones see notable air quality gains, but the improvement of air quality in the transportation zone is the least considerable. Moreover, the industrial zone has the most seasonal air quality variation. Therefore, air pollution prevention policies should consider differences in functional zones.
Carl Svenhag, Pontus Roldin, Tinja Olenius, Robin Wollesen de Jonge, Sara Blichner, Daniel Yazgi, and Moa Sporre
EGUsphere, https://doi.org/10.5194/egusphere-2024-3626, https://doi.org/10.5194/egusphere-2024-3626, 2024
Short summary
Short summary
This study investigates the model representation of how particles are formed and grow in the atmosphere. Using modeled and observed data from two boreal forest stations in 2018, we identify key factors for NPF to improve particle-climate predictions in the global EC-Earth3 model. Comparisons with the detailed ADCHEM model show that adding ammonia improves particle growth predictions, though EC-Earth3 still highly underestimates the number of particles during warmer months.
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024, https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary
Short summary
A 2020 regulation has reduced sulfur emissions from shipping by about 80 %, leading to a decrease in atmospheric aerosols that have a cooling effect primarily by affecting cloud properties and amounts. Our climate model simulations predict a global temperature increase of 0.04 K over the next 3 decades as a result, which could contribute to surpassing the Paris Agreement's 1.5 °C target. Reduced aerosols may have also contributed to the recent temperature spikes.
Alcide Zhao, Laura J. Wilcox, and Claire L. Ryder
Atmos. Chem. Phys., 24, 13385–13402, https://doi.org/10.5194/acp-24-13385-2024, https://doi.org/10.5194/acp-24-13385-2024, 2024
Short summary
Short summary
Climate models include desert dust aerosols, which cause atmospheric heating and can change circulation patterns. We assess the effect of dust on the Indian and east Asian summer monsoons through multi-model experiments isolating the effect of dust in current climate models for the first time. Dust atmospheric heating results in a southward shift of western Pacific equatorial rainfall and an enhanced Indian summer monsoon. This shows the importance of accurate dust representation in models.
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
Atmos. Chem. Phys., 24, 13361–13370, https://doi.org/10.5194/acp-24-13361-2024, https://doi.org/10.5194/acp-24-13361-2024, 2024
Short summary
Short summary
In 2020, new regulations by the International Maritime Organization regarding sulfur emissions came into force, reducing emissions of SO2 from the shipping sector by approximately 80 %. In this study, we use multiple models to calculate how much the Earth energy balance changed due to the emission reduction or the so-called effective radiative forcing. The calculated effective radiative forcing is weak, comparable to the effect of the increase in CO2 over the last 2 to 3 years.
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024, https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides bioavailable iron to promote marine primary production, yet the estimates of its fluxes remain highly uncertain. This study, by performing global aerosol simulations, demonstrates that iron-containing particle size upon emission is a critical factor in regulating soluble iron input to open oceans. Further observational constraints on this are needed to reduce modeling uncertainties.
Thomas Drugé, Pierre Nabat, Martine Michou, and Marc Mallet
EGUsphere, https://doi.org/10.5194/egusphere-2024-3659, https://doi.org/10.5194/egusphere-2024-3659, 2024
Short summary
Short summary
Aerosol scattering in long-wave radiation is often neglected in climate models. In this study, we analyze its impact through a physical modeling of this process in the CNRM ARPEGE-Climat model. It mainly leads to surface LW radiation increases across Sahara, Sahel and Arabian Peninsula, resulting in daily minimum near-surface temperature rises. Other changes in atmospheric fields are also simulated.
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024, https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three Shared
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Bishuo He and Chunsheng Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3441, https://doi.org/10.5194/egusphere-2024-3441, 2024
Short summary
Short summary
Factor-uncertainty analysis helps us understand their impacts on complex systems. Traditional methods have many limitations. This study introduces a new method to measure how each factor contributes to uncertainty. It gains insights into the role of each variable and works for all multi-factor systems. As an application, we analyzed how aerosols affect solar radiation and identified the key factors. These analyses can improve our understanding of the role of aerosols in climate change.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024, https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Short summary
In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024, https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season.
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024, https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary
Short summary
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties. This method is verified from a theoretical perspective, and it performs well for thickly coated BC at high RHs.
Catherine Anne Toolan, Joe Adabouk Amooli, Laura J. Wilcox, Bjørn H. Samset, Andrew G. Turner, and Daniel M. Westervelt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3057, https://doi.org/10.5194/egusphere-2024-3057, 2024
Short summary
Short summary
Our research explores how well air pollution and rainfall patterns in Africa are represented in current climate models, by comparing model data to observations from 1981 to 2023. While most models capture seasonal air quality changes well, they struggle to replicate the distribution of non-dust pollutants and certain rainfall patterns, especially over east Africa. Improving these models is crucial for better climate predictions and preparing for future risks.
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024, https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing aerosol–cloud climate interactions in the post-fossil-fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with (NH4)2SO4. A good agreement was observed between their model-estimated and experimental HGFs.
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024, https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Short summary
The Aralkum is a new desert in Central Asia formed by the desiccation of the Aral Sea. This has created a source of atmospheric dust, with implications for the balance of solar and thermal radiation. Simulating these effects using a dust transport model, we find that Aralkum dust adds radiative cooling effects to the surface and atmosphere on average but also adds heating events. Increases in surface pressure due to Aralkum dust strengthen the Siberian High and weaken the summer Asian heat low.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024, https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Short summary
This study examines how the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) affect dust activities in North China during the following spring. The results show that the NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both are negative, their combined effect on dust activities is even greater. This research highlights the importance of these climate patterns in predicting spring dust activities in North China.
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024, https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Cited articles
Adhikary, B., Kulkarni, S., Dallura, A., Tang, Y., Chai, T., Leung, L. R., Qian, Y., Chung, C. E., Ramanathan, V., and Carmichael, G. R.: A regional scale chemical transport modeling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique, Atmos. Environ., 42, 8600–8615, https://doi.org/10.1016/j.atmosenv.2008.08.031, 2008.
Benedetti, A., Morcrette, J. J., Boucher, O., Dethof, A., Engelen, R. J., Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S., Mangold, A., Razinger, M., Simmons, A. J., and Suttie, M.: Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation, J. Geophys. Res.-Atmos., 114, D13205, https://doi.org/10.1029/2008jd011115, 2009.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kaercher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Cao, J., Tie, X., Xu, B., Zhao, Z., Zhu, C., Li, G., and Liu, S.: Measuring and modeling black carbon (BC) contamination in the SE Tibetan Plateau, J. Atmos. Chem., 67, 45–60, https://doi.org/10.1007/s10874-011-9202-5, 2010.
Chen, D., Liu, Z., Schwartz, C. S., Lin, H. C., Cetola, J. D., Gu, Y., and Xue, L.: The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States, Geosci. Model Dev., 7, 2709–2715, https://doi.org/10.5194/gmd-7-2709-2014, 2014.
Chen, D., Liu, Z., Davis, C., and Gu, Y.: Dust radiative effects on atmospheric thermodynamics and tropical cyclogenesis over the Atlantic Ocean using WRF-Chem coupled with an AOD data assimilation system, Atmos. Chem. Phys., 17, 7917–7939, https://doi.org/10.5194/acp-17-7917-2017, 2017.
Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:Caalsh>2.0.Co;2, 2001.
Cheng, Y., Dai, T., Goto, D., Schutgens, N. A. J., Shi, G., and Nakajima, T.: Investigating the assimilation of CALIPSO global aerosol vertical observations using a four-dimensional ensemble Kalman filter, Atmos. Chem. Phys., 19, 13445–13467, https://doi.org/10.5194/acp-19-13445-2019, 2019.
Cheng, Y., Dai, T., Goto, D., Murakami, H., Yoshida, M., Shi, G., and Nakajima, T.: Enhanced Simulation of an Asian Dust Storm by Assimilating GCOM-C Observations, Remote Sens., 13, 3020, https://doi.org/10.3390/rs13153020, 2021.
Christopher, S. A., Wang, J., Ji, Q., and Tsay, S. C.: Estimation of diurnal shortwave dust aerosol radiative forcing during PRIDE, J. Geophys. Res.-Atmos., 108, 8596, https://doi.org/10.1029/2002jd002787, 2003.
Collins, W. D., Rasch, P. J., Eaton, B. E., Khattatov, B. V., Lamarque, J. F., and Zender, C. S.: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX, J. Geophys. Res.-Atmos., 106, 7313–7336, https://doi.org/10.1029/2000jd900507, 2001.
Crippa, M., Guizzardi, D., Butler, T., Keating, T., Wu, R., Kaminski, J., Kuenen, J., Kurokawa, J., Chatani, S., Morikawa, T., Pouliot, G., Racine, J., Moran, M. D., Klimont, Z., Manseau, P. M., Mashayekhi, R., Henderson, B. H., Smith, S. J., Suchyta, H., Muntean, M., Solazzo, E., Banja, M., Schaaf, E., Pagani, F., Woo, J.-H., Kim, J., Monforti-Ferrario, F., Pisoni, E., Zhang, J., Niemi, D., Sassi, M., Ansari, T., and Foley, K.: The HTAP_v3 emission mosaic: merging regional and globalmonthly emissions (2000–2018) to support air quality modelling and policies, Earth Syst. Sci. Data, 15, 2667–2694, https://doi.org/10.5194/essd-15-2667-2023, 2023.
Dai, T., Goto, D., Schutgens, N. A. J., Dong, X., Shia, G., and Nakajima, T.: Simulated aerosol key optical properties over global scale using an aerosol transport model coupled with a new type of dynamic core, Atmos. Environ., 82, 71–82, https://doi.org/10.1016/j.atmosenv.2013.10.018, 2014.
Dai, T., Cheng, Y., Suzuki, K., Goto, D., Kikuchi, M., Schutgens, N. A. J., Yoshida, M., Zhang, P., Husi, L., Shi, G., and Nakajima, T.: Hourly Aerosol Assimilation of Himawari-8 AOT Using the Four-Dimensional Local Ensemble Transform Kalman Filter, J. Adv. Model. Earth Syst., 11, 680–711, https://doi.org/10.1029/2018ms001475, 2019.
Dai, T., Cheng, Y., Goto, D., Li, Y., Tang, X., Shi, G., and Nakajima, T.: Revealing the sulfur dioxide emission reductions in China by assimilating surface observations in WRF-Chem, Atmos. Chem. Phys., 21, 4357–4379, https://doi.org/10.5194/acp-21-4357-2021, 2021.
Di Tomaso, E., Schutgens, N. A. J., Jorba, O., and Garcia-Pando, C. P.: Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0, Geosci. Model Dev., 10, 1107–1129, https://doi.org/10.5194/gmd-10-1107-2017, 2017.
Emmons, L. K., Schwantes, R. H., Orlando, J. J., Tyndall, G., Kinnison, D., Lamarque, J.-F., Marsh, D., Mills, M. J., Tilmes, S., Bardeen, C., Buchholz, R. R., Conley, A., Gettelman, A., Garcia, R., Simpson, I., Blake, D. R., Meinardi, S., and Petron, G.: The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2), J. Adv. Model. Earth Syst., 12, e2019MS001882, https://doi.org/10.1029/2019ms001882, 2020.
Fast, J. D., Gustafson, W. I., Jr., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model, J. Geophys. Res.-Atmos., 111, D21305, https://doi.org/10.1029/2005jd006721, 2006.
Fukuda, S., Nakajima, T., Takenaka, H., Higurashi, A., Kikuchi, N., Nakajima, T. Y., and Ishida, H.: New approaches to removing cloud shadows and evaluating the 380 nm surface reflectance for improved aerosol optical thickness retrievals from the GOSAT/TANSO-Cloud and Aerosol Imager, J. Geophys. Res.-Atmos., 118, 13520–13531, https://doi.org/10.1002/2013jd020090, 2013.
Gao, C., Xiu, A., Zhang, X., Tong, Q., Zhao, H., Zhang, S., Yang, G., and Zhang, M.: Two-way coupled meteorology and air quality models in Asia: a systematic review and meta-analysis of impacts of aerosol feedbacks on meteorology and air quality, Atmos. Chem. Phys., 22, 5265–5329, https://doi.org/10.5194/acp-22-5265-2022, 2022.
Generoso, S., Breon, F. M., Chevallier, F., Balkanski, Y., Schulz, M., and Bey, I.: Assimilation of POLDER aerosol optical thickness into the LMDz-INCA model: Implications for the Arctic aerosol burden, J. Geophys. Res.-Atmos., 112, D02311, https://doi.org/10.1029/2005jd006954, 2007.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S. J.: Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res.-Atmos., 106, 20255–20273, https://doi.org/10.1029/2000jd000053, 2001.
Grell, G. A. and Devenyi, D.: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophys. Res. Lett., 29, 38-1–38-4, https://doi.org/10.1029/2002gl015311, 2002.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 39, 6957–6975, https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Gui, S., Liang, S., Wang, K., Li, L., and Zhang, X.: Assessment of Three Satellite-Estimated Land Surface Downwelling Shortwave Irradiance Data Sets, IEEE Geosci. Remote Sens. Lett., 7, 776–780, https://doi.org/10.1109/lgrs.2010.2048196, 2010.
Hansen, J. and Nazarenko, L.: Soot climate forcing via snow and ice albedos, P. Natla. Acad. Sci. USA, 101, 423–428, https://doi.org/10.1073/pnas.2237157100, 2004.
Higurashi, A. and Nakajima, T.: Development of a two-channel aerosol retrieval algorithm on a global scale using NOAA AVHRR, J. Atmos. Sci., 56, 924–941, https://doi.org/10.1175/1520-0469(1999)056<0924:Doatca>2.0.Co;2, 1999.
Higurashi, A. and Nakajima, T.: Detection of aerosol types over the East China Sea near Japan from four-channel satellite data, Geophys. Res. Lett., 29, 17-1–17-4, https://doi.org/10.1029/2002gl015357, 2002.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev., 134, 2318–2341, https://doi.org/10.1175/mwr3199.1, 2006.
Huang, J., Minnis, P., Yi, Y., Tang, Q., Wang, X., Hu, Y., Liu, Z., Ayers, K., Trepte, C., and Winker, D.: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau, Geophys. Res. Lett., 34, L18805, https://doi.org/10.1029/2007gl029938, 2007.
Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter, Physica D, 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008, 2007.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008jd009944, 2008.
Jacobson, M. Z.: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695–697, https://doi.org/10.1038/35055518, 2001.
JAXA: AHI, Himawari-8 data, http://www.eorc.jaxa.jp/ptree/index.html, last access: 5 January 2024.
Kato, S., Loeb, N. G., Rose, F. G., Doelling, D. R., Rutan, D. A., Caldwell, T. E., Yu, L., and Weller, R. A.: Surface Irradiances Consistent with CERES-Derived Top-of-Atmosphere Shortwave and Longwave Irradiances, J. Climate, 26, 2719–2740, https://doi.org/10.1175/jcli-d-12-00436.1, 2013.
Kikuchi, M., Murakami, H., Suzuki, K., Nagao, T. M., and Higurashi, A.: Improved Hourly Estimates of Aerosol Optical Thickness Using Spatiotemporal Variability Derived From Himawari-8 Geostationary Satellite, IEEE T. Geosci. Remote, 56, 3442–3455, https://doi.org/10.1109/tgrs.2018.2800060, 2018.
King, M. D.: Remote-sensing of cloud, aerosol and water-vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS), in: 115th Course of the International School of Physics Enrico Fermi: The Use of Eos (Earth Observing System) for Studies of Atmospheric Physics, 26 June–6 July 1992, Varenna, Italy, 253–285, WOS:A1992BY55L00014, 1992.
Koren, I., Kaufman, Y. J., Remer, L. A., and Martins, J. V.: Measurement of the effect of Amazon smoke on inhibition of cloud formation, Science, 303, 1342–1345, https://doi.org/10.1126/science.1089424, 2004.
Lee, K., Yu, J., Lee, S., Park, M., Hong, H., Park, S. Y., Choi, M., Kim, J., Kim, Y., Woo, J.-H., Kim, S.-W., and Song, C. H.: Development of Korean Air Quality Prediction System version 1 (KAQPS v1) with focuses on practical issues, Geosci. Model Dev., 13, 1055–1073, https://doi.org/10.5194/gmd-13-1055-2020, 2020.
Letu, H., Nakajima, T. Y., Wang, T., Shang, H., Ma, R., Yang, K., Baran, A. J., Riedi, J., Ishimoto, H., Yoshida, M., Shi, C., Khatri, P., Du, Y., Chen, L., and Shi, J.: A new benchmark for surface radiation products over the East Asia–Pacific region retrieved from the Himawari-8/AHI next-generation geostationary satellite, B. Am. Meteorol. Soc., 103, E873–E888, 2022.
Li, F., Wan, X., Wang, H., Orsolini, Y. J., Cong, Z., Gao, Y., and Kang, S.: Arctic sea-ice loss intensifies aerosol transport to the Tibetan Plateau, Nat. Clim. Change, 10, 1037–1044, https://doi.org/10.1038/s41558-020-0881-2, 2020.
Li, M., Zhang, Q., Kurokawa, J.-i., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017.
Liu, Z., Liu, D., Huang, J., Vaughan, M., Uno, I., Sugimoto, N., Kittaka, C., Trepte, C., Wang, Z., Hostetler, C., and Winker, D.: Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations, Atmos. Chem. Phys., 8, 5045–5060, https://doi.org/10.5194/acp-8-5045-2008, 2008.
Liu, Z., Liu, Q., Lin, H.-C., Schwartz, C. S., Lee, Y.-H., and Wang, T.: Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia, J. Geophys. Res.-Atmos., 116, D23206, https://doi.org/10.1029/2011jd016159, 2011.
Lu, Z., Streets, D. G., Zhang, Q., and Wang, S.: A novel back-trajectory analysis of the origin of black carbon transported to the Himalayas and Tibetan Plateau during 1996–2010, Geophys. Res. Lett., 39, L01809, https://doi.org/10.1029/2011gl049903, 2012.
Ma, C., Wang, T., Mizzi, A. P., Anderson, J. L., Zhuang, B., Xie, M., and Wu, R.: Multiconstituent Data Assimilation With WRF-Chem/DART: Potential for Adjusting Anthropogenic Emissions and Improving Air Quality Forecasts Over Eastern China, J. Geophys. Res.-Atmos., 124, 7393–7412, https://doi.org/10.1029/2019jd030421, 2019.
Mansell, E. R., Ziegler, C. L., and Bruning, E. C.: Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics, J. Atmos. Sci., 67, 171–194, https://doi.org/10.1175/2009jas2965.1, 2010.
Marinoni, A., Cristofanelli, P., Laj, P., Duchi, R., Calzolari, F., Decesari, S., Sellegri, K., Vuillermoz, E., Verza, G. P., Villani, P., and Bonasoni, P.: Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas), Atmos. Chem. Phys., 10, 8551–8562, https://doi.org/10.5194/acp-10-8551-2010, 2010.
Martins, J. V., Tanre, D., Remer, L., Kaufman, Y., Mattoo, S., and Levy, R.: MODIS Cloud screening for remote sensing of aerosols over oceans using spatial variability, Geophys. Res. Lett., 29, MOD4-1–MOD4-4, https://doi.org/10.1029/2001gl013252, 2002.
Ming, J., Wang, P., Zhao, S., and Chen, P.: Disturbance of light-absorbing aerosols on the albedo in a winter snowpack of Central Tibet, J. Environ. Sci., 25, 1601–1607, https://doi.org/10.1016/s1001-0742(12)60220-4, 2013.
Miyoshi, T., Yamane, S., and Enomoto, T.: Localizing the Error Covariance by Physical Distances within a Local Ensemble Transform Kalman Filter (LETKF), SOLA, 3, 89–92, https://doi.org/10.2151/sola.2007-023, 2007.
NASA: MYD04_L2, https://modis-atmos.gsfc.nasa.gov/products/aerosol, last access: 5 January 2024a.
NASA: level 2.0 AOT dataset, https://aeronet.gsfc.nasa.gov, last access: 5 January 2024b.
NASA: CERES, SYN1deg-1Hour, https://ceres.larc.nasa.gov/data/data-product-dois/, last access: 5 January 2024c.
Park, R. S., Song, C. H., Han, K. M., Park, M. E., Lee, S. S., Kim, S. B., and Shimizu, A.: A study on the aerosol optical properties over East Asia using a combination of CMAQ-simulated aerosol optical properties and remote-sensing data via a data assimilation technique, Atmos. Chem. Phys., 11, 12275–12296, https://doi.org/10.5194/acp-11-12275-2011, 2011.
Peng, Z., Liu, Z., Chen, D., and Ban, J.: Improving PM2.5 forecast over China by the joint adjustment of initial conditions and source emissions with an ensemble Kalman filter, Atmos. Chem. Phys., 17, 4837–4855, https://doi.org/10.5194/acp-17-4837-2017, 2017.
Qiu, J.: Environmental Science Pollutants Capture the High Ground in the Himalayas, Science, 339, 1030–1031, https://doi.org/10.1126/science.339.6123.1030, 2013.
Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A. P., Althausen, D., Anderson, J., Andreae, M. O., Cantrell, W., Cass, G. R., Chung, C. E., Clarke, A. D., Coakley, J. A., Collins, W. D., Conant, W. C., Dulac, F., Heintzenberg, J., Heymsfield, A. J., Holben, B., Howell, S., Hudson, J., Jayaraman, A., Kiehl, J. T., Krishnamurti, T. N., Lubin, D., McFarquhar, G., Novakov, T., Ogren, J. A., Podgorny, I. A., Prather, K., Priestley, K., Prospero, J. M., Quinn, P. K., Rajeev, K., Rasch, P., Rupert, S., Sadourny, R., Satheesh, S. K., Shaw, G. E., Sheridan, P., and Valero, F. P. J.: Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze, J. Geophys. Res.-Atmos., 106, 28371–28398, https://doi.org/10.1029/2001jd900133, 2001.
Reale, O., Lau, W. K., Kim, K.-M., and Brin, E.: Atlantic Tropical Cyclogenetic Processes during SOP-3 NAMMA in the GEOS-5 Global Data Assimilation and Forecast System, J. Atmos. Sci., 66, 3563–3578, https://doi.org/10.1175/2009jas3123.1, 2009.
Reale, O., Lau, K. M., da Silva, A., and Matsui, T.: Impact of assimilated and interactive aerosol on tropical cyclogenesis, Geophys. Res. Lett., 41, 3282–3288, https://doi.org/10.1002/2014gl059918, 2014.
Rubin, J. I., Reid, J. S., Hansen, J. A., Anderson, J. L., Holben, B. N., Xian, P., Westphal, D. L., and Zhang, J.: Assimilation of AERONET and MODIS AOT observations using variational and ensemble data assimilation methods and its impact on aerosol forecasting skill, J. Geophys. Res.-Atmos., 122, 4967–4992, https://doi.org/10.1002/2016jd026067, 2017.
Salomonson, V. V., Barnes, W. L., Maymon, P. W., Montgomery, H. E., and Ostrow, H.: MODIS – Advanced Facility Instrument For Studies Of The Earth As A System, IEEE T. Geosci. Remote, 27, 145–153, https://doi.org/10.1109/36.20292, 1989.
Sarangi, C., Qian, Y., Rittger, K., Ruby Leung, L., Chand, D., Bormann, K. J., and Painter, T. H.: Dust dominates high-altitude snow darkening and melt over high-mountain Asia, Nat. Clim. Change, 10, 1045–1051, https://doi.org/10.1038/s41558-020-00909-3, 2020.
Schutgens, N. A. J., Miyoshi, T., Takemura, T., and Nakajima, T.: Sensitivity tests for an ensemble Kalman filter for aerosol assimilation, Atmos. Chem. Phys., 10, 6583–6600, https://doi.org/10.5194/acp-10-6583-2010, 2010.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.: A description of the advanced research WRF version 2, Tech. rep., Mesoscale and Microscale Meteorology Div., National Center For Atmospheric Research, Boulder, Co, USA, https://doi.org/10.5065/D68S4MVH, 2005.
Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S., L'Ecuyer, T., Stackhouse Jr., P. W., Lebsock, M., and Andrews, T.: An update on Earth's energy balance in light of the latest global observations, Nat. Geosci., 5, 691–696, https://doi.org/10.1038/ngeo1580, 2012.
Tang, X., Zhu, J., Wang, Z. F., and Gbaguidi, A.: Improvement of ozone forecast over Beijing based on ensemble Kalman filter with simultaneous adjustment of initial conditions and emissions, Atmos. Chem. Phys., 11, 12901–12916, https://doi.org/10.5194/acp-11-12901-2011, 2011.
Trenberth, K. E., Fasullo, J. T., and Balmaseda, M. A.: Earth's Energy Imbalance, J. Climate, 27, 3129–3144, https://doi.org/10.1175/jcli-d-13-00294.1, 2014.
Tsikerdekis, A., Schutgens, N. A. J., and Hasekamp, O. P.: Assimilating aerosol optical properties related to size and absorption from POLDER/PARASOL with an ensemble data assimilation system, Atmos. Chem. Phys., 21, 2637–2674, https://doi.org/10.5194/acp-21-2637-2021, 2021.
Wang, J., Nair, U. S., and Christopher, S. A.: GOES 8 aerosol optical thickness assimilation in a mesoscale model: Online integration of aerosol radiative effects, J. Geophys. Res.-Atmos., 109, D23203, https://doi.org/10.1029/2004jd004827, 2004.
Watson-Parris, D., Schutgens, N., Cook, N., Kipling, Z., Kershaw, P., Gryspeerdt, E., Lawrence, B., and Stier, P.: Community Intercomparison Suite (CIS) v1.4.0: a tool for intercomparing models and observations, Geosci. Model Dev., 9, 3093–3110, https://doi.org/10.5194/gmd-9-3093-2016, 2016.
Wilcox, E. M.: Direct and semi-direct radiative forcing of smoke aerosols over clouds, Atmos. Chem. Phys., 12, 139–149, https://doi.org/10.5194/acp-12-139-2012, 2012.
Xia, X., Wang, P., Wang, Y., Li, Z., Xin, J., Liu, J., and Chen, H.: Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan Desert, Geophys. Res. Lett., 35, L16804, https://doi.org/10.1029/2008gl034981, 2008.
Xia, X., Min, J., Shen, F., Wang, Y., and Yang, C.: Aerosol Data Assimilation Using Data from Fengyun-3A and MODIS: Application to a Dust Storm over East Asia in 2011, Adv. Atmos. Sci., 36, 1–14, https://doi.org/10.1007/s00376-018-8075-9, 2019.
Xia, X., Min, J., Shen, F., Wang, Y., Xu, D., Yang, C., and Zhang, P.: Aerosol data assimilation using data from Fengyun-4A, a next-generation geostationary meteorological satellite, Atmos. Environ., 237, 117695, https://doi.org/10.1016/j.atmosenv.2020.117695, 2020.
Xu, B., Cao, J., Hansen, J., Yao, T., Joswia, D. R., Wang, N., Wu, G., Wang, M., Zhao, H., Yang, W., Liu, X., and He, J.: Black soot and the survival of Tibetan glaciers, P. Natl. Acad. Sci. USA, 106, 22114–22118, https://doi.org/10.1073/pnas.0910444106, 2009.
Xu, C., Ma, Y. M., Panday, A., Cong, Z. Y., Yang, K., Zhu, Z. K., Wang, J. M., Amatya, P. M., and Zhao, L.: Similarities and differences of aerosol optical properties between southern and northern sides of the Himalayas, Atmos. Chem. Phys., 14, 3133–3149, https://doi.org/10.5194/acp-14-3133-2014, 2014.
Yang, J., Kang, S., Ji, Z., and Chen, D.: Modeling the Origin of Anthropogenic Black Carbon and Its Climatic Effect Over the Tibetan Plateau and Surrounding Regions, J. Geophys. Res.-Atmos., 123, 671–692, https://doi.org/10.1002/2017jd027282, 2018.
Yang, K., He, J., Tang, W., Qin, J., and Cheng, C. C. K.: On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau, Agr. Forest Meteorol., 150, 38–46, https://doi.org/10.1016/j.agrformet.2009.08.004, 2010.
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D. B., and Joswiak, D.: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings, Nat. Clim. Change, 2, 663–667, https://doi.org/10.1038/nclimate1580, 2012.
Yao, T., Wu, F., Ding, L., Sun, J., Zhu, L., Piao, S., Deng, T., Ni, X., Zheng, H., and Ouyang, H.: Multispherical interactions and their effects on the Tibetan Plateau's earth system: a review of the recent researches, Nat. Sci. Rev., 2, 468–488, https://doi.org/10.1093/nsr/nwv070, 2015.
Yin, X., Dai, T., Schutgens, N. A. J., Goto, D., Nakajima, T., and Shi, G.: Effects of data assimilation on the global aerosol key optical properties simulations, Atmos. Res., 178, 175–186, https://doi.org/10.1016/j.atmosres.2016.03.016, 2016.
Yoshida, M., Kikuchi, M., Nagao, T. M., Murakami, H., Nomaki, T., and Higurashi, A.: Common Retrieval of Aerosol Properties for Imaging Satellite Sensors, J. Meteorol. Soc. Jpn., 96B, 193–209, https://doi.org/10.2151/jmsj.2018-039, 2018.
You, C., Xu, C., Xu, B., Zhao, H., and Song, L.: Levoglucosan evidence for biomass burning records over Tibetan glaciers, Environ. Pollut., 216, 173–181, https://doi.org/10.1016/j.envpol.2016.05.074, 2016.
Yu, H. B., Dickinson, R. E., Chin, M., Kaufman, Y. J., Holben, B. N., Geogdzhayev, I. V., and Mishchenko, M. I.: Annual cycle of global distributions of aerosol optical depth from integration of MODIS retrievals and GOCART model simulations, J. Geophys. Res.-Atmos., 108, 4128, https://doi.org/10.1029/2002jd002717, 2003.
Yumimoto, K. and Takemura, T.: Direct radiative effect of aerosols estimated using ensemble-based data assimilation in a global aerosol climate model, Geophy. Res. Lett., 38, L21802, https://doi.org/10.1029/2011gl049258, 2011.
Yumimoto, K., Nagao, T. M., Kikuchi, M., Sekiyama, T. T., Murakami, H., Tanaka, T. Y., Ogi, A., Irie, H., Khatri, P., Okumura, H., Arai, K., Morino, I., Uchino, O., and Maki, T.: Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite, Geophys. Res. Lett., 43, 5886–5894, https://doi.org/10.1002/2016gl069298, 2016.
Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for large-scale applications, J. Geophys. Res.-Atmos., 104, 30387–30415, https://doi.org/10.1029/1999jd900876, 1999.
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113, D13204, https://doi.org/10.1029/2007jd008782, 2008.
Zhang, J. and Reid, J. S.: MODIS aerosol product analysis for data assimilation: Assessment of over-ocean level 2 aerosol optical thickness retrievals, J. Geophys. Res.-Atmos., 111, D22207, https://doi.org/10.1029/2005jd006898, 2006.
Zhang, J., Reid, J. S., Westphal, D. L., Baker, N. L., and Hyer, E. J.: A system for operational aerosol optical depth data assimilation over global oceans, J. Geophys. Res.-Atmos., 113, D10208, https://doi.org/10.1029/2007jd009065, 2008.
Zhang, J., Campbell, J. R., Reid, J. S., Westphal, D. L., Baker, N. L., Campbell, W. F., and Hyer, E. J.: Evaluating the impact of assimilating CALIOP-derived aerosol extinction profiles on a global mass transport model, Geophys. Res. Lett., 38, L14801, https://doi.org/10.1029/2011gl047737, 2011.
Zhang, J., Xia, X., Shi, H., Zong, X., and Li, J.: Radiation and aerosol measurements over the Tibetan Plateau during the Asian summer monsoon period, Atmos. Pollut. Res., 11, 1543–1551, https://doi.org/10.1016/j.apr.2020.06.017, 2020.
Zhang, M., Zhao, C., Cong, Z., Du, Q., Xu, M., Chen, Y., Chen, M., Li, R., Fu, Y., Zhong, L., Kang, S., Zhao, D., and Yang, Y.: Impact of topography on black carbon transport to the southern Tibetan Plateau during the pre-monsoon season and its climatic implication, Atmos. Chem. Phys., 20, 5923–5943, https://doi.org/10.5194/acp-20-5923-2020, 2020.
Zhang, X., Liang, S., Wild, M., and Jiang, B.: Analysis of surface incident shortwave radiation from four satellite products, Remote Sens. Environ., 165, 186–202, https://doi.org/10.1016/j.rse.2015.05.015, 2015.
Zhao, M., Dai, T., Wang, H., Bao, Q., Liu, Y., and Shi, G.: Modelling study on the source contribution to aerosol over the Tibetan Plateau, Int. J. Climatol., 41, 3247–3265, https://doi.org/10.1002/joc.7017, 2021.
Zheng, J., Hu, M., Du, Z. F., Shang, D. J., Gong, Z. H., Qin, Y. H., Fang, J. Y., Gu, F. T., Li, M. R., Peng, J. F., Li, J., Zhang, Y. Q., Huang, X. F., He, L. Y., Wu, Y. S., and Guo, S.: Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China, Atmos. Chem. Phys., 17, 6853–6864, https://doi.org/10.5194/acp-17-6853-2017, 2017.
Short summary
During a springtime pollution input from South Asia to the Tibetan Plateau, we combined atmospheric chemistry modeling and data assimilation methods to assimilate and forecast aerosols from South Asia and the Tibetan Plateau. Assimilation of observations over a whole time window leads to a more reasonable distribution of daily variations in the aerosol forecast field. We also find that aerosol assimilation can improve the surface solar energy forecast in the Tibetan Plateau region.
During a springtime pollution input from South Asia to the Tibetan Plateau, we combined...
Altmetrics
Final-revised paper
Preprint