Articles | Volume 24, issue 22
https://doi.org/10.5194/acp-24-12861-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-12861-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Review of source analyses of ambient volatile organic compounds considering reactive losses: methods of reducing loss effects, impacts of losses, and sources
Baoshuang Liu
CORRESPONDING AUTHOR
State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
Yao Gu
State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
Yutong Wu
State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
Shaojie Song
State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
Philip K. Hopke
Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA
Related authors
Zhongwei Luo, Yan Han, Kun Hua, Yufen Zhang, Jianhui Wu, Xiaohui Bi, Qili Dai, Baoshuang Liu, Yang Chen, Xin Long, and Yinchang Feng
Geosci. Model Dev., 16, 6757–6771, https://doi.org/10.5194/gmd-16-6757-2023, https://doi.org/10.5194/gmd-16-6757-2023, 2023
Short summary
Short summary
This study explores how the variation in the source profiles adopted in chemical transport models (CTMs) impacts the simulated results of chemical components in PM2.5 based on sensitivity analysis. The impact on PM2.5 components cannot be ignored, and its influence can be transmitted and linked between components. The representativeness and timeliness of the source profile should be paid adequate attention in air quality simulation.
This article is included in the Encyclopedia of Geosciences
Baoshuang Liu, Yanyang Wang, He Meng, Qili Dai, Liuli Diao, Jianhui Wu, Laiyuan Shi, Jing Wang, Yufen Zhang, and Yinchang Feng
Atmos. Chem. Phys., 22, 8597–8615, https://doi.org/10.5194/acp-22-8597-2022, https://doi.org/10.5194/acp-22-8597-2022, 2022
Short summary
Short summary
Understanding effectiveness of air pollution regulatory measures is critical for control policy. Machine learning and dispersion-normalized approaches were applied to decouple meteorologically deduced variations in Qingdao, China. Most pollutant concentrations decreased substantially after the Clean Air Action Plan. The largest emission reduction was from coal combustion and steel-related smelting. Qingdao is at risk of increased emissions from increased vehicular population and ozone pollution.
This article is included in the Encyclopedia of Geosciences
Jinwen Zhang, Yongjian Liang, Chenglei Pei, Bo Huang, Yingyan Huang, Xiufeng Lian, Shaojie Song, Chunlei Cheng, Cheng Wu, Zhen Zhou, Junjie Li, and Mei Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-3215, https://doi.org/10.5194/egusphere-2025-3215, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Inadequate characterization of carbon dioxide (CO2) dynamics limits understanding of coastal megacity carbon cycles. Using a novel framework integrating high-precision observations, this study reveals nonlinear sea–land breeze effects, quantifies urban vegetation’s role in CO2 budgets, and tracks policy-driven combustion efficiency via declining ΔCO/ΔCO2 ratios, offering new insights into coastal CO2 cycling.
This article is included in the Encyclopedia of Geosciences
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, P. Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gómez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal L. Weagle, and Xi Zhao
Atmos. Chem. Phys., 25, 4665–4702, https://doi.org/10.5194/acp-25-4665-2025, https://doi.org/10.5194/acp-25-4665-2025, 2025
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as being variable in size and composition. Here, we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the data sets to model output.
This article is included in the Encyclopedia of Geosciences
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco, Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Héllen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair C. Lewis, James R. Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
Atmos. Chem. Phys., 25, 625–638, https://doi.org/10.5194/acp-25-625-2025, https://doi.org/10.5194/acp-25-625-2025, 2025
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across seven European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. The risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones, highlighting the need for targeted air quality management to protect public health and improve urban air quality.
This article is included in the Encyclopedia of Geosciences
Sami D. Harni, Minna Aurela, Sanna Saarikoski, Jarkko V. Niemi, Harri Portin, Hanna Manninen, Ville Leinonen, Pasi Aalto, Phil K. Hopke, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 24, 12143–12160, https://doi.org/10.5194/acp-24-12143-2024, https://doi.org/10.5194/acp-24-12143-2024, 2024
Short summary
Short summary
In this study, particle number size distribution data were used in a novel way in positive matrix factorization analysis to find aerosol source profiles in the area. Measurements were made in Helsinki at a street canyon and urban background sites between February 2015 and June 2019. Five different aerosol sources were identified. These sources underline the significance of traffic-related emissions in urban environments despite recent improvements in emission reduction technologies.
This article is included in the Encyclopedia of Geosciences
Haoqi Wang, Xiao Tian, Wanting Zhao, Jiacheng Li, Haoyu Yu, Yinchang Feng, and Shaojie Song
Atmos. Chem. Phys., 24, 6583–6592, https://doi.org/10.5194/acp-24-6583-2024, https://doi.org/10.5194/acp-24-6583-2024, 2024
Short summary
Short summary
pH is a key property of ambient aerosols, which affect many atmospheric processes. As aerosol pH is a non-conservative parameter, diverse averaging metrics and temporal resolutions may influence the pH values calculated by thermodynamic models. This technical note seeks to quantitatively evaluate the average pH using varied metrics and resolutions. The ultimate goal is to establish standardized reporting practices in future research endeavors.
This article is included in the Encyclopedia of Geosciences
Máté Vörösmarty, Philip K. Hopke, and Imre Salma
Atmos. Chem. Phys., 24, 5695–5712, https://doi.org/10.5194/acp-24-5695-2024, https://doi.org/10.5194/acp-24-5695-2024, 2024
Short summary
Short summary
The World Health Organization identified ultrafine particles, which make up most of the particle number concentrations, as a potential risk factor for humans. The sources of particle numbers are very different from those of the particulate matter mass. We performed source apportionment of size-segregated particle number concentrations over the diameter range of 6–1000 nm in Budapest for 11 full years. Six source types were identified, characterized and quantified.
This article is included in the Encyclopedia of Geosciences
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
This article is included in the Encyclopedia of Geosciences
Zhongwei Luo, Yan Han, Kun Hua, Yufen Zhang, Jianhui Wu, Xiaohui Bi, Qili Dai, Baoshuang Liu, Yang Chen, Xin Long, and Yinchang Feng
Geosci. Model Dev., 16, 6757–6771, https://doi.org/10.5194/gmd-16-6757-2023, https://doi.org/10.5194/gmd-16-6757-2023, 2023
Short summary
Short summary
This study explores how the variation in the source profiles adopted in chemical transport models (CTMs) impacts the simulated results of chemical components in PM2.5 based on sensitivity analysis. The impact on PM2.5 components cannot be ignored, and its influence can be transmitted and linked between components. The representativeness and timeliness of the source profile should be paid adequate attention in air quality simulation.
This article is included in the Encyclopedia of Geosciences
Baoshuang Liu, Yanyang Wang, He Meng, Qili Dai, Liuli Diao, Jianhui Wu, Laiyuan Shi, Jing Wang, Yufen Zhang, and Yinchang Feng
Atmos. Chem. Phys., 22, 8597–8615, https://doi.org/10.5194/acp-22-8597-2022, https://doi.org/10.5194/acp-22-8597-2022, 2022
Short summary
Short summary
Understanding effectiveness of air pollution regulatory measures is critical for control policy. Machine learning and dispersion-normalized approaches were applied to decouple meteorologically deduced variations in Qingdao, China. Most pollutant concentrations decreased substantially after the Clean Air Action Plan. The largest emission reduction was from coal combustion and steel-related smelting. Qingdao is at risk of increased emissions from increased vehicular population and ozone pollution.
This article is included in the Encyclopedia of Geosciences
Julia Schmale, Sangeeta Sharma, Stefano Decesari, Jakob Pernov, Andreas Massling, Hans-Christen Hansson, Knut von Salzen, Henrik Skov, Elisabeth Andrews, Patricia K. Quinn, Lucia M. Upchurch, Konstantinos Eleftheriadis, Rita Traversi, Stefania Gilardoni, Mauro Mazzola, James Laing, and Philip Hopke
Atmos. Chem. Phys., 22, 3067–3096, https://doi.org/10.5194/acp-22-3067-2022, https://doi.org/10.5194/acp-22-3067-2022, 2022
Short summary
Short summary
Long-term data sets of Arctic aerosol properties from 10 stations across the Arctic provide evidence that anthropogenic influence on the Arctic atmospheric chemical composition has declined in winter, a season which is typically dominated by mid-latitude emissions. The number of significant trends in summer is smaller than in winter, and overall the pattern is ambiguous with some significant positive and negative trends. This reflects the mixed influence of natural and anthropogenic emissions.
This article is included in the Encyclopedia of Geosciences
Xinyao Feng, Yingze Tian, Qianqian Xue, Danlin Song, Fengxia Huang, and Yinchang Feng
Atmos. Chem. Phys., 21, 16219–16235, https://doi.org/10.5194/acp-21-16219-2021, https://doi.org/10.5194/acp-21-16219-2021, 2021
Short summary
Short summary
This study focused on PM2.5 compositions and sources and explored their spatiotemporal and policy-related variations based on observation at 19 sites during wintertime of 2015–2019 in a fast-developing megacity. We found that PM2.5 compositions for the outermost zone in 2019 were similar to those for the core zone 2 or 3 years ago. Percentage contributions of coal and biomass combustion dramatically declined in the core zone, while the traffic source showed an increasing trend.
This article is included in the Encyclopedia of Geosciences
Athanasios Nenes, Spyros N. Pandis, Maria Kanakidou, Armistead G. Russell, Shaojie Song, Petros Vasilakos, and Rodney J. Weber
Atmos. Chem. Phys., 21, 6023–6033, https://doi.org/10.5194/acp-21-6023-2021, https://doi.org/10.5194/acp-21-6023-2021, 2021
Short summary
Short summary
Ecosystems and air quality are affected by the dry deposition of inorganic reactive nitrogen (Nr, the sum of ammonium and nitrate). Its large variability is driven by the large difference in deposition velocity of N when in the gas or particle phase. Here we show that aerosol liquid water and acidity, by affecting gas–particle partitioning, modulate the dry deposition velocity of NH3, HNO3, and Nr worldwide. These effects explain the rapid accumulation of nitrate aerosol during haze events.
This article is included in the Encyclopedia of Geosciences
Peter Sherman, Meng Gao, Shaojie Song, Alex T. Archibald, Nathan Luke Abraham, Jean-François Lamarque, Drew Shindell, Gregory Faluvegi, and Michael B. McElroy
Atmos. Chem. Phys., 21, 3593–3605, https://doi.org/10.5194/acp-21-3593-2021, https://doi.org/10.5194/acp-21-3593-2021, 2021
Short summary
Short summary
The aims here are to assess the role of aerosols in India's monsoon precipitation and to determine the relative contributions from Chinese and Indian emissions using CMIP6 models. We find that increased sulfur emissions reduce precipitation, which is primarily dynamically driven due to spatial shifts in convection over the region. A significant increase in precipitation (up to ~ 20 %) is found only when both Indian and Chinese sulfate emissions are regulated.
This article is included in the Encyclopedia of Geosciences
Shaojie Song, Tao Ma, Yuzhong Zhang, Lu Shen, Pengfei Liu, Ke Li, Shixian Zhai, Haotian Zheng, Meng Gao, Jonathan M. Moch, Fengkui Duan, Kebin He, and Michael B. McElroy
Atmos. Chem. Phys., 21, 457–481, https://doi.org/10.5194/acp-21-457-2021, https://doi.org/10.5194/acp-21-457-2021, 2021
Short summary
Short summary
We simulate the atmospheric chemical processes of an important sulfur-containing organic aerosol species, which is produced by the reaction between sulfur dioxide and formaldehyde. We can predict its distribution on a global scale. We find it is particularly rich in East Asia. This aerosol species is more abundant in the colder season partly because of weaker sunlight.
This article is included in the Encyclopedia of Geosciences
Jingsha Xu, Shaojie Song, Roy M. Harrison, Congbo Song, Lianfang Wei, Qiang Zhang, Yele Sun, Lu Lei, Chao Zhang, Xiaohong Yao, Dihui Chen, Weijun Li, Miaomiao Wu, Hezhong Tian, Lining Luo, Shengrui Tong, Weiran Li, Junling Wang, Guoliang Shi, Yanqi Huangfu, Yingze Tian, Baozhu Ge, Shaoli Su, Chao Peng, Yang Chen, Fumo Yang, Aleksandra Mihajlidi-Zelić, Dragana Đorđević, Stefan J. Swift, Imogen Andrews, Jacqueline F. Hamilton, Ye Sun, Agung Kramawijaya, Jinxiu Han, Supattarachai Saksakulkrai, Clarissa Baldo, Siqi Hou, Feixue Zheng, Kaspar R. Daellenbach, Chao Yan, Yongchun Liu, Markku Kulmala, Pingqing Fu, and Zongbo Shi
Atmos. Meas. Tech., 13, 6325–6341, https://doi.org/10.5194/amt-13-6325-2020, https://doi.org/10.5194/amt-13-6325-2020, 2020
Short summary
Short summary
An interlaboratory comparison was conducted for the first time to examine differences in water-soluble inorganic ions (WSIIs) measured by 10 labs using ion chromatography (IC) and by two online aerosol chemical speciation monitor (ACSM) methods. Major ions including SO42−, NO3− and NH4+ agreed well in 10 IC labs and correlated well with ACSM data. WSII interlab variability strongly affected aerosol acidity results based on ion balance, but aerosol pH computed by ISORROPIA II was very similar.
This article is included in the Encyclopedia of Geosciences
Cited articles
Aronian, P. F., Scheff, P. A., and Wadden, R. A.: Wintertime source-reconciliation of ambient organics, Atmos. Environ., 23, 911–920, https://doi.org/10.1016/0004-6981(89)90295-3, 1989.
Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with organic compounds, J. Phys. Chem. Ref. Data, 20, 459–507, https://doi.org/10.1063/1.555887, 1991.
Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1002/chin.200410285, 2003.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Atkinson, R.: Gas-phase tropospheric chemistry of organic compounds: a review, Atmos. Environ., 41, 200–240, https://doi.org/10.1016/j.atmosenv.2007.10.068, 2007.
Bertman, S. B., Roberts, J. M., Parrish, D. D., Buhr, M. P., Goldan, P. D., Kuster, W. C., Fehsenfeld, F. C., Montzka, S. A., and Westberg, H.: Evolution of alkyl nitrates with air mass age, J. Geophys. Res., 100, 22805–22813, https://doi.org/10.1029/95JD02030, 1995.
Bey, I., Aumont, B., and Toupance, G.: A modeling study of the nighttime radical chemistry in the lower continental troposphere: 2. Origin and evolution of HOX, J. Geophys. Res., 106, 9991–10001, https://doi.org/10.1029/2000jd900348, 2001.
Borlaza-Lacoste, L., Bari, M. A., Lu, C. H., and Hopke, P. K.: Long-term contributions of VOC sources and their link to ozone pollution in Bronx, New York City, Environ. Int., 191, 108993, https://doi.org/10.1016/j.envint.2024.108993, 2024.
Buzcu-Guven, B. and Fraser, M. P.: Comparison of VOC emissions inventory data with source apportionment results for Houston, TX, Atmos. Environ., 42, 5032–5043, https://doi.org/10.1016/j.atmosenv.2008.02.025, 2008.
Buzcu, B. and Fraser, M. P.: Source identification and apportionment of volatile organic compounds in Houston, TX, Atmos. Environ., 40, 2385–2400, https://doi.org/10.1016/j.atmosenv.2005.12.020, 2006.
Carrillo-Torres, E. R., Hernández-Paniagua, I. Y., and Mendoza, A.: Use of combined observational- and model-derived photochemical indicators to assess the O3-NOx-VOC system sensitivity in urban areas, Atmosphere, 8, 22, https://doi.org/10.3390/atmos8020022, 2017.
Carter, W. P. L. and Atkinson, R.: Development and evaluation of a detailed mechanism for the atmospheric reactions of isoprene and NOx, Int. J. Chem. Kinet., 28, 497–530, https://doi.org/10.1002/(SICI)1097-4601(1996)28:7<497::AID-KIN4>3.0.CO;2-Q, 1996.
Carter, W. P. L.: Development of the SAPRC-07 chemical mechanism, Atmos. Environ., 44, 5324–5335, https://doi.org/10.1016/j.atmosenv.2010.01.026, 2010.
Che, H., Xia, X., Zhao, H., Dubovik, O., Holben, B. N., Goloub, P., Cuevas-Agulló, E., Estelles, V., Wang, Y., Zhu, J., Qi, B., Gong, W., Yang, H., Zhang, R., Yang, L., Chen, J., Wang, H., Zheng, Y., Gui, K., Zhang, X., and Zhang, X.: Spatial distribution of aerosol microphysical and optical properties and direct radiative effect from the China Aerosol Remote Sensing Network, Atmos. Chem. Phys., 19, 11843–11864, https://doi.org/10.5194/acp-19-11843-2019, 2019.
Chen, C.-H., Chuang, Y.-C., Hsieh, C.-C., and Lee, C.-S.: VOC characteristics and source apportionment at a PAMS site near an industrial complex in central Taiwan, Atmos. Pollut. Res., 10, 1060–1074, https://doi.org/10.1016/j.apr.2019.01.014, 2019.
Chen, S.-P., Liu, T.-H., Chen, T.-F., Yang, C.-F. O., Wang, J.-L., and Chang, J. S.: Diagnostic modeling of PAMS VOC observation, Environ. Sci. Technol., 44, 4635–4644, https://doi.org/10.1021/es903361r, 2010.
Chen, W. T., Shao, M., Lu, S. H., Wang, M., Zeng, L. M., Yuan, B., and Liu, Y.: Understanding primary and secondary sources of ambient carbonyl compounds in Beijing using the PMF model, Atmos. Chem. Phys., 14, 3047–3062, https://doi.org/10.5194/acp-14-3047-2014, 2014.
Chen, Z.-W., Ting, Y.-C., Huang, C.-H., and Ciou, Z.-J.: Sources-oriented contributions to ozone and secondary organic aerosol formation potential based on initial VOCs in an urban area of Eastern Asia, Sci. Total Environ., 892, 164392, https://doi.org/10.1016/j.scitotenv.2023.164392, 2023.
Cui, Y. Q., Liu, B. S., Yang, Y. F., Kang, S. C., Wang, F. Q., Xu, M., Wang, W., Feng, Y. C., and Hopke, P. K.: Primary and oxidative source analyses of consumed VOCs in the atmosphere, J. Hazard. Mater., 476, 134894, https://doi.org/10.1016/j.jhazmat.2024.134894, 2024.
Dai, Q. L., Liu, B. S., Bi, X. H., Wu, J. H., Liang, D. N., Zhang, Y. F., Feng, Y. C., and Hopke, P. K.: Dispersion normalized PMF provides insights into the significant changes in source contributions to PM2.5 after the COVID-19 outbreak, Environ. Sci. Technol., 54, 9917–9927, https://doi.org/10.1021/acs.est.0c02776, 2020.
de Gouw, J. A., Middlebrook, A. M., Warneke, C., Goldan, P. D., Kuster, W. C., Roberts, J. M., Fehsenfeld, F. C., Worsnop, D. R., Canagaratna, M. R., Pszenny, A. A. P., Keene, W. C., Marchewka, M., Bertman, S. B., and Bates, T. S.: Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002, J. Geophys. Res., 110, D16305, https://doi.org/10.1029/2004jd005623, 2005.
de Gouw, J. A., Gilman, J. B., Kim, S.-W., Lerner, B. M., Isaacman-VanWertz, G., McDonald, B. C., Warneke, C., Kuster, W. C., Lefer, B. L., Griffith, S. M., Dusanter, S., Stevens, P. S., and Stutz, J.: Chemistry of volatile organic compounds in the Los Angeles Basin: Nighttime removal of alkenes and determination of emission ratios, J. Geophys. Res., 122, 11843–11861, https://doi.org/10.1002/2017JD027459, 2017.
de Gouw, J. A., Gilman, J. B., Kim, S. W., Alvarez, S. L., Dusanter, S., Graus, M., Griffith, S. M., Isaacman-VanWertz, G., Kuster, W. C., Lefer, B. L., Lerner, B. M., McDonald, B. C., Rappenglück, B., Roberts, J. M., Stevens, P. S., Stutz, J., Thalman, R., Veres, P. R., Volkamer, R., Warneke, C., Washenfelder, R. A., and Young, C. J.: Chemistry of volatile organic compounds in the Los Angeles Basin: Formation of oxygenated compounds and determination of emission ratios, J. Geophys. Res.-Atmos., 123, 2298–2319, https://doi.org/10.1002/2017JD027976, 2018.
Fang, H., Luo, S. L., Huang, X. Q., Fu, X. W., Xiao, S. X., Zeng, J. Q., Wang, J., Zhang, Y. L., and Wang, X. M.: Ambient naphthalene and methylnaphthalenes observed at an urban site in the Pearl River Delta region: Sources and contributions to secondary organic aerosol, Atmos. Environ., 252, 118295, https://doi.org/10.1016/j.atmosenv.2021.118295, 2021.
Finlayson-Pitts, B. J. and Pitts, J. N.: Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles, Science, 276, 1045–1052, https://doi.org/10.1126/science.276.5315.1045, 1997.
Friedlander, S. K.: New Developments in Receptor Modeling Theory, in: Atmospheric Aerosol: Source/Air Quality Relationships, edited by: Macias, E. S. and Hopke, P. K., ACS Symposium Series No. 167, American Chemical Society: Washington, 19 pp., http://pubs.acs.org/doi/pdf/10.1021/bk-1981-0167.ch001 (last access: 12 November 2024), 1981.
Fu, T.-M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., and Henze, D. K.: Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols, J. Geophys. Res., 113, D15303, https://doi.org/10.1029/2007jd009505, 2008.
Gao, J., Zhang, J., Li, H., Li, L., Xu, L. H., Zhang, Y. J., Wang, Z. S., Wang, X. Z., Zhang, W. Q., Chen, Y. Z., Cheng, X., Zhang, H., Peng, L., Chai, F. H., and Wei, Y. J.: Comparative study of volatile organic compounds in ambient air using observed mixing ratios and initial mixing ratios taking chemical loss into account – A case study in a typical urban area in Beijing, Sci. Total Environ., 628–629, 791–804, https://doi.org/10.1016/j.scitotenv.2018.01.175, 2018.
Gong, D., Wang, H., Zhang, S., Wang, Y., Liu, S. C., Guo, H., Shao, M., He, C., Chen, D., He, L., Zhou, L., Morawska, L., Zhang, Y., and Wang, B.: Low-level summertime isoprene observed at a forested mountaintop site in southern China: implications for strong regional atmospheric oxidative capacity, Atmos. Chem. Phys., 18, 14417–14432, https://doi.org/10.5194/acp-18-14417-2018, 2018.
Gu, Y., Liu, B. S., Li, Y. F., Zhang, Y. F., Bi, X. H., Wu, J. H., Song, C. B., Dai, Q. L., Han, Y., Ren, G., and Feng, Y. C.: Multi-scale volatile organic compound (VOC) source apportionment in Tianjin, China, using a receptor model coupled with 1-hr resolution data, Environ. Pollut., 265, 115023, https://doi.org/10.1016/j.envpol.2020.115023, 2020.
Gu, Y., Liu, B. S., Dai, Q. L., Zhang, Y. F., Zhou, M., Feng, Y. C., and Hopke, P. K.: Multiply improved positive matrix factorization for source apportionment of volatile organic compounds during the COVID-19 shutdown in Tianjin, China, Environ. Int., 158, 106979, https://doi.org/10.1016/j.envint.2021.106979, 2022.
Gu, Y., Liu, B. S., Meng, H., Song, S. J., Dai, Q. L., Shi, L. Y., Feng, Y. C., and Hopke, P. K.: Source apportionment of consumed volatile organic compounds in the atmosphere, J. Hazard Mater., 459, 132138, https://doi.org/10.1016/j.jhazmat.2023.132138, 2023.
Guan, Y. N., Wang, L., Wang, S. J., Zhang, Y. H., Xiao, J. Y., Wang, X. L., Duan, E. H., and Hou, L. A.: Temporal variations and source apportionment of volatile organic compounds at an urban site in Shijiazhuang, China, J. Environ. Sci., 97, 25–34, https://doi.org/10.1016/j.jes.2020.04.022, 2020.
Han, Y., Huang, X. F., Wang, C., Zhu, B., and He, L. Y.: Characterizing oxygenated volatile organic compounds and their sources in rural atmospheres in China, J. Environ. Sci., 81, 148–155, https://doi.org/10.1016/j.jes.2019.01.017, 2019.
Han, S. W., Tan, Y., Gao, Y., Li, X. W., Ho, S. S. H., Wang, M., and Lee, S. C.: Volatile organic compounds at a roadside site in Hong Kong: Characteristics, chemical reactivity, and health risk assessment, Sci. Total Environ., 866, 161370, https://doi.org/10.1016/j.scitotenv.2022.161370, 2023.
Harley, R. A., Hannigan, M. P., and Cass, G. R.: Respeciation of organic gas emissions and the detection of excess unburned gasoline in the atmosphere, Environ. Sci. Technol., 26, 2395–2408, https://doi.org/10.1021/es00036a010, 1992.
He, Z., Wang, X., Ling, Z., Zhao, J., Guo, H., Shao, M., and Wang, Z.: Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications, Atmos. Chem. Phys., 19, 8801–8816, https://doi.org/10.5194/acp-19-8801-2019, 2019.
He, C. Q., Zou, Y., Lv, S. J., Flores, R. M., Yan, X. L., Deng, T., and Deng, X. J.: The importance of photochemical loss to source analysis and ozone formation potential: Implications from in-situ observations of volatile organic compounds (VOCs) in Guangzhou, China, Atmos. Environ., 320, 120320, https://doi.org/10.1016/j.atmosenv.2023.120320, 2024.
Huang, X.-F., Wang, C., Zhu, B., Lin, L.-L., and He, L.-Y.: Exploration of sources of OVOCs in various atmospheres in southern China, Environ. Pollut., 249, 831–842, https://doi.org/10.1016/j.envpol.2019.03.106, 2019.
Huang, X.-F., Zhang, B., Xia, S.-Y., Han, Y., Wang, C., Yu, G.-H., and Feng, N.: Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in North and South China, Environ. Pollut., 261, 114152, https://doi.org/10.1016/j.envpol.2020.114152, 2020.
Jain, V., Tripathi, S. N., Tripathi, N., Sahu, L. K., Gaddamidi, S., Shukla, A. K., Bhattu, D., and Ganguly, D.: Seasonal variability and source apportionment of non-methane VOCs using PTR-TOF-MS measurements in Delhi, India, Atmos. Environ., 283, 119163, https://doi.org/10.1016/j.atmosenv.2022.119163, 2022.
Jia, C. H., Mao, X. X., Huang, T., Liang, X. X., Wang, Y. N., Shen, Y. J., Jiang, W. Y. H., Wang, H. Q., Bai, Z. L., Ma, M. Q., Yu, Z. S., Ma, J. M., and Gao, H.: Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China, Atmos. Res., 169, 225–236, https://doi.org/10.1016/j.atmosres.2015.10.006, 2016.
Junninen, H., Borbon, A., Astorga, C., Locoge, N., and Larsen, B. R.: Source apportionment of Ozone precursor VOCs in urban atmospheres by receptor modelling, in 5th International Conference on Urban Air Quality, Valencia, Spain (CD-ROM), 29–31 March 2005, https://www.researchgate.net/publication/236972501 (last access: 12 November 2024), 2005.
Kalbande, R., Yadav, R., Maji, S., Rathore, D. S., and Beig, G.: Characteristics of VOCs and their contribution to O3 and SOA formation across seasons over a metropolitan region in India, Atmos. Pollut. Res., 13, 101515, https://doi.org/10.1016/j.apr.2022.101515, 2022.
Kim, E., Brown, S. G., Hafner, H. R., and Hopke, P. K.: Characterization of non-methane volatile organic compounds sources in Houston during 2001 using positive matrix factorization, Atmos. Environ., 39, 5934–5946, https://doi.org/10.1016/j.atmosenv.2005.06.045, 2005.
Kong, L., Zhou, L., Chen, D. Y., Luo, L., Xiao, K., Chen, Y., Liu, H. F., Tan, Q. W., and Yang, F. M.: Atmospheric oxidation capacity and secondary pollutant formation potentials based on photochemical loss of VOCs in a megacity of the Sichuan Basin, China, Sci. Total Environ., 901, 166259, https://doi.org/10.1016/j.scitotenv.2023.166259, 2023.
Kornilova, A., Huang, L., Saccon, M., and Rudolph, J.: Stable carbon isotope ratios of ambient aromatic volatile organic compounds, Atmos. Chem. Phys., 16, 11755–11772, https://doi.org/10.5194/acp-16-11755-2016, 2016.
Kuhn, U., Rottenberger, S., Biesenthal, T., Wolf, A., Schebeske, G., Ciccioli, P., Brancaleoni, E., Frattoni, M., Tavares, T. M., and Kesselmeier, J.: Seasonal differences in isoprene and light-dependent monoterpene emission by Amazonian tree species, Glob. Change Biol., 10, 663–682, https://doi.org/10.1111/j.1529-8817.2003.00771.x, 2004.
Legreid, G., Folini, D., Staehelin, J., Lööv, J. B., Steinbacher, M., and Reimann, S.: Measurements of organic trace gases including oxygenated volatile organic compounds at the high alpine site Jungfraujoch (Switzerland): Seasonal variation and source allocations, J. Geophys. Res., 113, D05307, https://doi.org/10.1029/2007jd008653, 2008.
Lewis, C. W., Conner, T. L., Stevens, R. K., Collins, J. F., and Henry, R. C.: Receptor modeling of volatile hydrocarbons measured in the 1990 Atlanta Ozone Precursor Study, paper No. 93-TP-58.04, 86th Annual Meeting, Denver, CO, Air and Waste Management Association, Pittsburgh, PA, 13–18 June 1993, https://www.zhangqiaokeyan.com/ntis-science-report_pb_thesis/02071928258.html (last access: 12 November 2024), 1993.
Li, B. W., Ho, S. S. H., Li, X. H., Guo, L. Y., Chen, A. O., Hu, L. T., Yang, Y., Chen, D., Lin, A. A., and Fang, X. K.: A comprehensive review on anthropogenic volatile organic compounds (VOCs) emission estimates in China: Comparison and outlook, Environ. Int., 156, 106710, https://doi.org/10.1016/j.envint.2021.106710, 2021.
Li, B. W., Yu, S. C., Shao, M., Li, X. H., Ho, S. S. H., Hu, X. Y., Wang, H. L., Feng, R., and Fang, X. K.: New insights into photochemical initial concentrations of VOCs and their source implications, Atmos. Environ., 298, 119616, https://doi.org/10.1016/j.atmosenv.2023.119616, 2023.
Li, J., Wu, R., Li, Y., Hao, Y., Xie, S., and Zeng, L.: Effects of rigorous emission controls on reducing ambient volatile organic compounds in Beijing, China, Sci. Total Environ., 557–558, 531–541, https://doi.org/10.1016/j.scitotenv.2016.03.140, 2016.
Li, J., Zhai, C. Z., Yu, J. Y., Liu, R. L., Li, Y. Q., Zeng, L. M., and Xie, S. D.: Spatiotemporal variations of ambient volatile organic compounds and their sources in Chongqing, a mountainous megacity in China, Sci. Total Environ., 627, 1442–1452, https://doi.org/10.1016/j.scitotenv.2018.02.010, 2018.
Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.: Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences, Atmos. Chem. Phys., 20, 11423–11433, https://doi.org/10.5194/acp-20-11423-2020, 2020.
Li, Z. Y., Xue, L. K., Yang, X., Zha, Q. Z., Tham, Y. J., Yan, C., Louie, P. K. K., Luk, C. W. Y., Wang, T., and Wang, W. X.: Oxidizing capacity of the rural atmosphere in Hong Kong, Southern China, Sci. Total Environ., 612, 1114–1122, https://doi.org/10.1016/j.scitotenv.2017.08.310, 2018.
Li, Z. Y., Ho, K. F., and Yim, S. H. L.: Source apportionment of hourly-resolved ambient volatile organic compounds: Influence of temporal resolution, Sci. Total Environ., 725, 138243, https://doi.org/10.1016/j.scitotenv.2020.138243, 2020.
Lin, C. and Milford, D. B.: Decay-adjusted chemical mass balance receptor modeling for volatile organic compounds, Atmos. Environ., 28, 3261–3276, https://doi.org/10.1016/1352-2310(94)00163-F, 1994.
Lin, C.-C., Lin, C., Hsieh, L.-T., Chen, C.-Y., and Wang, J.-P.: Vertical and diurnal characterization of volatile organic compounds in ambient air in urban areas, J. Air Waste Manage., 61, 714–720, https://doi.org/10.3155/1047-3289.61.7.714, 2011.
Liu, B. S., Liang, D. N., Yang, J. M., Dai, Q. L., Bi, X. H., Feng, Y. C., Yuan, J., Xiao, Z. M., Zhang, Y. F., and Xu, H.: Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China, Environ. Pollut., 218, 757–769, https://doi.org/10.1016/j.envpol.2016.07.072, 2016.
Liu, B. S., Yang, Y., Yang, T., Dai, Q. L., Zhang, Y. F., Feng, Y. C., and Hopke, P. K.: Effect of photochemical losses of ambient volatile organic compounds on their source apportionment, Environ. Int., 172, 107766, https://doi.org/10.1016/j.envint.2023.107766, 2023.
Liu, B. S., Yang, T., Kang, S. C., Wang, F. Q., Zhang, H. X., Xu, M., Wang, W., Bai, J. R., Song, S. J., Dai, Q. L., Feng, Y. C., and Hopke, P. K.: Changes in factor profiles deriving from photochemical losses of volatile organic compounds: Insight from daytime and nighttime positive matrix factorization analyses, J. Environ. Sci., 151, 627–639, https://doi.org/10.1016/j.jes.2024.04.032, 2025.
Liu, C. T., Xin, Y. Y., Zhang, C. L., Liu, J. F., Liu, P. F., He, X. W., and Mu, Y. J.: Ambient volatile organic compounds in urban and industrial regions in Beijing: Characteristics, source apportionment, secondary transformation and health risk assessment, Sci. Total Environ., 855, 158873, https://doi.org/10.1016/j.scitotenv.2022.158873, 2023.
Liu, Z. G., Wang, B. L., Wang, C., Sun, Y. C., Zhu, C. Y., Sun, L., Yang, N., Fan, G. L., Sun, X. Y., Xia, Z. Y., Pan, G., Zhu, C. T., Gai, Y. C., Wang, X. Y., Xiao, Y., Yan, G. H., and Xu, C. Q.: Characterization of photochemical losses of volatile organic compounds and their implications for ozone formation potential and source apportionment during summer in suburban Jinan, China, Environ. Res., 238, 117158, https://doi.org/10.1016/j.envres.2023.117158, 2023.
Lu, X., Zhang, L., and Shen, L.: Meteorology and climate influences on tropospheric ozone: a review of natural sources, chemistry, and transport patterns, Curr. Pollut. Rep., 5, 238–260, https://doi.org/10.1007/s40726-019-00118-3, 2019.
Ma, W., Feng, Z., Zhan, J., Liu, Y., Liu, P., Liu, C., Ma, Q., Yang, K., Wang, Y., He, H., Kulmala, M., Mu, Y., and Liu, J.: Influence of photochemical loss of volatile organic compounds on understanding ozone formation mechanism, Atmos. Chem. Phys., 22, 4841–4851, https://doi.org/10.5194/acp-22-4841-2022, 2022.
McKeen, S. A. and Liu, S. C.: Hydrocarbon ratios and photochemical history of air masses, Geophys. Res. Lett., 20, 2363–2366, https://doi.org/10.1029/93GL02527, 1993.
McKeen, S. A., Liu, S. C., Hsie, E.-Y., Lin, X., Bradshaw, J. D., Smyth, S., Gregory, G. L., and Blake, D. R.: Hydrocarbon ratios during PEM-WEST A: A model perspective, J. Geophys. Res., 101, 2087–2109, https://doi.org/10.1029/95JD02733, 1996.
Mellouki, A., Wallington, T. J., and Chen, J.: Atmospheric chemistry of oxygenated volatile organic compounds: impacts on air quality and climate, Chem. Rev., 115, 3984–4014, https://doi.org/10.1021/cr500549n, 2015.
Meng, Z., Dabdub, D., and Seinfeld, J. H.: Chemical coupling between atmospheric ozone and particulate matter, Science, 277, 116–119, https://doi.org/10.1126/science.277.5322.116, 1997.
Mintz, R. and McWhinney, R. D.: Characterization of volatile organic compound emission sources in Fort Saskatchewan, Alberta using principal component analysis, J. Atmos. Chem., 60, 83–101, https://doi.org/10.1007/s10874-008-9110-5, 2008.
Mo, Z. W., Shao, M., Lu, S. H., Qu, H., Zhou, M. Y., Sun, J., and Gou, B.: Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China, Sci. Total Environ., 533, 422–431, https://doi.org/10.1016/j.scitotenv.2015.06.089, 2015.
Mo, Z. W., Shao, M., and Lu, S. H.: Compilation of a source profile database for hydrocarbon and OVOC emissions in China, Atmos. Environ., 143, 209–217, https://doi.org/10.1016/j.atmosenv.2016.08.025, 2016.
Na, K., Kim, Y. P., Moon, I., and Moon, K.-C.: Chemical composition of major VOC emission sources in the Seoul atmosphere, Chemosphere, 55, 585–594, https://doi.org/10.1016/j.chemosphere.2004.01.010, 2004.
Na, K. and Pyo Kim, Y.: Chemical mass balance receptor model applied to ambient C2–C9 VOC concentration in Seoul, Korea: Effect of chemical reaction losses, Atmos. Environ., 41, 6715–6728, https://doi.org/10.1016/j.atmosenv.2007.04.054, 2007.
Nelson, P. F. and Quigley, S. M.: The m,p-xylenes: ethylbenzene ratio. A technique for estimating hydrocarbon age in ambient atmospheres, Atmos. Environ., 17, 659–662, https://doi.org/10.1016/0004-6981(83)90141-5, 1983.
Parrish, D. D., Hahn, C. J., Williams, E. J., Norton, R. B., Fehsenfeld, F. C., Singh, H. B., Shetter, J. D., Gandrud, B. W., and Ridley, B. A.: Indications of photochemical histories of Pacific air masses from measurements of atmospheric trace species at Point Arena, California, J. Geophys. Res., 97, 15883–15901, https://doi.org/10.1029/92JD01242, 1992.
Parrish, D. D., Stohl, A., Forster, C., Atlas, E. L., Blake, D. R., Goldan, P. D., Kuster, W. C., and de Gouw, J. A.: Effects of mixing on evolution of hydrocarbon ratios in the troposphere, J. Geophys. Res.-Atmos., 112, D10S34, https://doi.org/10.1029/2006jd007583, 2007.
Ren, H. R., Xia, Z. Y., Yao, L. B., Qin, G. M., Zhang, Y., Xu, H., Wang, Z., and Cheng, J. P.: Investigation on ozone formation mechanism and control strategy of VOCs in petrochemical region: insights from chemical reactivity and photochemical loss, Sci. Total Environ., 914, 169891, https://doi.org/10.1016/j.scitotenv.2024.169891, 2024.
Roberts, J. M., Fehsenfeld, F. C., Liu, S. C., Bollinger, M. J., Hahn, C., Albritton, D. L., and Sievers, R. E.: Measurements of aromatic hydrocarbon ratios and NOx concentrations in the rural troposphere: Observation of air mass photochemical aging and NOx removal, Atmos. Environ., 18, 2421–2432, https://doi.org/10.1016/0004-6981(84)90012-X, 1984.
Roberts, J. M., Marchewka, M., Bertman, S. B., Goldan, P., Kuster, W., de Gouw, J., Warneke, C., Williams, E., Lerner, B., Murphy, P., Apel, E., and Fehsenfeld, F. C.: Analysis of the isoprene chemistry observed during the New England Air Quality Study (NEAQS) 2002 intensive experiment, J. Geophys. Res., 111, D23S12, https://doi.org/10.1029/2006jd007570, 2006.
Rudolph, J. and Czuba, E.: On the use of isotopic composition measurements of volatile organic compounds to determine the “photochemical age” of an air mass, Geophys. Res. Lett., 27, 3865–3868, https://doi.org/10.1029/2000gl011385, 2000.
Sahu, L. K., Yadav, R., and Pal, D.: Source identification of VOCs at an urban site of western India: Effect of marathon events and anthropogenic emissions, J. Geophys. Res., 121, 2416–2433, https://doi.org/10.1002/2015jd024454, 2016.
Saito, T., Kawamura, K., Tsunogai, U., Chen, T. Y., Matsueda, H., Nakatsuka, T., Gamo, T., Uematsu, M., and Huebert, B. J.: Photochemical histories of nonmethane hydrocarbons inferred from their stable carbon isotope ratio measurements over east Asia, J. Geophys. Res., 114, D11303, https://doi.org/10.1029/2008jd011388, 2009.
Sanchez, M., Karnae, S., and John, K.: Source characterization of volatile organic compounds affecting the air quality in a coastal urban area of South Texas, Int. J. Env. Res. Pub. He., 5, 130–138, https://doi.org/10.3390/ijerph5030130, 2008.
Scheff, P. A. and Klevs, M.: Source-receptor analysis of volatile hydrocarbons, J. Environ. Eng., 113, 994–1005, https://doi.org/10.1061/(ASCE)0733-9372(1987)113:5(994), 1987.
Schlundt, C., Tegtmeier, S., Lennartz, S. T., Bracher, A., Cheah, W., Krüger, K., Quack, B., and Marandino, C. A.: Oxygenated volatile organic carbon in the western Pacific convective center: ocean cycling, air–sea gas exchange and atmospheric transport, Atmos. Chem. Phys., 17, 10837–10854, https://doi.org/10.5194/acp-17-10837-2017, 2017.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd edn., John Wiley & Sons, Inc., New York, https://www.gbv.de/dms/goettingen/50408920X.pdf (last access: 12 November 2024), 2006.
Shao, M., Lu, S. H., Liu, Y., Xie, X., Chang, C. C., Huang, S., and Chen, Z. M.: Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation, J. Geophys. Res., 114, D00G06, https://doi.org/10.1029/2008jd010863, 2009.
Shao, M., Wang, B., Lu, S. H., Yuan, B., and Wang, M.: Effects of Beijing Olympics control measures on reducing reactive hydrocarbon species, Environ. Sci. Technol., 45, 514–519, https://doi.org/10.1021/es102357t, 2011.
Song, S.-K., Shon, Z.-H., Kang, Y.-H., Kim, K.-H., Han, S.-B., Kang, M., Bang, J.-H., and Oh, I.: Source apportionment of VOCs and their impact on air quality and health in the megacity of Seoul, Environ. Pollut., 247, 763–774, https://doi.org/10.1016/j.envpol.2019.01.102, 2019.
Song, Y., Dai, W., Shao, M., Liu, Y., Lu, S. H., Kuster, W., and Goldan, P.: Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China, Environ. Pollut., 156, 174–183, https://doi.org/10.1016/j.envpol.2007.12.014, 2008.
Stroud, C. A., Roberts, J. M., Goldan, P. D., Kuster, W. C., Murphy, P. C., Williams, E. J., Hereid, D., Parrish, D., Sueper, D., Trainer, M., Fehsenfeld, F. C., Apel, E. C., Riemer, D., Wert, B., Henry, B., Fried, A., Martinez-Harder, M., Harder, H., Brune, W. H., Li, G., Xie, H., and Young, V. L.: Isoprene and its oxidation products, methacrolein and methylvinyl ketone, at an urban forested site during the 1999 Southern Oxidants Study, J. Geophys. Res., 106, 8035–8046, https://doi.org/10.1029/2000jd900628, 2001.
Sun, J., Wu, F. K., Hu, B., Tang, G. Q., Zhang, J. K., and Wang, Y. S.: VOC characteristics, emissions and contributions to SOA formation during hazy episodes, Atmos. Environ., 141, 560–570, https://doi.org/10.1016/j.atmosenv.2016.06.060, 2016.
Talukdar, R. K., Mellouki, A., Gierczak, T., Barone, S., Chiang, S. Y., and Ravishankara, A. R.: Kinetics of the reactions of OH with alkanes, Int. J. Chem. Kinet., 26, 973–990, https://doi.org/10.1002/kin.550261003, 1994.
Tan, Q. W., Zhou, L., Liu, H. F., Feng, M., Qiu, Y., Yang, F. M., Jiang, W. J., and Wei, F. S.: Observation-based summer O3 control effect evaluation: A Case study in Chengdu, a megacity in Sichuan Basin, China, Atmosphere, 11, 1278, https://doi.org/10.3390/atmos11121278, 2020.
Tan, Y., Han, S. W., Chen, Y., Zhang, Z. Z., Li, H. W., Li, W. Q., Yuan, Q., Li, X. W., Wang, T., and Lee, S. C.: Characteristics and source apportionment of volatile organic compounds (VOCs) at a coastal site in Hong Kong, Sci. Total Environ., 777, 146241, https://doi.org/10.1016/j.scitotenv.2021.146241, 2021.
Tanimoto, H., Kameyama, S., Iwata, T., Inomata, S., and Omori, Y.: Measurement of air-sea exchange of dimethyl sulfide and acetone by PTR-MS coupled with gradient flux technique, Environ. Sci. Technol., 48, 526–533, https://doi.org/10.1021/es4032562, 2014.
Vega, E., Ramírez, O., Sánchez-Reyna, G., Chow, J. C., Watson, J. G., López-Veneroni, D., and Jaimes-Palomera, M.: Volatile organic compounds and carbonyls pollution in Mexico City and an urban industrialized area of Central Mexico, Aerosol Air Qual. Res., 22, 210386, https://doi.org/10.4209/aaqr.210386, 2022.
Wadden, R. A., Uno, I., and Wakamatsu, S.: Source discrimination of short-term hydrocarbon samples measured aloft, Environ. Sci. Technol., 20, 473–483, https://doi.org/10.1021/es00147a006, 1986.
Wan, Z. C., Song, K., Zhu, W. F., Yu, Y., Wang, H., Shen, R. Z., Tan, R., Lv, D. Q., Gong, Y. Z., Yu, X. N., Chen, S. Y., Zeng, L. M., Lou, S. R., Yu, Y. J., and Guo, S.: A closure study of secondary organic aerosol estimation at an urban site of Yangtze River Delta, China, Atmosphere, 13, 1679, https://doi.org/10.3390/atmos13101679, 2022.
Wang, B. L., Liu, Y., Shao, M., Lu, S. H., Wang, M., Yuan, B., Gong, Z. H., He, L. Y., Zeng, L. M., Hu, M., and Zhang, Y. H.: The contributions of biomass burning to primary and secondary organics: A case study in Pearl River Delta (PRD), China, Sci. Total Environ., 569, 548–556, https://doi.org/10.1016/j.scitotenv.2016.06.153, 2016.
Wang, C., Huang, X. F., Han, Y., Zhu, B., and He, L. Y.: Sources and potential photochemical roles of formaldehyde in an urban atmosphere in South China, J. Geophys. Res., 122, 11934–11947, https://doi.org/10.1002/2017jd027266, 2017.
Wang, G., Zhao, N., Zhang, H. Y., Li, G. H., and Xin, G.: Spatiotemporal distributions of ambient volatile organic compounds in China: Characteristics and sources, Aerosol Air Qual. Res., 22, 210379, https://doi.org/10.4209/aaqr.210379, 2022.
Wang, H. L., Chen, C. H., Wang, Q., Huang, C., Su, L. Y., Huang, H. Y., Lou, S. R., Zhou, M., Li, L., Qiao, L. P., and Wang, Y. H.: Chemical loss of volatile organic compounds and its impact on the source analysis through a two-year continuous measurement, Atmos. Environ., 80, 488–498, https://doi.org/10.1016/j.atmosenv.2013.08.040, 2013.
Wang, T. T., Tao, J., Li, Z., Lu, X., Liu, Y. L., Zhang, X. R., Wang, B., Zhang, D., and Yin, S. S.: Characteristic, source apportionment and effect of photochemical loss of ambient VOCs in an emerging megacity of Central China, Atmos. Res., 305, 107429, https://doi.org/10.1016/j.atmosres.2024.107429, 2024.
Wang, W. T., Zheng, Z. S., Liu, Y. H., Xu, B., Yang, W., Wang, X. L., Geng, C. M., and Bai, Z. P.: Quantification for photochemical loss of volatile organic compounds upon ozone formation chemistry at an industrial city (Zibo) in North China Plain, Environ. Res., 256, 119088, https://doi.org/10.1016/j.envres.2024.119088, 2024.
Wang, Z. Y., Shi, Z. B., Wang, F., Liang, W. Q., Shi, G. L., Wang, W. C., Chen, D., Liang, D. N., Feng, Y. C., and Russell, A. G.: Implications for ozone control by understanding the survivor bias in observed ozone-volatile organic compounds system, npj Clim. Atmos. Sci., 5, 39, https://doi.org/10.1038/s41612-022-00261-7, 2022.
Wang, Z. Y., Tian, X., Li, J., Wang, F., Liang, W. Q., Zhao, H., Huang, B., Wang, Z. H., Feng, Y. C., and Shi, G. L.: Quantitative evidence from VOCs source apportionment reveals O3 control strategies in northern and southern China, Environ. Int., 172, 107786, https://doi.org/10.1016/j.envint.2023.107786, 2023.
Watson, J. G., Chow, J. C., and Fujita, E. M.: Review of volatile organic compound source apportionment by chemical mass balance, Atmos. Environ., 35, 1567–1584, https://doi.org/10.1016/s1352-2310(00)00461-1, 2001.
Wei, W., Wang, S. X., Hao, J. M., and Cheng, S. Y.: Projection of anthropogenic volatile organic compounds (VOCs) emissions in China for the period 2010–2020, Atmos. Environ., 45, 6863–6871, https://doi.org/10.1016/j.atmosenv.2011.01.013, 2011.
Wei, W., Chen, S. S., Wang, Y., Cheng, L., Wang, X. Q., and Cheng, S. Y.: The impacts of VOCs on PM2.5 increasing via their chemical losses estimates: A case study in a typical industrial city of China, Atmos. Environ., 273, 118978, https://doi.org/10.1016/j.atmosenv.2022.118978, 2022.
Wiedinmyer, C., Friedfeld, S., Baugh, W., Greenberg, J., Guenther, A., Fraser, M., and Allen, D.: Measurement and analysis of atmospheric concentrations of isoprene and its reaction products in central Texas, Atmos. Environ., 35, 1001–1013, https://doi.org/10.1016/s1352-2310(00)00406-4, 2001.
Wu, R. and Xie, S.: Spatial distribution of secondary organic aerosol formation potential in China derived from speciated anthropogenic volatile organic compound emissions, Environ. Sci. Technol., 52, 8146–8156, https://doi.org/10.1021/acs.est.8b01269, 2018.
Wu, Y. J., Fan, X. L., Liu, Y., Zhang, J. Q., Wang, H., Sun, L. A., Fang, T. E., Mao, H. J., Hu, J., Wu, L., Peng, J. F., and Wang, S. L.: Source apportionment of VOCs based on photochemical loss in summer at a suburban site in Beijing, Atmos. Environ., 293, 119459, https://doi.org/10.1016/j.atmosenv.2022.119459, 2023.
Wu, Y. T., Liu, B. S., Meng, H., Dai, Q. L., Shi, L. Y., Song, S. J., Feng, Y. C., and Hopke, P. K.: Changes in source apportioned VOCs during high O3 periods using initial VOC-concentration-dispersion normalized PMF, Sci. Total Environ., 896, 165182, https://doi.org/10.1016/j.scitotenv.2023.165182, 2023.
Xie, X., Shao, M., Liu, Y., Lu, S. H., Chang, C.-C., and Chen, Z.-M.: Estimate of initial isoprene contribution to ozone formation potential in Beijing, China, Atmos. Environ., 42, 6000–6010, https://doi.org/10.1016/j.atmosenv.2008.03.035, 2008.
Xie, Y. L. and Berkowitz, C. M.: The use of positive matrix factorization with conditional probability functions in air quality studies: An application to hydrocarbon emissions in Houston, Texas, Atmos. Environ., 40, 3070–3091, https://doi.org/10.1016/j.atmosenv.2005.12.065, 2006.
Xu, K., Liu, Y. F., Li, F., Li, C. L., Zhang, C., Zhang, H., Liu, X. G., Li, Q. J., and Xiong, M.: A retrospect of ozone formation mechanisms during the COVID-19 lockdown: The potential role of isoprene, Environ. Pollut., 317, 120728, https://doi.org/10.1016/j.envpol.2022.120728, 2023.
Yadav, R., Sahu, L. K., Beig, G., and Jaaffrey, S. N. A.: Role of long-range transport and local meteorology in seasonal variation of surface ozone and its precursors at an urban site in India, Atmos. Res., 176, 96–107, https://doi.org/10.1016/j.atmosres.2016.02.018, 2016.
Yang, T., Liu, B. S., Yang, Y., Dai, Q. L., Zhang, Y. F., Feng, Y. C., and Hopke, P. K.: Improved positive matrix factorization for source apportionment of volatile organic compounds in vehicular emissions during the Spring Festival in Tianjin, China, Environ. Pollut., 303, 119122, https://doi.org/10.1016/j.envpol.2022.119122, 2022.
Yang, Y., Ji, D. S., Sun, J., Wang, Y. H., Yao, D., Zhao, S., Yu, X. N., Zeng, L. M., Zhang, R. J., Zhang, H., Wang, Y. H., and Wang, Y. S.: Ambient volatile organic compounds in a suburban site between Beijing and Tianjin: Concentration levels, source apportionment and health risk assessment, Sci. Total Environ., 695, 133889, https://doi.org/10.1016/j.scitotenv.2019.133889, 2019.
Yang, Y., Liu, B. S., Hua, J., Yang, T., Dai, Q. L., Wu, J. H., Feng, Y. C., and Hopke, P. K.: Global review of source apportionment of volatile organic compounds based on highly time-resolved data from 2015 to 2021, Environ. Int., 165, 107330, https://doi.org/10.1016/j.envint.2022.107330, 2022.
Yuan, B., Shao, M., Lu, S. H., and Wang, B.: Source profiles of volatile organic compounds associated with solvent use in Beijing, China, Atmos. Environ., 44, 1919–1926, https://doi.org/10.1016/j.atmosenv.2010.02.014, 2010.
Yuan, B., Chen, W. T., Shao, M., Wang, M., Lu, S. H., Wang, B., Liu, Y., Chang, C. C., and Wang, B. G.: Measurements of ambient hydrocarbons and carbonyls in the Pearl River Delta (PRD), China, Atmos. Res., 116, 93–104, https://doi.org/10.1016/j.atmosres.2012.03.006, 2012a.
Yuan, B., Shao, M., de Gouw, J., Parrish, D. D., Lu, S. H., Wang, M., Zeng, L. M., Zhang, Q., Song, Y., Zhang, J. B., and Hu, M.: Volatile organic compounds (VOCs) in urban air: How chemistry affects the interpretation of positive matrix factorization (PMF) analysis, J. Geophys. Res.-Atmos., 117, D24302, https://doi.org/10.1029/2012jd018236, 2012b.
Zhan, J. L., Feng, Z. M., Liu, P. F., He, X. W., He, Z. M., Chen, T. Z., Wang, Y. F., He, H., Mu, Y. J., and Liu, Y. C.: Ozone and SOA formation potential based on photochemical loss of VOCs during the Beijing summer, Environ. Pollut., 285, 117444, https://doi.org/10.1016/j.envpol.2021.117444, 2021.
Zhang, C., Liu, X. G., Zhang, Y. Y., Tan, Q. W., Feng, M., Qu, Y., An, J. L., Deng, Y. J., Zhai, R. X., Wang, Z., Cheng, N. L., and Zha, S. P.: Characteristics, source apportionment and chemical conversions of VOCs based on a comprehensive summer observation experiment in Beijing, Atmos. Pollut. Res., 12, 183–194, https://doi.org/10.1016/j.apr.2020.12.010, 2021.
Zhang, F., Shang, X. N., Chen, H., Xie, G. Z., Fu, Y., Wu, D., Sun, W. W., Liu, P. F., Zhang, C. L., Mu, Y. J., Zeng, L. M., Wan, M., Wang, Y. S., Xiao, H., Wang, G. H., and Chen, J. M.: Significant impact of coal combustion on VOCs emissions in winter in a North China rural site, Sci. Total Environ., 720, 137617, https://doi.org/10.1016/j.scitotenv.2020.137617, 2020.
Zhang, J. Q., Liu, Z., Wu, Y. J., Zhu, Y., Cao, T., Ling, D. Y., Wang, H., and Wang, S. L.: The impacts of photochemical loss on the source apportionment of ambient volatile organic compounds: A case study in Northern China, Atmos. Environ., 333, 120671, https://doi.org/10.1016/j.atmosenv.2024.120671, 2024.
Zhang, L. L., Xu, T., Wu, G. C., Zhang, C. L., Li, Y., Wang, H., Gong, D. C., Li, Q. Q., and Wang, B. G.: Photochemical loss with consequential underestimation in active VOCs and corresponding secondary pollutions in a petrochemical refinery, China, Sci. Total Environ., 918, 170613, https://doi.org/10.1016/j.scitotenv.2024.170613, 2024.
Zhang, W. J., Lin, S., Hopke, P. K., Thurston, S. W., van Wijngaarden, E., Croft, D., Squizzato, S., Masiol, M., and Rich, D. Q.: Triggering of cardiovascular hospital admissions by fine particle concentrations in New York state: Before, during, and after implementation of multiple environmental policies and a recession, Environ. Pollut., 242, 1404–1416, https://doi.org/10.1016/j.envpol.2018.08.030, 2018.
Zhang, Z., Zhang, Y. L., Wang, X. M., Lü, S. J., Huang, Z. H., Huang, X. Y., Yang, W. Q., Wang, Y. S., and Zhang, Q.: Spatiotemporal patterns and source implications of aromatic hydrocarbons at six rural sites across China's developed coastal regions, J. Geophys. Res., 121, 6669–6687, https://doi.org/10.1002/2016jd025115, 2016.
Zhao, C. K., Sun, Y., Zhong, Y. P., Xu, S. H., Liang, Y., Liu, S., He, X. D., Zhu, J. H., Shibamoto, T., and He, M.: Spatio-temporal analysis of urban air pollutants throughout China during 2014–2019, Air Qual. Atmos. Hlth., 14, 1619–1632, https://doi.org/10.1007/s11869-021-01043-5, 2021.
Zhao, W., Hopke, P. K., and Karl, T.: Source identification of volatile organic compounds in Houston, Texas, Environ. Sci. Technol., 38, 1338–1347, https://doi.org/10.1021/es034999c, 2004.
Zhou, B. A., Zhao, T. Y., Ma, J., Zhang, Y. X., Zhang, L. J., Huo, P., and Zhang, Y.: Characterization of VOCs during nonheating and heating periods in the typical suburban area of Beijing, China: Sources and health assessment, Atmosphere, 13, 560, https://doi.org/10.3390/atmos13040560, 2022.
Zhu, B., Huang, X.-F., Xia, S.-Y., Lin, L.-L., Cheng, Y., and He, L.-Y.: Biomass-burning emissions could significantly enhance the atmospheric oxidizing capacity in continental air pollution, Environ. Pollut., 285, 117523, https://doi.org/10.1016/j.envpol.2021.117523, 2021.
Zou, Y., Charlesworth, E., Wang, N., Flores, R. M., Liu, Q. Q., Li, F., Deng, T., and Deng, X. J.: Characterization and ozone formation potential (OFP) of non-methane hydrocarbons under the condition of chemical loss in Guangzhou, China, Atmos. Environ., 262, 118630, https://doi.org/10.1016/j.atmosenv.2021.118630, 2021.
Zou, Y., Yan, X., Flores, R. M., Zhang, L. Y., Yang, S., Fan, L. Y., Deng, T., Deng, X., and Ye, D.: Source apportionment and ozone formation mechanism of VOCs considering photochemical loss in Guangzhou, China, Sci. Total Environ., 903, 166191, https://doi.org/10.1016/j.scitotenv.2023.166191, 2023.
Download
- Article
(3104 KB) - Full-text XML
Short summary
Reactive loss of volatile organic compounds (VOCs) is a long-term issue yet to be resolved in VOC source analyses. We assess common methods of, and existing issues in, reducing losses, impacts of losses, and sources in current source analyses. We offer a potential supporting role for solving issues of VOC conversion. Source analyses of consumed VOCs that reacted to produce ozone and secondary organic aerosols can play an important role in the effective control of secondary pollution in air.
Reactive loss of volatile organic compounds (VOCs) is a long-term issue yet to be resolved in...
Altmetrics
Final-revised paper
Preprint