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Sect. S1 Estimation methods of the decay factors.

Method 1:

In 1981, Friedlander (1981) proposed treating an urban airshed as a continuous
stirred tank reactor (CSTR) and relating the decay factor for a given species to its
first-order reaction rate constant, ki.
o= (1+k6)™ (1)
0 = g 2

where ai represents the decay factor of species i, 0 represents the average residence
time, V is the reactor volume, and q is the flow rate. This method considered only the
first-order reaction of a given species, and there was high uncertainty in the average
residence time.

Method 2:

In 1994, Lin and Milford (1994) first estimated the decay factor utilizing the
reaction rate constants of VOC species and “aging coefficients”. In 2007, Na and Pyo
Kim (2007) also conducted a similar estimation utilizing this method. The specific
estimation method of the decay factor («ij) was as follows:

a;; = exp (—k;$) 3)
where ki is the rate constant for the reaction of species i with the OH radical, and & is
an empirically estimated “aging coefficient”. To estimate & for a given sample, source
contributions estimated with ajj = 1.0 were used to calculate preliminary predicted

concentrations, ¢”i. With the normalized residual (E;) for species i defined as:

B =4 @
the linear expression:

In(E;+1) = —-A+¢k; (5)
where the & value can be estimated for each sample utilizing the linear regression.
However, this method had two important limitations: First, for a given sample, the

aging coefficient was assumed to be the same for all species and sources; second,

rates of reaction of alkenes with NOs radicals and Oz were neglected.
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Table S1. Summary of sampling information and species concentration data from reviewed publications using PMF for VOC source analyses.

Literature City/Region Study period Unit TVOCs PAMS Alkanes Alkenes Aromatic hydrocarbons Alkyne OVOCs Halohydrocarbons Others
Ling et al. (2011) PRD region 2007/10/23-2007/12/1 pgm 81.01 81.01 27.84 5.08 43.53 4.56 - - -
Chen et al. (2019) Taixi, Taiwan 2014 ppbv 11.19 11.19 6.28 2.11. 1.94 0.86 - - -
Chen et al. (2019) Taixi, Taiwan 2015 ppbv 11.58 11.58 6.67 1.87 212 0.92 - - -
Chen et al. (2019) Taixi, Taiwan 2016 ppbv 10.44 10.44 6.25 1.54 1.82 0.83 - - -
Zheng et al. (2018) Junggar Basin 2014/9-2015/8 ppbv 14583 145.83 129 9.52 4.28 3.03 - - -
Ling and Guo (2014) Hong Kong 2010/9/6-2010/11/29 - - - - - - - - - -
Tan et al. (2020) Chengdu 2017/7/31-2017/8/6 ppbv 14.4 14.34 10 0.89 1.01 2.44 - - -
Tan et al. (2020) Chengdu 2017/8/7-2017/8/31 ppbv 11.8 11.77 6.28 2.57 0.79 2.13 - - -
Tan et al. (2020) Chengdu 2017/7/31-2017/8/6 ppbv 528 3138 165 3.77 7.85 3.26 13.3 7.7 -
Tan et al. (2020) Chengdu 2017/8/7-2017/8/31 ppbv 34.9 21.9 12.3 2.79 4.41 24 7.68 4.9 -
Tan et al. (2020) Chengdu 2017/7/31-2017/8/6 ppbv 60.6 32.94 18.4 4.46 7.27 2.81 20.5 6.7 -
Tan et al. (2020) Chengdu 2017/8/7-2017/8/31 ppbv 47.0 32.73 23.7 3.12 3.32 2.59 9.81 4.14 -
Brown et al. (2007) Los Angeles 2001/7-9, 2002179, ppbC 79 - - - - - - - -
2003/7-9
Brown et al. (2007) Los Angeles 2001/7-9, 2002179, ppbC 237 - - - - - - - -
2003/7-9
Zhang et al. (2013) Guangzhou 2009/11/8-2009/12/7 ppbv - - - - 9.26 - - - -
Zhang et al. (2013) Guangzhou 2009/11/8-2009/12/7 ppbv - - - - 6.4 - - - -
Zhang et al. (2013) Zengcheng 2009/11/8-2009/12/7 ppbv - - - - 25 - - - -
Zhang et al. (2013) Wangingsha 2009/11/8-2009/12/7 ppbv - - - - 10.4 - - - -
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Guo et al. (2011)
Guo et al. (2011)
Shao et al. (2016)
Liu et al. (2023a)
Hui et al. (2019)
Hui et al. (2019)
Hui et al. (2019)
Liu et al. (2020)

Xiong et al. (2021)
Xiong et al. (2021)

Zhu et al. (2017)

Yang et al. (2019)

Lietal. (2019)
Li et al. (2019)
Li et al. (2019)
Li et al. (2019)
Li et al. (2019)
Li et al. (2019)
Li et al. (2019)
Lietal. (2019)
Li etal. (2019)

Li et al. (2019)

PRD center
Hong Kong
Nanjing
Tianjin
Wuhan
Wuhan
Wuhan
Beijing
Chengdu
Chengdu
Mt. Tai
Xianghe
Zhengzhou
Zhengzhou
Zhengzhou
Zhengzhou
Zhengzhou
Zhengzhou
Zhengzhou
Zhengzhou
Zhengzhou

Zhengzhou

2007/10-2007/12
2007/10-2007/13
2013/5/15-2013/8/31
2020/4/15-2020/8/31
2016/10/15-2016/10/20
2016/11/2-2016/11/6
2016/11/11-2016/11/16
2016/4; 2016/7; 2016/10
2018/6
2019/1
2014/6/4-2014/7/4
2017/11/6-2018/1/29
2017/5
2017/6
2017/7
2017/8
2017/9
2017/5
2017/6
201717
2017/8
2017/9

ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
pptv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv

42
34
344
19.35
58.33
45.84
57.73
44
26.8
53.3
8040
61.04
37.6
34
16
215
26.2
29.3
30.3
20.7
244

34.2

344
19.35
32.07
32.75
43.87
27.96

22.3
49.67
7947
48.44
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14.98
11.3
18.84
19.79
26.56
16.2
11.9
29.2
4464
23.66

7.35
5.32
59
5.12
7.58
524
3.76
6.55
906
12.27

9.06
1.6
4.89
4.81
5.65
3.39
3.18
5.46
1179
8.27

3.01
1.13
2.44
3.03
4.08
3.13
3.46
8.46
1398
4.24

20.67
7.26
7.08

11

511
5.38
6.24
4.76
4.47
3.62

8.47

0.48
0.45
0.54
0.3

94
0.32



Li et al. (2019)
Li et al. (2019)
Lietal. (2019)
Lietal. (2019)
Lietal. (2019)
Li et al. (2019)
Li et al. (2019)
Lietal. (2019)
Lietal. (2019)
Lietal. (2019)
Liu et al. (2016)
Liu et al. (2016)
Liu et al. (2016)
Liu et al. (2016)
Liu et al. (2016)
Liu et al. (2016)
Liu et al. (2016)
Liu et al. (2016)
Liu et al. (2016)
Liu et al. (2016)
Liu et al. (2016)

Liu et al. (2016)

Zhengzhou
Zhengzhou
Zhengzhou
Zhengzhou
Zhengzhou
Zhengzhou
Zhengzhou
Zhengzhou
Zhengzhou
Zhengzhou
Tianjin
Tianjin
Tianjin
Tianjin
Tianjin
Tianjin
Tianjin
Tianjin
Tianjin
Tianjin
Tianjin

Tianjin

2017/5
2017/6
201717
2017/8
2017/9
2017/5
2017/6
201717
2017/8
2017/9
2015/3
2015/4
2015/5
2015/6
2015/7
2015/8
2015/9
2015/1
2014/11
2014/12
2015/1
2015/2

ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv

31.7
39.3
19.6
20.5
304
30.1
28.3
15.9
26.1
32.6
19.6
22.6
144
104
345
48.9
44.8
31.8
30
26.9
394
20.9

19.7
22.5
144
105
345
49
45
31.9
30
27
394
20.9
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14.2
15.9
111
7.4
20.1
21.3
30
19.7
20.5
18.2
26.3

14.3

4.2
4.3
24
2.3
4.4
5.9
53
53
5.7
6.4
10.2
5.6

13
2.3
0.9
0.8

10
21.8
9.7
6.9
3.8
24
29



Guan et al. (2020)

Gao et al. (2020)

Hui et al. (2020)
Huang and Hsieh (2020)
Huang and Hsieh (2020)
Huang and Hsieh (2020)
Huang and Hsieh (2020)
Huang and Hsieh (2020)
Huang and Hsieh (2020)
Huang and Hsieh (2020)
Huang and Hsieh (2020)
Huang and Hsieh (2020)
Zhao et al. (2020)

Hui et al. (2021)
Zhou et al. (2022)
Zhou et al. (2022)

Gu et al. (2022)

Yang et al. (2022)

Yu et al. (2023)

Cao et al. (2023)

Wang et al. (2023a)

Wau et al. (2023b)

Shijiazhuang
Yuncheng
Wuhan
Taipei
Taipei
Taichung
Tainan
Kaohsiung
Kaohsiung
Yunlin
Chiayi
Pingtung
Nanjing
Weinan
Beijing
Beijing
Tianjin
Tianjin
Hefei
Hainan
Taiyuan

Qingdao

2018/7/6-2018/7/15
2018/1/20-2018/1/24
2017/4/26-2017/6/6
2017
2017
2017
2017
2017
2017
2017
2017
2017
2016
2019/7/1-2019/9/19
2020/11/5-2020/11/14
2020/11/15-2020/11/26
2019/11/1-2020/3/31
2020/12/1-2021/3/15
2020/8/18-2020/9/2
2019/1-2019/12
2021/7/16-2022/1/4
2020/3/11-2020/5/31

ppbv
ugm’
ppbv
pgm’
pgm’
pgm’
pgm’
ugm3
ugm’
ugm’
ugm3
ugm’
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv

ugm’

87.7
28.92
76.0
65.0
64.9
65.2
534
58.2
21.7
40.1
34.9
25.7
30.42
19.43
16.25
27.6
242
42.26
11.4
21.97

574

84.92
21.74
76.0
65.0
64.9
65.2
534
58.2
21.7
40.1
349
25.7
2291
11.21
9.35
27.6
24.13
13.22
11.39
21.97

57.45
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535
14.79
40.9
34.8
30.2
322
26.8
31.3
11.8
221
18.1
13.6
14.94
6.84
5.66
18.6
16.5
8.99
8.15
13.42

37.1

8.8
29
7.3
4.8
55
59
5.8
6.7
3.0
4.4
3.9
3.2
3.3
1.46
1.36
4.3
3.99
2.62
1.32

5.96

20.02
2.25
24.7
245
275
26.3
19.9
18.9
6.0
13.0
11.0
4.4
242
2.05
1.43
2.5
2.18
161
1.03
1.57

13.8

2.6
1.8
31
1.0
1.8
0.8
1.0
15
0.7
0.5
1.9
4.5
2.25
0.86
0.9
2.2

1.46

0.89
1.98
0.59

4.36
5.52

4.56

3.02
2.65
2.31



Liu et al. (2023b)

Liu et al. (2023b)
Tan et al. (2021)
Cui et al. (2024a)
He et al. (2024)
Liu et al. (2025)
Liu et al. (2023c)
Wang et al. (2024a)
Zhang et al. (2024a)
Ren et al. (2024)
Wang et al. (2024b)
Li et al. (2020)

Jain et al. (2022)

Beijing
Beijing
Hong Kong
Shijiazhuang
Guangzhou
Shijiazhuang
Jinan
Zhengzhou
Langfang
Shanghai
Zibo
Hong Kong
Delhi

2019/8/1-2019/8/28

2019/8/1-2019/8/28
2018/8/27-2018/10/10
2022/6/1-2022/8/31
2022/3-2022/5
2021/5/15-2021/9/30
2022/8/17-2022/8/31
2019/5/23-2019/7/8
2018/8/25-2018/10/18
2020/4/1-2020/10/31
2022/5-2022/9
2013/1-2014/12
2019/1-2019/12

ppbv

ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
ppbv
pgm
ppbv
ppbv
ppbv
ppbv

94.26

20.69
9.38
23.2

26.88
34.4
12.0

23.74

227.4
53.1
36.1
41.6

143.9

86.6

12.27
1.27
15.91
26.88
22.05
12.0
17.33
128.48
18.8
41.6

53.51

8.31
10.2
17.7
14.2
7.2
10.42
97.1
16.9
11.6
28.3

2.53

1.21
0.47
2.78
2.38
3.00
2.3
2.37
6.37

0.7
6.66

29.88

2.36
0.8
1.94
4.65
3.39
0.98
2.33
25.01

3.6
3.33

0.68
0.39

1.01
2.19
1.46

15
221

2.9
3.62

7.34

8.12
791
5.49

7.00

2.42

23.2
116

0.33

0.07

The data from the same city at different or same times were derived mainly from multiple sampling sites.
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Table S2. Summary of methods for reducing reactive loss impacts in the VOC source analyses.

Literature Models Reduce reactive loss impact methods
Ling et al. (2011) PMF Input low reactivity species
Chen et al. (2019) PMF Input low reactivity species
Zheng et al. (2018) PMF Input low reactivity species
Ling and Guo (2014) PMF Input low reactivity species

Tan et al. (2020) PMF Input low reactivity species
Brown et al. (2007) PMF Input low reactivity species
Zhang et al. (2013) PMF Input low reactivity species
Guo et al. (2011) PMF Input low reactivity species
Shao et al. (2016) PMF Input low reactivity species

Liu et al. (2023a) PMF Input low reactivity species and calculate initial concentrations
Hui et al. (2019) PMF Input low reactivity species

Liu et al. (2020) PMF Input low reactivity species
Xiong et al. (2021) PMF Input low reactivity species

Zhu et al. (2017) PMF Input low reactivity species
Yang et al. (2019) PMF Input low reactivity species

Li et al. (2019) PMF Input low reactivity species

Liu et al. (2016) PMF Input low reactivity species
Guan et al. (2020) PMF Input low reactivity species
Gao et al. (2020) PMF Input low reactivity species
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Hui et al. (2020) PMF Input low reactivity species

Huang and Hsieh (2020) PMF Input low reactivity species

Zhao et al. (2020) PMF Input low reactivity species

Hui et al. (2021) PMF Input low reactivity species

Zhou et al. (2022) PMF Input low reactivity species

Gu et al. (2022) PMF Input low reactivity species

Yang et al. (2022) PMF Input low reactivity species and calculate initial concentrations
Yu et al. (2023) PMF Input low reactivity species

Cao et al. (2023) PMF Input low reactivity species

Wang et al. (2023a) PMF Input low reactivity species

Buzcu and Fraser (2006) PMF Input nighttime data

BuzcuGuven and Fraser (2008) PMF Input nighttime data

Lin and Milford (1994) CMB Decay factor method

Friedlander (1981) CMB Decay factor method

Na and Pyo Kim (2007) CMB Decay factor method

He et al. (2019) PMF Calculate initial concentration

Wang et al. (2023b) PMF Calculate initial concentration

Sun et al. (2016) PMF Calculate initial concentration

Zou et al. (2023) PMF Calculate initial concentration

Wu et al. (2023a) PMF Calculate initial concentration

Wu et al. (2023b) PMF Input low reactivity species and calculate initial concentrations
Cui et al. (2024a) PMF Input low reactivity species and calculate initial concentrations
Ren et al. (2024) PMF Calculate initial concentration

Chen et al. (2023) PMF Calculate initial concentration
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Hua et al. (2023) PMF Calculate initial concentration

He et al. (2024) PMF Calculate initial concentration
Liu et al. (2023c) PMF Calculate initial concentration
Wang et al. (2024a) PMF Calculate initial concentration
Zhang et al. (2024a) PMF Calculate initial concentration
Borlaza-Lacoste et al. (2024) PMF Calculate initial concentration
Cui et al. (2024b) MLR, PAPM, and PMF Calculate initial concentration
Zhu et al. (2021) PAPM /
de Gouw et al. (2005) PAPM /
Huang et al. (2020) PAPM /
Yuan et al. (2012) PAPM /
Wang et al. (2016) PAPM /
Han et al. (2019) PAPM /
Wau et al. (2020) PAPM /
de Gouw et al. (2017) PAPM Calculate initial concentration
de Gouw et al. (2018) PAPM Calculate initial concentration

PMF represents positive matrix factorization, CMB represents chemical mass balance, PAPM represents photochemical age-based parameterization method, and MLR represents multiple

linear regression.
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Table S3. The type and quantity of input species in PMF for VOC source apportionment in the publications.

Literature Ian.Jt PAMS Alkanes  Alkenes Aromatic Alkyne OVOCs Halohydrocarbons Others
Species hydrocarbons
Ling et al. (2011) 22 22 10 3 8 1 0 0 0
Chen et al. (2019) 27 27 17 3 6 1 0 0 0
Zheng et al. (2018) 20 20 14 1 4 1 0 0 0
Ling and Guo (2014) 25 25 12 3 9 1 0 0 0
Tan et al. (2020) 82 54 29 8 16 1 14 14 0
Brown et al. (2007) 31 31 19 2 9 1 0 0 0
Zhang et al. (2013) 33 33 13 6 13 1 0 0 0
Guo et al. (2011) 16 16 9 1 5 1 0 0 0
Shao et al. (2016) 33 33 15 6 11 1 0 0 0
Liu et al. (2023a) 32 32 17 5 9 1 0 0 0
Hui et al. (2019) 43 35 18 6 10 1 0 7 1
Liu et al. (2020) 39 31 15 6 9 1 5 2 1
Xiong et al. (2021) 30 26 14 3 8 1 3 1 0
Zhu et al. (2021) 28 28 14 4 9 1 0 0 0
Yang et al. (2019) 48 25 9 5 10 1 7 15 1
Lietal. (2019) 30 30 15 8 6 1 0 0 0
Liu et al. (2016) 31 31 17 5 9 0 0 0 0
Guan et al. (2020) 35 15 6 4 4 1 12 7 1
Gao et al. (2020) 37 37 19 7 10 1 0 0 0
Hui et al. (2020) 41 32 16 4 11 1 2 7 1
Huang and Hsieh (2020) 15 15 7 2 5 1 0 0 0
Zhao et al. (2020) 25 25 11 6 7 1 0 0 0
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Hui et al. (2021)
Zhou et al. (2022)
Gu et al. (2022)
Yang et al. (2022)
Yu et al. (2023)
Cao et al. (2023)
Wang et al. (2023a)
Wau et al. (2023b)
Li et al. (2023)

Li et al. (2023)

Liu et al. (2023b)
Tan et al. (2021)
He et al. (2024)
Zhang et al. (2024a)
Wang et al. (2024a)
Cui et al. (2024a)
Ren et al. (2024)
Chen et al. (2023)
He et al. (2019)
Hua et al. (2023)
Mishra et al. (2023)
Liu et al. (2025)
Liu et al. (2023c)
Zhao et al. (2004)
Li et al. (2020)

Borlaza-Lacoste et al. (2024)

30
38
30
30
27
34
35
27
34
24
29
16
26
35
28
37
58
31
49
25
24
30
26
13
20
54

24
19
30
30
17
34
34
27
30
20
26

26
29
24
30
36
31
47
21
24
30
26

19
54

13
10
16
17

16
16
14
18
14
14

14
16
14
16
20
16
27
11
13
17
14

28
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Table S4. Summary of kon values of PAMS species used in the publications.

kon (Carter, 2010)

kon (Atkinson and Arey, 2003)

kon (Carter, 2010)

Ko (Atkinson and Arey, 2003)

Species (cm® molecule™ st) Species (cm® molecule st)
Temperature 300K 298K Temperature 300K 298K
Alkanes Alkenes
Ethane 2.54E-13 2.48E-13 Ethylene 8.15E-12 8.52E-12
Propane 1.11E-12 1.09E-12 Propene 2.60E-11 2.63E-11
i-Butane 2.14E-12 - trans-2-Butene 6.32E-11 6.40E-11
n-Butane 2.38E-12 2.36E-12 1-Butene 3.11E-11 3.14E-11
2,2-Dimethylbutane 2.27E-12 2.23E-12 cis-2-Butene 5.58E-11 5.64E-11
2,3-Dimethylbutane 5.79E-12 5.78E-12 1-Pentene 3.14E-11 3.14E-11
n-Pentane 3.84E-12 3.80E-12 trans-2-Pentene 6.70E-11 6.70E-11
i-Pentane 3.60E-12 - cis-2-Pentene 6.50E-11 6.50E-11
Cyclopentane 5.02E-12 497E-12 Isoprene 9.96E-11 10.0E-11
Methylcyclopentane 5.68E-12 - 1-Hexene 3.70E-11 3.70E-11
2-Methylpentane 5.20E-12 5.20E-12 Aromatic hydrocarbons
3-Methylpentane 5.20E-12 5.20E-12 Benzene 1.22E-12 1.22E-12
2,4-Dimethylpentane 4.77E-12 4.77E-12 Toluene 5.58E-12 5.63E-12
2,3-Dimethylpentane 7.15E-12 - Ethylbenzene 7.00E-12 7.00E-12
2,3,4-Trimethylpentane  6.60E-12 6.60E-12 0-Xylene 1.36E-11 1.36E-11
2,2,4-Trimethylpentane  3.38E-12 3.34E-12 i-Propylbenzene 6.30E-12 6.30E-12
n-Hexane 5.25E-12 5.20E-12 n-Propylbenzene 5.80E-12 5.80E-12
3-Methylhexane 7.17E-12 - m-Ethyltoluene 1.86E-11 1.86E-11
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Methylcyclohexane 9.64E-12 9.64E-12 p-Ethyltoluene
Cyclohexane 7.02E-12 6.97E-12 o-Ethyltoluene
2-Methylhexane 6.89E-12 - 1,3,5-Trimethylbenzene
n-Heptane 6.81E-12 6.76E-12 1,2,4-Trimethylbenzene
2-Methylheptane 8.31E-12 - 1,2,3-Trimethylbenzene
3-Methylheptane 8.59E-12 - m-Diethylbenzene
n-Octane 8.16E-12 8.11E-12 p-Diethylbenzene
n-Nonane 9.75E-12 9.70E-12 Styrene
n-Decane 1.10E-11 1.10E-11 m-Xylene

Alkyne p-Xylene
Acetylene 7.56E-13 -

1.18E-11
1.19E-11
5.67E-11
3.25E-11
3.27E-11

5.80E-11
2.31E-11
1.43E-11

1.18E-11
1.19E-11
5.67E-11
3.25E-11
3.27E-11

5.80E-11
2.31E-11
1.43E-11
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Table S5. Summary of estimation methods for calculating photochemical age (reaction time, At) in the publications.

Number Study city or area At calculation method Publication Year Literature
1 Sydney Species ratio method 1983 Nelson and Quigley (1983)
2 Nashville Sequential reaction model 2001 Stroud et al. (2001)
3 Boston Species ratio and sequential reaction model 2005 de Gouw et al. (2005)
4 NOAA aircraft data Species ratio method 2007 Parrish et al. (2007)
5 NOAA aircraft data Species ratio and sequential reaction model 2007 Warneke et al. (2007)
6 Beijing Sequential reaction model 2008 Xie et al. (2008)
7 Beijing Species ratio method 2011 Shao et al. (2011)
8 Beijing Species ratio method 2012 Yuan et al. (2012)
9 Shanghai Species ratio method 2013 Wang et al. (2013)
10 Heshan (PRD) Species ratio method 2016 Wang et al. (2016)
11 Beijing Species ratio method 2016 Sun et al. (2016)
12 Beijing Species ratio method 2018 Gao et al. (2018)
13 Heshan (PRD) Species ratio method 2019 He et al. (2019)
14 Shenzhen Species ratio method 2019 Huang et al. (2019)
15 Beijing Species ratio method 2021 Zhan et al. (2021)
16 Guangzhou Species ratio method 2021 Fang et al. (2021)
17 Tianjin Species ratio method 2022 Yang et al. (2022)
18 Beijing Species ratio and sequential reaction model 2023 Wu et al. (2023a)
19 Handan Species ratio method 2022 Wei et al. (2022)
20 Pune Species ratio method 2022 Kalbande et al. (2022)
21 Tianjin Species ratio method 2023 Liu et al. (2023a)
22 Tianjin and Guangzhou Local parameter method 2023 Wang et al. (2023b)
23 Wuhan Species ratio method 2021 Zheng et al. (2021)
24 Tianjin Local parameter method 2022 Wang et al. (2022)
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25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Jiaozhou

East Asia

Toronto

Guangzhou
Guangzhou

Langfang

Zhengzhou
Shijiazhuang

PRD region (petroleum refinery)
Beijing

Wuhan

Shanghai

Zibo

Da Wan Shan Island (PRE)
Taipei

Taiyuan

Changdao Island
Taiyuan

Jinan

Pasadena

Pasadena

Bronx, New York City

Species ratio method

Isotopic hydrocarbon clock method
Isotopic hydrocarbon clock method
Isotopic hydrocarbon clock method
Species ratio method

Species ratio method

Species ratio and sequential reaction model
Species ratio method

Species ratio and sequential reaction model
Species ratio method

Species ratio method

Species ratio method

Species ratio method

Species ratio method

Species ratio method

Species ratio method

Species ratio method

Species ratio method

Species ratio method

Species ratio method

Species ratio method

Species ratio method

Species ratio method

2023
2000
2009
2016
2023
2024
2024
2024
2024
2024
2022
2023
2024
2024
2024
2023
2024
2013
2023
2023
2017
2018
2024

Wau et al. (2023b)
Rudolph and Czuba (2000)
Saito et al. (2009)
Kornilova et al. (2016)
Zou et al. (2023)

He et al. (2024)

Zhang et al. (2024a)
Wang et al. (2024a)
Cui et al. (2024a)
Zhang et al. (2024b)
Ma et al. (2022)

Xu et al. (2023)

Ren et al. (2024)
Wang et al. (2024b)
Sun et al. (2024)

Chen et al. (2023)

Cui et al. (2024b)
Yuan et al. (2013)

Hua et al. (2023)

Liu et al. (2023c)

de Gouw et al. (2017)
de Gouw et al. (2018)
Borlaza-Lacoste et al. (2024)

“Local parameter method” was defined that At was estimated based on the distributions of emission sources and wind directions around the receptor measure site.
PRD represents Pearl River Delta, PRE represents Pearl River Estuary.

S16 /S35



Table S6. Primary initial ratios of reference species used in different publications.

Literature T/B® X/B® E/X® X/EY E/O® O/E" iB/PY  B/124T" Methods Time (LT)
de Gouw et al. (2005) 3.7 - - - - - - - Based on observed data -

Warneke et al. (2007) 425 - - - - - - - Based on observed data -

Yuan et al. (2012) - 22 - - - - - - Based on observed data 00:00-05:00
Wang et al. (2013) - - 05 - - - - - Based on emission inventory -

Wang et al. (2016) - - - 20 - - - - Based on source profiles -

Sun et al. (2016) - - - 18 - - - - Based on observed data 00:00-05:00
Gao et al. (2018) - - 039 - 132 - - - Based on observed data -

He et al. (2019) - - 0.62 - - - - - Based on observed data 00:00-05:00
Han et al. (2020) - - - 1.04 - - - - Based on observed data 00:00-06:00
Fang et al. (2021) - - 05 - - - - - Based on observed data 00:00-04:00
Yang et al. (2022) 3.14 - - - - - - - Based on observed data 20:00-05:00
Wau et al. (2023a) - - - 247 - - - - Based on observed data

Liu et al. (2023a) - - 022 - - - - - Based on observed data 00:00-05:00
Kong et al. (2023a) - - 0.23 - - - - - Based on observed data 21:00-02:00
Lietal. (2021) - - 075 - - - - - Based on observed data 03:00-07:00
Zou et al. (2021) - - 050 - 130 - - - Based on observed data 19:00-06:00
Shao et al. (2011) - - - - - - - - Based on observed NOx/NOy >80% data -

Zou et al. (2023) - - - 20 - - - - Based on summer observed data 20:00-06:00
Zou et al. (2023) - - - 18 - - - - Based on autumn observed data 20:00-06:00
He et al. (2024) - - - 18 - - - - Based on spring observed data 19:00-06:00
Zhang et al. (2024a) - - - 2.83 - - - - Based on observed data 01:00-06:00
Wang et al. (2024a) - - - - - - - 1.7 Based on emission inventory -

Cui et al. (2024a) 448 - - - - - - - Based on summer observed data 23:00-03:00
Sun et al. (2024) - - 0.62 - - - - Based on observed data 05:00
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Chen et al. (2023)
Cui et al. (2024b)
Cui et al. (2024b)
Cui et al. (2024b)
Cui et al. (2024b)
Yuan et al. (2013)
Hua et al. (2023)

Liu et al. (2023c)

de Gouw et al. (2017)

Borlaza-Lacoste et al. (2024)

- 0.23

3.47

4.42

119 - -
122 - -
1.26 - -
124 - -

314 - -

- 1.75

Based on observed data 0:00-05:00
Based on observed data -

Based on observed data -

Based on observed data -

Based on observed data -

Based on observed data 0:00-06:00
Based on observed data 19:00-08:00
Based on observed data -

Based on observed data -

Based on observed data 0:00-05:00

adenotes Toluene/Benzene; Pdenotes m,p-Xylene/Benzene; cdenotes Ethylbenzene/m,p-Xylene; ddenotes m,p-Xylene/Ethylbenzene; édenotes Ethylbenzene/o-Xylene;
fdenotes 0-Xylene/Ethylbenzene; 9denotes i-Butene/Propene; "denotes Benzene/1,2,4-Trimethylbenzene; LT denotes local time.

Table S7. Summary of relevant parameters for source analyses of OVOCs using the photochemical-age parameter method in publications.

City Tracer species Methods to determine parameters Literature

Shenzhen Benzene linear least-squares fits Zhu et al. (2021)
NEAQS data Acetylene linear least-squares fit de Gouw et al. (2005)
Beijing and Shenzhen Benzene least-squares fit Huang et al. (2020)
Beijing Acetylene least-squares fit Yuan et al. (2012)
Heshan CO least-squares fit Wang et al. (2016)
Wangdu Benzene linear least-squares fits Han et al. (2019)
Guangzhou Acetylene linear least-squares fits Wau et al. (2020)

S18 /S35



Table S8. Summary of parameter values obtained utilizing a least-squares linear fit in the photochemical-age parameter method.

ERovoc ERprecursor Kovoc Kprecursor E Rbiogenic [background]

ppbv [ppbv Tracer]* 10*2cm3®molecule!s? ppbv [ppbv isoprene]*  ppbv or pptv
Beijing (Huang et al., 2020)
Methanol 16.95 3.04 0.94 3.12 1.92 3.95
Formaldehyde 3.14 9.39 9.7 8.15 1.34 1.25
Acetaldehyde 1.85 6.89 15 4.45 0.69 0.48
Acetone 1.09 4.26 0.17 4.76 0.63 1.36
MEK 0.72 3.89 1.22 1.26 0.14 0.08
Shenzhen (Huang et al., 2020)
Methanol 16.43 8.42 0.94 7.96 1.24 1.01
Formaldehyde 1.14 15.69 9.7 8.63 0.80 0.24
Acetaldehyde 0.71 14.12 15 14.74 0.53 0.10
Acetone 151 13.31 0.17 14.51 0.64 0.81
MEK 1.16 8.97 1.22 9.51 0.14 0.06
NEAQS data (de Gouw et al., 2005)
Acetaldehyde 0.83 £0.07 6.9 0.9 15 2.3 0.063 +=0.004 150 +10
Propanal 0.24 £0.02 3+1 20 1.3 0.010 +=0.001 22 5
Acetone 1.2+0.2 1.6 05 0.17 4 +3 0.23 +0.01 960 +40
MEK 0.26 £0.02 1+2 1.22 7 X2 0.031 +0.001 31 +5
Methanol 2.3 0.2 0 0.94 0 0.44 +0.02 1280 =70
Ethanol 0.96 +0.04 0 3.2 0 0.022 +=0.005 90 =10
Formic acid 0 0.5 0.4 6£3 0.26 =0.03 150 +£90
Acetic acid 0.0x04 1 0.4 0.8 7x4 0.19 +0.02 90 =70

Beijing (Yuan et al., 2012)
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Formaldehyde 0.72 +0.11 6.40 9.4 2.87 0.98 +0.07 0.94 +0.21

Acetaldehyde 0.72 £0.05 3.45 15 241 0.17 £0.03 0.29 £0.10
Propanal 0.02 £0.02 2.04 20 2.45 0.14 £0.01 0.31 £0.03
n-Butanal 0.002 +0.005 1.66 24 0.58 0.04 +=0.00 0.10 +£0.01
Acetone 0.57 +£0.05 1.47 0.17 1.05 0.18 +£0.03 1.98 +0.09
MEK 0.31 £0.01 0 1.22 0 0.07 £0.01 0.06 +£0.04
Methanol 343 +0.11 0 0.94 0 0.02 £0.11 5.76 £0.37

Units of ERovoc and ERprecursor are ppbv [ppbv Benzene] of Huang et al. (2020); units of ERovoc and ERprecursor are ppbv [ppbv C2H2]! of de Gouw et al. (2005) and Yuan et al. (2012); unit of
[background] is ppbv for Huang et al. (2020) and Yuan et al. (2012); unit of [background] is pptv for de Gouw et al. (2005).

Table S9. Summary of publications on estimation methods of consumed VOCs (i.e., CVOCSs) and models used for their source analyses.

Literature Publication year Calculation methods Apportionment methods
Ma et al. (2022) 2022 Difference method -

Gao et al. (2018) 2018 Difference method -

Gu et al. (2023) 2023 Difference method PMF

Zhan et al. (2021) 2021 Difference method -

Chen et al. (2023) 2023 Difference method -

Wang et al. (2013) 2013 Difference method -

Liu et al. (2023a) 2023 Difference method PMF

Wang et al. (2023b) 2023 Difference method PMF/ME2-SR
Xie et al. (2008) 2008 Isoprene loss reference method -

Wang et al. (2022) 2022 Difference method PMF/ME2-SR
Wiedinmyer et al. (2001) 2001 Isoprene loss reference method -

Kong et al. (2023b) 2023 Difference method PMF

He et al. (2024) 2024 Difference method PMF
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Zhang et al. (2024a)
Wang et al. (2024a)
Cui et al. (2024a)

2024
2024
2024

Difference method
Difference method
Difference method

PMF

PMF/ME2-SR

PMF

PMF/ME2-SR denotes Positive Matrix Factorization/Multilinear Engine 2-Species Ratio.

Table S10. Summary of information related to VOC measured and initial concentrations, and chemical losses in the reviewed publications.

City (literature) Sy e SeosEEET Initial concentration Numbers TVOC conc. (ppbv) CLrate 9
calculated time (LT) of species ocC® ICP CL® (%)
Beijing (Gao et al., 2018) 2013/03-2013/04  Spring 08:30-09:00 and 13:30-14:00 90 64.9 72.6 7.72 10.6
Qingdao (Gu et al., 2023) 2022/06-2022/08  Summer 06:00-19:00 89 20.2 65.3 45.1 69.1
Beijing (Zhan et al., 2021) 2019/08 Summer - 51 11.2 14.6 3.40 23.3
Taipei (Chen et al., 2023) 2020/03-2020/05  Spring 07:00-17:00 54 27.6 31.8 421 13.2
Taipei (Chen et al., 2023) 2020/06-2020/08  Summer 07:00-17:00 54 22.0 30.3 8.29 27.3
Taipei (Chen et al., 2023) 2020/09-2020/11 Autumn 07:00-17:00 54 20.6 22.1 1.48 6.71
Taipei (Chen et al., 2023) 2020/12-2021/02  Winter 07:00-17:00 54 24.8 25.6 0.76 2.97
Tianjin (Liu et al., 2023a) 2020/04-2020/08  Spring-Summer  06:00-23:00 54 19.4 - 17.8 56.5
Beijing (Ma et al., 2022) 2019/01-2019/12  Year 00:00-23:00 56 18.6 24.5 6.90 28.2
Tianjin (Wang et al., 2023b) 2018 Year - - 21.4 24.3 2.90 11.9
Guangzhou (Wang et al., 2023b) 2020 Year - - 29.6 34.8 5.20 14.9
Shanghai (Wang et al., 2013) 2009 Year 08:00-18:00 - 26.4 35.4 9.00 25.4
Shanghai (Wang et al., 2013) 2010 Year 08:00-18:00 - 24.5 34.1 9.60 28.2
Chengdu (Kong et al., 2023b) 2019 Spring 00:00-23:00 56 19.4 26.0 6.60 25.4
Chengdu (Kong et al., 2023b) 2019 Summer 00:00-23:00 56 19.3 25.1 5.90 235
Chengdu (Kong et al., 2023b) 2019 Autumn 00:00-23:00 56 235 26.6 3.10 11.7
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Chengdu (Kong et al., 2023b) 2019

Guangzhou (He et al., 2024) 2022

Langfang (Zhang et al., 2024a) 2018/08-2018/10
Zhengzhou (Wang et al., 2024a)  2019/05-2019/07
Shijiazhuang (Cui et al., 2024a)  2022/06-2022/08
Wuhan (Xu et al., 2023) 2020/01-2020/04
Shanghai (Ren et al., 2024) 2020/04-2020/10
Zibo (Wang et al., 2024b) 2022/05-2022/09
Jinan (Liu et al., 2023c) 2022/08
Borlaza-Lacoste et al. (2024) 2000-2021

Winter

Spring
Spring-Summer
Summer

05 polluted days

Summer

00:00-23:00
07:00-18:00
06:00-19:00

05:00-19:00
08:00-18:00
08:00-18:00
05:00-18:00
06:00-20:00
06:00-23:00

56
56
99
106
110
91
106
114
56
54

33.6
22.78
227.4°
23.74
23.2
23.9
47.1
36.1
12.0
9.74

35.9
26.88
244.8°
33.89
56.4
47.6
61.1
42.9
16.0
19.58

2.30
4.10
17.4¢
10.15
33.2
23.7
141
6.8
4.0
9.84

6.41
15.3
7.11
29.9
58.9
49.8
23.1
15.9
25.0
50.2

adenotes observation concentrations; ® denotes initial concentrations; ¢ denotes chemical loss; ¢ denotes the chemical loss rate (i.e., chemical loss><100/initial

concentration); ¢ denotes that unit is pg m.
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Table S11. Summary of concentrations and percentages of the consumed VOC species in the reviewed publications.

Alkanes Alkenes Aromatic Alkyne OVOCs Halo-
hydrocarbons hydrocarbons
City (literature) Studying period  Season
Conc.®  Per.®  Conc. Per. Conc. Per.  Conc.  Per. Conc. Per.  Conc. Per.
(pPbv) (%)  (ppbv) (%)  (ppbv) (%) (pbv) (%)  (ppbv) (%) (ppbv) (%)
Beijing (Gao et al., 2018) 2013/03-2013/04  Spring 0.83 10.7 5.26 68.0 151 195 013 1.68 - - - -
Qingdao (Gu et al., 2023) 2022/06-2022/08  Summer 1.05 2.33 42.1 93.3 1.72 381 002 0.04 0.21 0.5 0.04 0.1
Beijing (Zhan et al., 2021) 2019/08 Summer 0.21 6.18 2.74 80.6 0.45 132 0.00 0.00 - - - -
Taipei (Chen et al., 2023) 2020/03-2020/05  Spring 0.53 12.8 2.52 61.2 1.03 251 004 085 - - - -
Taipei (Chen et al., 2023) 2020/06-2020/08  Summer 0.55 6.61 6.51 78.6 1.20 145 0.03 0.30 - - - -
Taipei (Chen et al., 2023) 2020/09-2020/11  Autumn 0.19 125 0.91 61.0 0.39 258 001 0.67 - - - -
Taipei (Chen et al., 2023) 2020/12-2021/02 Winter 0.12 15.7 0.42 554 0.21 275 0.01 1.33 - - - -
Tianjin (Liu et al., 2023a) 2020/04-2020/08 Spring/Summer 143 8.04 15.6 87.8 0.75 421 0.03 0.17 - - - -
Chengdu (Kong et al., 2023b) 2019/01-2019/12  Spring 0.60 9.23 5.00 76.9 0.90 138 0.00 0.00 - - - -
Chengdu (Kong et al., 2023b) 2019/01-2019/12  Summer 0.70 11.9 3.40 57.6 1.80 305 000 0.00 - - - -
Chengdu (Kong et al., 2023b) 2019/01-2019/12 Autumn 0.50 16.1 1.40 45.2 1.20 38.7 0.00 0.00 - - - -
Chengdu (Kong et al., 2023b) 2019/01-2019/12 Winter 0.50 22.7 1.30 59.1 0.40 18.2 0.00 0.00 - - - -
Zhengzhou (Wang et al., 2024a) 2019/05-2019/07  Spring/Summer 1.10 111 6.61 65.4 2.20 215 - - 0.20 2.0 - -
Shijiazhuang (Cui et al., 2024a) 2022/06-2022/08 Summer 4.50 13.6 12.2 36.7 6.82 20.5 0.20 0.60 9.08 274 0.39 1.17
Jinan (Liu et al., 2023c) 2022/08 Summer 0.44 11.1 3.23 80.5 0.28 6.90 0.06 1.40 - - - -
NYC (Borlaza-Lacoste et al., 2024)  2000-2021 - 0.57 5.80 7.94 80.9 1.30 13.2 0.01 0.10 - - - -

adenotes consumed concentrations; ° denotes percentages of consumed concentrations of different species in total consumed concentrations. NYC represents New York City.
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Figure S1. The measured and initial concentrations of VOC groups, and their
consumed concentrations in Beijing (Gao et al., 2018; Zhan et al., 2021), Qingdao
(Gu et al., 2023), Tianjin (Liu et al., 2023a), Chengdu (Kong et al., 2023b), Taipei
(Chen et al., 2023), Shijiazhuang (Cui et al., 2024a), Jinan (Liu et al., 2023c),
Zhengzhou (Wang et al., 2024a), and New York City (Borlaza-Lacoste et al., 2024) in
the reviewed publications. The data of Beijing was the average value from the two

publications.
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