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Sect. S1 Estimation methods of the decay factors. 

Method 1: 

In 1981, Friedlander (1981) proposed treating an urban airshed as a continuous 

stirred tank reactor (CSTR) and relating the decay factor for a given species to its 

first-order reaction rate constant, ki. 

𝛼𝑖 = (1 + 𝑘𝑖𝜃)
−1                                   (1) 

𝜃 =
𝑉

𝑞
                                    (2) 

where αi represents the decay factor of species i, θ represents the average residence 

time, V is the reactor volume, and q is the flow rate. This method considered only the 

first-order reaction of a given species, and there was high uncertainty in the average 

residence time. 

Method 2: 

In 1994, Lin and Milford (1994) first estimated the decay factor utilizing the 

reaction rate constants of VOC species and “aging coefficients”. In 2007, Na and Pyo 

Kim (2007) also conducted a similar estimation utilizing this method. The specific 

estimation method of the decay factor (αij) was as follows: 

𝛼𝑖𝑗 = exp⁡(−𝑘𝑖𝜉)               (3) 

where ki is the rate constant for the reaction of species i with the OH radical, and ξ is 

an empirically estimated “aging coefficient”. To estimate ξ for a given sample, source 

contributions estimated with αij = 1.0 were used to calculate preliminary predicted 

concentrations, c*
i. With the normalized residual (Ei) for species i defined as: 

𝐸𝑖 =
𝑐𝑖
∗−𝑐𝑖

𝑐𝑖
                 (4) 

the linear expression: 

ln(𝐸𝑖 + 1) = −𝐴 + 𝜉𝑘𝑖              (5) 

where the ξ value can be estimated for each sample utilizing the linear regression. 

However, this method had two important limitations: First, for a given sample, the 

aging coefficient was assumed to be the same for all species and sources; second, 

rates of reaction of alkenes with NO3 radicals and O3 were neglected. 
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Table S1. Summary of sampling information and species concentration data from reviewed publications using PMF for VOC source analyses. 

Literature City/Region Study period Unit TVOCs PAMS Alkanes Alkenes Aromatic hydrocarbons Alkyne OVOCs Halohydrocarbons Others 

Ling et al. (2011) PRD region 2007/10/23-2007/12/1 μgm-3 81.01 81.01 27.84 5.08 43.53 4.56 - - - 

Chen et al. (2019) Taixi, Taiwan 2014 ppbv 11.19 11.19 6.28 2.11. 1.94 0.86 - - - 

Chen et al. (2019) Taixi, Taiwan 2015 ppbv 11.58 11.58 6.67 1.87 2.12 0.92 - - - 

Chen et al. (2019) Taixi, Taiwan 2016 ppbv 10.44 10.44 6.25 1.54 1.82 0.83 - - - 

Zheng et al. (2018) Junggar Basin 2014/9-2015/8 ppbv 145.83 145.83 129 9.52 4.28 3.03 - - - 

Ling and Guo (2014) Hong Kong 2010/9/6-2010/11/29 - - - - - - - - - - 

Tan et al. (2020) Chengdu 2017/7/31-2017/8/6 ppbv 14.4 14.34 10 0.89 1.01 2.44 - - - 

Tan et al. (2020) Chengdu 2017/8/7-2017/8/31 ppbv 11.8 11.77 6.28 2.57 0.79 2.13 - - - 

Tan et al. (2020) Chengdu 2017/7/31-2017/8/6 ppbv 52.8 31.38 16.5 3.77 7.85 3.26 13.3 7.7 - 

Tan et al. (2020) Chengdu 2017/8/7-2017/8/31 ppbv 34.9 21.9 12.3 2.79 4.41 2.4 7.68 4.9 - 

Tan et al. (2020) Chengdu 2017/7/31-2017/8/6 ppbv 60.6 32.94 18.4 4.46 7.27 2.81 20.5 6.7 - 

Tan et al. (2020) Chengdu 2017/8/7-2017/8/31 ppbv 47.0 32.73 23.7 3.12 3.32 2.59 9.81 4.14 - 

Brown et al. (2007) Los Angeles 
2001/7-9, 2002/7-9, 

2003/7-9 
ppbC 79 - - - - - - - - 

Brown et al. (2007) Los Angeles 
2001/7-9, 2002/7-9, 

2003/7-9 
ppbC 237 - - - - - - - - 

Zhang et al. (2013) Guangzhou 2009/11/8-2009/12/7 ppbv - - - - 9.26 - - - - 

Zhang et al. (2013) Guangzhou 2009/11/8-2009/12/7 ppbv - - - - 6.4 - - - - 

Zhang et al. (2013) Zengcheng 2009/11/8-2009/12/7 ppbv - - - - 2.5 - - - - 

Zhang et al. (2013) Wanqingsha 2009/11/8-2009/12/7 ppbv - - - - 10.4 - - - - 
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Guo et al. (2011) PRD center 2007/10-2007/12 ppbv 42 - - - - - - - - 

Guo et al. (2011) Hong Kong 2007/10-2007/13 ppbv 34 - - - - - - - - 

Shao et al. (2016) Nanjing 2013/5/15-2013/8/31 ppbv 34.4 34.4 14.98 7.35 9.06 3.01 - - - 

Liu et al. (2023a) Tianjin 2020/4/15-2020/8/31 ppbv 19.35 19.35 11.3 5.32 1.6 1.13 - - - 

Hui et al. (2019) Wuhan 2016/10/15-2016/10/20 ppbv 58.33 32.07 18.84 5.9 4.89 2.44 20.67 5.11 0.48 

Hui et al. (2019) Wuhan 2016/11/2-2016/11/6 ppbv 45.84 32.75 19.79 5.12 4.81 3.03 7.26 5.38 0.45 

Hui et al. (2019) Wuhan 2016/11/11-2016/11/16 ppbv 57.73 43.87 26.56 7.58 5.65 4.08 7.08 6.24 0.54 

Liu et al. (2020) Beijing 2016/4; 2016/7; 2016/10 ppbv 44 27.96 16.2 5.24 3.39 3.13 11 4.76 0.3 

Xiong et al. (2021) Chengdu 2018/6 ppbv 26.8 22.3 11.9 3.76 3.18 3.46 - 4.47 - 

Xiong et al. (2021) Chengdu 2019/1 ppbv 53.3 49.67 29.2 6.55 5.46 8.46 - 3.62 - 

Zhu et al. (2017) Mt. Tai 2014/6/4-2014/7/4 pptv 8040 7947 4464 906 1179 1398 - - 94 

Yang et al. (2019) Xianghe 2017/11/6-2018/1/29 ppbv 61.04 48.44 23.66 12.27 8.27 4.24 5.18 8.47 0.32 

Li et al. (2019) Zhengzhou 2017/5 ppbv 37.6 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/6 ppbv 34 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/7 ppbv 16 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/8 ppbv 21.5 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/9 ppbv 26.2 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/5 ppbv 29.3 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/6 ppbv 30.3 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/7 ppbv 20.7 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/8 ppbv 24.4 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/9 ppbv 34.2 - - - - - - - - 
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Li et al. (2019) Zhengzhou 2017/5 ppbv 31.7 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/6 ppbv 39.3 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/7 ppbv 19.6 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/8 ppbv 20.5 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/9 ppbv 30.4 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/5 ppbv 30.1 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/6 ppbv 28.3 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/7 ppbv 15.9 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/8 ppbv 26.1 - - - - - - - - 

Li et al. (2019) Zhengzhou 2017/9 ppbv 32.6 - - - - - - - - 

Liu et al. (2016) Tianjin 2015/3 ppbv 19.6 19.7 14.2 4.2 1.3 - - - - 

Liu et al. (2016) Tianjin 2015/4 ppbv 22.6 22.5 15.9 4.3 2.3 - - - - 

Liu et al. (2016) Tianjin 2015/5 ppbv 14.4 14.4 11.1 2.4 0.9 - - - - 

Liu et al. (2016) Tianjin 2015/6 ppbv 10.4 10.5 7.4 2.3 0.8 - - - - 

Liu et al. (2016) Tianjin 2015/7 ppbv 34.5 34.5 20.1 4.4 10 - - - - 

Liu et al. (2016) Tianjin 2015/8 ppbv 48.9 49 21.3 5.9 21.8 - - - - 

Liu et al. (2016) Tianjin 2015/9 ppbv 44.8 45 30 5.3 9.7 - - - - 

Liu et al. (2016) Tianjin 2015/1 ppbv 31.8 31.9 19.7 5.3 6.9 - - - - 

Liu et al. (2016) Tianjin 2014/11 ppbv 30 30 20.5 5.7 3.8 - - - - 

Liu et al. (2016) Tianjin 2014/12 ppbv 26.9 27 18.2 6.4 2.4 - - - - 

Liu et al. (2016) Tianjin 2015/1 ppbv 39.4 39.4 26.3 10.2 2.9 - - - - 

Liu et al. (2016) Tianjin 2015/2 ppbv 20.9 20.9 14.3 5.6 1 - - - - 
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Guan et al. (2020) Shijiazhuang 2018/7/6-2018/7/15 ppbv - - - - - - - - - 

Gao et al. (2020) Yuncheng 2018/1/20-2018/1/24 μgm-3 87.7 84.92 53.5 8.8 20.02 2.6 - - - 

Hui et al. (2020) Wuhan 2017/4/26-2017/6/6 ppbv 28.92 21.74 14.79 2.9 2.25 1.8 3.8 3.16 0.22 

Huang and Hsieh (2020) Taipei 2017 μgm-3 76.0 76.0 40.9 7.3 24.7 3.1 - - - 

Huang and Hsieh (2020) Taipei 2017 μgm-3 65.0 65.0 34.8 4.8 24.5 1.0 - - - 

Huang and Hsieh (2020) Taichung 2017 μgm-3 64.9 64.9 30.2 5.5 27.5 1.8 - - - 

Huang and Hsieh (2020) Tainan 2017 μgm-3 65.2 65.2 32.2 5.9 26.3 0.8 - - - 

Huang and Hsieh (2020) Kaohsiung 2017 μgm-3 53.4 53.4 26.8 5.8 19.9 1.0 - - - 

Huang and Hsieh (2020) Kaohsiung 2017 μgm-3 58.2 58.2 31.3 6.7 18.9 1.5 - - - 

Huang and Hsieh (2020) Yunlin 2017 μgm-3 21.7 21.7 11.8 3.0 6.0 0.7 - - - 

Huang and Hsieh (2020) Chiayi 2017 μgm-3 40.1 40.1 22.1 4.4 13.0 0.5 - - - 

Huang and Hsieh (2020) Pingtung 2017 μgm-3 34.9 34.9 18.1 3.9 11.0 1.9 - - - 

Zhao et al. (2020) Nanjing 2016 ppbv 25.7 25.7 13.6 3.2 4.4 4.5 - - - 

Hui et al. (2021) Weinan 2019/7/1-2019/9/19 ppbv 30.42 22.91 14.94 3.3 2.42 2.25 4.36 3.02 0.13 

Zhou et al. (2022) Beijing 2020/11/5-2020/11/14 ppbv 19.43 11.21 6.84 1.46 2.05 0.86 5.52 2.65 - 

Zhou et al. (2022) Beijing 2020/11/15-2020/11/26 ppbv 16.25 9.35 5.66 1.36 1.43 0.9 4.56 2.31 - 

Gu et al. (2022) Tianjin 2019/11/1-2020/3/31 ppbv 27.6 27.6 18.6 4.3 2.5 2.2 - - - 

Yang et al. (2022) Tianjin 2020/12/1-2021/3/15 ppbv 24.2 24.13 16.5 3.99 2.18 1.46 - - - 

Yu et al. (2023) Hefei 2020/8/18-2020/9/2 ppbv 42.26 13.22 8.99 2.62 1.61 - 22.13 5.63 1.3 

Cao et al. (2023) Hainan 2019/1-2019/12 ppbv 11.4 11.39 8.15 1.32 1.03 0.89 - - - 

Wang et al. (2023a) Taiyuan 2021/7/16-2022/1/4 ppbv 21.97 21.97 13.42 5 1.57 1.98 - - - 

Wu et al. (2023b) Qingdao 2020/3/11-2020/5/31 μgm-3 57.4 57.45 37.1 5.96 13.8 0.59 - - - 
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Liu et al. (2023b) Beijing 2019/8/1-2019/8/28 ppbv 94.26 86.6 53.51 2.53 29.88 0.68 7.34 - - 

Liu et al. (2023b) Beijing 2019/8/1-2019/8/28 ppbv 20.69 12.27 8.31 1.21 2.36 0.39 8.12 - - 

Tan et al. (2021) 

Cui et al. (2024a) 

He et al. (2024) 

Liu et al. (2025) 

Liu et al. (2023c) 

Wang et al. (2024a) 

Zhang et al. (2024a) 

Ren et al. (2024) 

Wang et al. (2024b) 

Li et al. (2020) 

Jain et al. (2022) 

Hong Kong 

Shijiazhuang 

Guangzhou 

Shijiazhuang 

Jinan 

Zhengzhou 

Langfang 

Shanghai 

Zibo 

Hong Kong 

Delhi 

2018/8/27-2018/10/10 

2022/6/1-2022/8/31 

2022/3-2022/5 

2021/5/15-2021/9/30 

2022/8/17-2022/8/31 

2019/5/23-2019/7/8 

2018/8/25-2018/10/18 

2020/4/1-2020/10/31 

2022/5-2022/9 

2013/1-2014/12 

2019/1-2019/12 

ppbv 

ppbv 

ppbv 

ppbv 

ppbv 

ppbv 

μgm-3 

ppbv 

ppbv 

ppbv 

ppbv 

9.38 

23.2 

26.88 

34.4 

12.0 

23.74 

227.4 

53.1 

36.1 

41.6 

143.9 

1.27 

15.91 

26.88 

22.05 

12.0 

17.33 

128.48 

- 

18.8 

41.6 

- 

- 

10.2 

17.7 

14.2 

7.2 

10.42 

97.1 

16.9 

11.6 

28.3 

- 

0.47 

2.78 

2.38 

3.00 

2.3 

2.37 

6.37 

- 

0.7 

6.66 

- 

0.8 

1.94 

4.65 

3.39 

0.98 

2.33 

25.01 

- 

3.6 

3.33 

- 

- 

1.01 

2.19 

1.46 

1.5 

2.21 

- 

- 

2.9 

3.62 

- 

7.91 

5.49 

- 

7.00 

- 

2.42 

23.2 

11.6 

9.4 

- 

- 

- 

1.8 

- 

5.00 

- 

3.92 

73.5 

- 

7.6 

- 

- 

0.2 

- 

- 

0.33 

- 

0.07 

- 

- 

- 

- 

- 

The data from the same city at different or same times were derived mainly from multiple sampling sites. 
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Table S2. Summary of methods for reducing reactive loss impacts in the VOC source analyses. 

Literature Models Reduce reactive loss impact methods 

Ling et al. (2011) PMF Input low reactivity species 

Chen et al. (2019) PMF Input low reactivity species 

Zheng et al. (2018) PMF Input low reactivity species 

Ling and Guo (2014) PMF Input low reactivity species 

Tan et al. (2020) PMF Input low reactivity species 

Brown et al. (2007) PMF Input low reactivity species 

Zhang et al. (2013) PMF Input low reactivity species 

Guo et al. (2011) PMF Input low reactivity species 

Shao et al. (2016) PMF Input low reactivity species 

Liu et al. (2023a) PMF Input low reactivity species and calculate initial concentrations 

Hui et al. (2019) PMF Input low reactivity species 

Liu et al. (2020) PMF Input low reactivity species 

Xiong et al. (2021) PMF Input low reactivity species 

Zhu et al. (2017) PMF Input low reactivity species 

Yang et al. (2019) PMF Input low reactivity species 

Li et al. (2019) PMF Input low reactivity species 

Liu et al. (2016) PMF Input low reactivity species 

Guan et al. (2020) PMF Input low reactivity species 

Gao et al. (2020) PMF Input low reactivity species 
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Hui et al. (2020) PMF Input low reactivity species 

Huang and Hsieh (2020) PMF Input low reactivity species 

Zhao et al. (2020) PMF Input low reactivity species 

Hui et al. (2021) PMF Input low reactivity species 

Zhou et al. (2022) PMF Input low reactivity species 

Gu et al. (2022) PMF Input low reactivity species 

Yang et al. (2022) PMF Input low reactivity species and calculate initial concentrations 

Yu et al. (2023) PMF Input low reactivity species 

Cao et al. (2023) PMF Input low reactivity species 

Wang et al. (2023a) PMF Input low reactivity species 

Buzcu and Fraser (2006) PMF Input nighttime data 

BuzcuGuven and Fraser (2008) PMF Input nighttime data 

Lin and Milford (1994) CMB Decay factor method 

Friedlander (1981) CMB Decay factor method 

Na and Pyo Kim (2007) CMB Decay factor method 

He et al. (2019) PMF Calculate initial concentration 

Wang et al. (2023b) PMF Calculate initial concentration 

Sun et al. (2016) PMF Calculate initial concentration 

Zou et al. (2023) PMF Calculate initial concentration 

Wu et al. (2023a) PMF Calculate initial concentration 

Wu et al. (2023b) 

Cui et al. (2024a) 

Ren et al. (2024) 

Chen et al. (2023) 

PMF 

PMF 

PMF 

PMF 

Input low reactivity species and calculate initial concentrations 

Input low reactivity species and calculate initial concentrations 

Calculate initial concentration 

Calculate initial concentration 
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Hua et al. (2023) 

He et al. (2024) 

Liu et al. (2023c) 

Wang et al. (2024a) 

Zhang et al. (2024a) 

Borlaza-Lacoste et al. (2024) 

Cui et al. (2024b) 

PMF 

PMF 

PMF 

PMF 

PMF 

PMF 

MLR, PAPM, and PMF 

Calculate initial concentration 

Calculate initial concentration 

Calculate initial concentration 

Calculate initial concentration 

Calculate initial concentration 

Calculate initial concentration 

Calculate initial concentration 

Zhu et al. (2021) PAPM / 

de Gouw et al. (2005) PAPM / 

Huang et al. (2020) PAPM / 

Yuan et al. (2012) PAPM / 

Wang et al. (2016) PAPM / 

Han et al. (2019) PAPM / 

Wu et al. (2020) 

de Gouw et al. (2017) 

de Gouw et al. (2018) 

PAPM 

PAPM 

PAPM 

/ 

Calculate initial concentration 

Calculate initial concentration 

PMF represents positive matrix factorization, CMB represents chemical mass balance, PAPM represents photochemical age-based parameterization method, and MLR represents multiple 

linear regression. 
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Table S3. The type and quantity of input species in PMF for VOC source apportionment in the publications. 

Literature 
Input 

Species 
PAMS Alkanes Alkenes 

Aromatic 

hydrocarbons 
Alkyne OVOCs Halohydrocarbons Others 

 

Ling et al. (2011) 22 22 10 3 8 1 0 0 0  

Chen et al. (2019) 27 27 17 3 6 1 0 0 0  

Zheng et al. (2018) 20 20 14 1 4 1 0 0 0  

Ling and Guo (2014) 25 25 12 3 9 1 0 0 0  

Tan et al. (2020) 82 54 29 8 16 1 14 14 0  

Brown et al. (2007) 31 31 19 2 9 1 0 0 0  

Zhang et al. (2013) 33 33 13 6 13 1 0 0 0  

Guo et al. (2011) 16 16 9 1 5 1 0 0 0  

Shao et al. (2016) 33 33 15 6 11 1 0 0 0  

Liu et al. (2023a) 32 32 17 5 9 1 0 0 0  

Hui et al. (2019) 43 35 18 6 10 1 0 7 1  

Liu et al. (2020) 39 31 15 6 9 1 5 2 1  

Xiong et al. (2021) 30 26 14 3 8 1 3 1 0  

Zhu et al. (2021) 28 28 14 4 9 1 0 0 0  

Yang et al. (2019) 48 25 9 5 10 1 7 15 1  

Li et al. (2019) 30 30 15 8 6 1 0 0 0  

Liu et al. (2016) 31 31 17 5 9 0 0 0 0  

Guan et al. (2020) 35 15 6 4 4 1 12 7 1  

Gao et al. (2020) 37 37 19 7 10 1 0 0 0  

Hui et al. (2020) 41 32 16 4 11 1 2 7 1  

Huang and Hsieh (2020) 15 15 7 2 5 1 0 0 0  

Zhao et al. (2020) 25 25 11 6 7 1 0 0 0  
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Hui et al. (2021) 30 24 13 5 5 1 1 4 1  

Zhou et al. (2022) 38 19 10 3 5 1 9 9 1  

Gu et al. (2022) 30 30 16 5 8 1 0 0 0  

Yang et al. (2022) 30 30 17 5 7 1 0 0 0  

Yu et al. (2023) 27 17 8 4 5 0 4 6 0  

Cao et al. (2023) 34 34 16 8 9 1 0 0 0  

Wang et al. (2023a) 35 34 16 9 8 1 1 0 0  

Wu et al. (2023b) 27 27 14 6 6 1 0 0 0  

Li et al. (2023) 34 30 18 2 9 1 4 0 0  

Li et al. (2023) 24 20 14 2 4 0 4 0 0  

Liu et al. (2023b) 29 26 14 4 7 1 3 0 0  

Tan et al. (2021) 

He et al. (2024) 

Zhang et al. (2024a) 

Wang et al. (2024a) 

Cui et al. (2024a) 

Ren et al. (2024) 

Chen et al. (2023) 

He et al. (2019) 

Hua et al. (2023) 

Mishra et al. (2023) 

Liu et al. (2025) 

Liu et al. (2023c) 

Zhao et al. (2004) 

Li et al. (2020) 

Borlaza-Lacoste et al. (2024) 

16 

26 

35 

28 

37 

58 

31 

49 

25 

24 

30 

26 

13 

20 

54 

4 

26 

29 

24 

30 

36 

31 

47 

21 

24 

30 

26 

9 

19 

54 

0 

14 

16 

14 

16 

20 

16 

27 

11 

13 

17 

14 

0 

8 

28 

1 

3 

5 

1 

5 

4 

6 

6 

4 

4 

5 

3 

2 

4 

9 

3 

8 

7 

8 

8 

11 

8 

13 

6 

6 

7 

8 

7 

6 

16 

0 

1 

1 

1 

1 

1 

1 

1 

0 

1 

1 

1 

0 

1 

1 

7 

0 

4 

1 

7 

11 

0 

2 

3 

0 

0 

0 

3 

0 

0 

0 

0 

2 

3 

0 

11 

0 

0 

0 

0 

0 

0 

0 

0 

0 

5 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

1 

1 

0 
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Table S4. Summary of kOH values of PAMS species used in the publications. 

Species 
kOH (Carter, 2010) kOH (Atkinson and Arey, 2003)  

Species 
kOH (Carter, 2010) kOH (Atkinson and Arey, 2003) 

(cm3 molecule-1 s-1)  (cm3 molecule-1 s-1) 

Temperature 300ºK 298ºK  Temperature 300ºK 298ºK 

Alkanes  Alkenes 

Ethane 2.54E-13 2.48E-13  Ethylene 8.15E-12 8.52E-12 

Propane 1.11E-12 1.09E-12  Propene 2.60E-11 2.63E-11 

i-Butane 2.14E-12 -  trans-2-Butene 6.32E-11 6.40E-11 

n-Butane 2.38E-12 2.36E-12  1-Butene 3.11E-11 3.14E-11 

2,2-Dimethylbutane 2.27E-12 2.23E-12  cis-2-Butene 5.58E-11 5.64E-11 

2,3-Dimethylbutane 5.79E-12 5.78E-12  1-Pentene 3.14E-11 3.14E-11 

n-Pentane 3.84E-12 3.80E-12  trans-2-Pentene 6.70E-11 6.70E-11 

i-Pentane 3.60E-12 -  cis-2-Pentene 6.50E-11 6.50E-11 

Cyclopentane 5.02E-12 4.97E-12  Isoprene 9.96E-11 10.0E-11 

Methylcyclopentane 5.68E-12 -  1-Hexene 3.70E-11 3.70E-11 

2-Methylpentane 5.20E-12 5.20E-12  Aromatic hydrocarbons 

3-Methylpentane 5.20E-12 5.20E-12  Benzene 1.22E-12 1.22E-12 

2,4-Dimethylpentane 4.77E-12 4.77E-12  Toluene 5.58E-12 5.63E-12 

2,3-Dimethylpentane 7.15E-12 -  Ethylbenzene 7.00E-12 7.00E-12 

2,3,4-Trimethylpentane 6.60E-12 6.60E-12  o-Xylene 1.36E-11 1.36E-11 

2,2,4-Trimethylpentane 3.38E-12 3.34E-12  i-Propylbenzene 6.30E-12 6.30E-12 

n-Hexane 5.25E-12 5.20E-12  n-Propylbenzene 5.80E-12 5.80E-12 

3-Methylhexane 7.17E-12 -  m-Ethyltoluene 1.86E-11 1.86E-11 
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Methylcyclohexane 9.64E-12 9.64E-12  p-Ethyltoluene 1.18E-11 1.18E-11 

Cyclohexane 7.02E-12 6.97E-12  o-Ethyltoluene 1.19E-11 1.19E-11 

2-Methylhexane 6.89E-12 -  1,3,5-Trimethylbenzene 5.67E-11 5.67E-11 

n-Heptane 6.81E-12 6.76E-12  1,2,4-Trimethylbenzene 3.25E-11 3.25E-11 

2-Methylheptane 8.31E-12 -  1,2,3-Trimethylbenzene 3.27E-11 3.27E-11 

3-Methylheptane 8.59E-12 -  m-Diethylbenzene - - 

n-Octane 8.16E-12 8.11E-12  p-Diethylbenzene - - 

n-Nonane 9.75E-12 9.70E-12  Styrene 5.80E-11 5.80E-11 

n-Decane 1.10E-11 1.10E-11  m-Xylene 2.31E-11 2.31E-11 

Alkyne  p-Xylene 1.43E-11 1.43E-11 

Acetylene 7.56E-13 -     
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Table S5. Summary of estimation methods for calculating photochemical age (reaction time, Δt) in the publications. 

Number Study city or area Δt calculation method Publication Year Literature 

1 Sydney Species ratio method 1983 Nelson and Quigley (1983) 

2 Nashville Sequential reaction model 2001 Stroud et al. (2001) 

3 Boston  Species ratio and sequential reaction model 2005 de Gouw et al. (2005) 

4 NOAA aircraft data Species ratio method 2007 Parrish et al. (2007) 

5 NOAA aircraft data Species ratio and sequential reaction model 2007 Warneke et al. (2007) 

6 Beijing Sequential reaction model 2008 Xie et al. (2008) 

7 Beijing Species ratio method 2011 Shao et al. (2011) 

8 Beijing Species ratio method 2012 Yuan et al. (2012) 

9 Shanghai Species ratio method  2013 Wang et al. (2013) 

10 Heshan (PRD) Species ratio method 2016 Wang et al. (2016) 

11 Beijing Species ratio method 2016 Sun et al. (2016) 

12 Beijing Species ratio method 2018 Gao et al. (2018) 

13 Heshan (PRD) Species ratio method 2019 He et al. (2019) 

14 Shenzhen Species ratio method 2019 Huang et al. (2019) 

15 Beijing Species ratio method 2021 Zhan et al. (2021) 

16 Guangzhou Species ratio method 2021 Fang et al. (2021) 

17 Tianjin Species ratio method 2022 Yang et al. (2022) 

18 Beijing Species ratio and sequential reaction model 2023 Wu et al. (2023a) 

19 Handan Species ratio method 2022 Wei et al. (2022) 

20 Pune Species ratio method 2022 Kalbande et al. (2022) 

21 Tianjin Species ratio method 2023 Liu et al. (2023a) 

22 Tianjin and Guangzhou Local parameter method 2023 Wang et al. (2023b) 

23 Wuhan Species ratio method 2021 Zheng et al. (2021) 

24 Tianjin Local parameter method 2022 Wang et al. (2022) 
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25 Jiaozhou Species ratio method 2023 Wu et al. (2023b) 

26 - Isotopic hydrocarbon clock method 2000 Rudolph and Czuba (2000) 

27 East Asia Isotopic hydrocarbon clock method 2009 Saito et al. (2009) 

28 Toronto Isotopic hydrocarbon clock method 2016 Kornilova et al. (2016) 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

Guangzhou 

Guangzhou 

Langfang 

Zhengzhou 

Shijiazhuang 

PRD region (petroleum refinery) 

Beijing 

Wuhan 

Shanghai 

Zibo 

Da Wan Shan Island (PRE) 

Taipei 

Taiyuan 

Changdao Island 

Taiyuan 

Jinan 

Pasadena 

Pasadena 

Bronx, New York City 

Species ratio method 

Species ratio method 

Species ratio and sequential reaction model 

Species ratio method 

Species ratio and sequential reaction model 

Species ratio method 

Species ratio method 

Species ratio method 

Species ratio method 

Species ratio method 

Species ratio method 

Species ratio method 

Species ratio method 

Species ratio method 

Species ratio method 

Species ratio method 

Species ratio method 

Species ratio method 

Species ratio method 

2023 

2024 

2024 

2024 

2024 

2024 

2022 

2023 

2024 

2024 

2024 

2023 

2024 

2013 

2023 

2023 

2017 

2018 

2024 

Zou et al. (2023) 

He et al. (2024) 

Zhang et al. (2024a) 

Wang et al. (2024a) 

Cui et al. (2024a) 

Zhang et al. (2024b) 

Ma et al. (2022) 

Xu et al. (2023) 

Ren et al. (2024) 

Wang et al. (2024b) 

Sun et al. (2024) 

Chen et al. (2023) 

Cui et al. (2024b) 

Yuan et al. (2013) 

Hua et al. (2023) 

Liu et al. (2023c) 

de Gouw et al. (2017) 

de Gouw et al. (2018) 

Borlaza-Lacoste et al. (2024) 

 “Local parameter method” was defined that Δt was estimated based on the distributions of emission sources and wind directions around the receptor measure site. 

PRD represents Pearl River Delta, PRE represents Pearl River Estuary. 
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Table S6. Primary initial ratios of reference species used in different publications. 

Literature T/Ba X/Bb E/Xc X/Ed E/Oe O/Ef iB/Pg B/124Th Methods Time (LT)  

de Gouw et al. (2005) 3.7 - - - - - - - Based on observed data -  

Warneke et al. (2007) 4.25 - - - - - - - Based on observed data -  

Yuan et al. (2012) - 2.2 - - - - - - Based on observed data 00:00-05:00  

Wang et al. (2013) - - 0.5 - - - - - Based on emission inventory -  

Wang et al. (2016) - - - 2.0 - - - - Based on source profiles -  

Sun et al. (2016) - - - 1.8 - - - - Based on observed data 00:00-05:00  

Gao et al. (2018) - - 0.39 - 1.32 - - - Based on observed data -  

He et al. (2019) - - 0.62 - - - - - Based on observed data 00:00-05:00  

Han et al. (2020) - - - 1.04 - - - - Based on observed data 00:00-06:00  

Fang et al. (2021) - - 0.5 - - - - - Based on observed data 00:00-04:00  

Yang et al. (2022) 3.14 - - - - - - - Based on observed data 20:00-05:00  

Wu et al. (2023a) - - - 2.47 - - - - Based on observed data   

Liu et al. (2023a) - - 0.22 - - - - - Based on observed data 00:00-05:00  

Kong et al. (2023a) - - 0.23 - - - - - Based on observed data 21:00-02:00  

Li et al. (2021) - - 0.75 - - - - - Based on observed data 03:00-07:00  

Zou et al. (2021) - - 0.50 - 1.30 - - - Based on observed data 19:00-06:00  

Shao et al. (2011) - - - - - - - - Based on observed NOx/NOy >80% data -  

Zou et al. (2023) - - - 2.0 - - - - Based on summer observed data 20:00-06:00  

Zou et al. (2023) 

He et al. (2024) 

Zhang et al. (2024a) 

Wang et al. (2024a) 

Cui et al. (2024a) 

Sun et al. (2024) 

- 

- 

- 

- 

4.48 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

0.62 

1.8 

1.8 

2.83 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

 

- 

- 

- 

- 

- 

- 

- 

- 

- 

1.7 

- 

- 

Based on autumn observed data 

Based on spring observed data 

Based on observed data 

Based on emission inventory 

Based on summer observed data 

Based on observed data 

20:00-06:00 

19:00-06:00 

01:00-06:00 

- 

23:00-03:00 

05:00 
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Chen et al. (2023) 

Cui et al. (2024b) 

Cui et al. (2024b) 

Cui et al. (2024b) 

Cui et al. (2024b) 

Yuan et al. (2013) 

Hua et al. (2023) 

Liu et al. (2023c) 

de Gouw et al. (2017) 

Borlaza-Lacoste et al. (2024) 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

0.23 

3.47 

- 

- 

- 

- 

2.2 

- 

4.42 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

 

1.19 

1.22 

1.26 

1.24 

- 

3.14 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

1.75 

- 

Based on observed data 

Based on observed data 

Based on observed data 

Based on observed data 

Based on observed data 

Based on observed data 

Based on observed data 

Based on observed data 

Based on observed data 

Based on observed data 

0:00-05:00 

- 

- 

- 

- 

0:00-06:00 

19:00-08:00 

- 

- 

0:00-05:00 
adenotes Toluene/Benzene; bdenotes m,p-Xylene/Benzene; cdenotes Ethylbenzene/m,p-Xylene; ddenotes m,p-Xylene/Ethylbenzene; edenotes Ethylbenzene/o-Xylene; 

fdenotes o-Xylene/Ethylbenzene; gdenotes i-Butene/Propene; hdenotes Benzene/1,2,4-Trimethylbenzene; LT denotes local time. 

 

 

Table S7. Summary of relevant parameters for source analyses of OVOCs using the photochemical-age parameter method in publications. 

City Tracer species Methods to determine parameters Literature 

Shenzhen Benzene linear least-squares fits Zhu et al. (2021) 

NEAQS data Acetylene linear least-squares fit de Gouw et al. (2005) 

Beijing and Shenzhen Benzene least-squares fit Huang et al. (2020) 

Beijing Acetylene least-squares fit Yuan et al. (2012) 

Heshan CO least-squares fit Wang et al. (2016) 

Wangdu Benzene linear least-squares fits Han et al. (2019) 

Guangzhou Acetylene linear least-squares fits Wu et al. (2020) 
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Table S8. Summary of parameter values obtained utilizing a least-squares linear fit in the photochemical-age parameter method. 

 ERovoc ERprecursor kovoc kprecursor ERbiogenic [background] 

 ppbv [ppbv Tracer]-1 10-12 cm3molecule-1s-1 ppbv [ppbv isoprene]-1 ppbv or pptv 

Beijing (Huang et al., 2020)       

Methanol 16.95 3.04 0.94 3.12 1.92 3.95 

Formaldehyde 3.14 9.39 9.7 8.15 1.34 1.25 

Acetaldehyde 1.85 6.89 15 4.45 0.69 0.48 

Acetone 1.09 4.26 0.17 4.76 0.63 1.36 

MEK 0.72 3.89 1.22 1.26 0.14 0.08 

Shenzhen (Huang et al., 2020)       

Methanol 16.43 8.42 0.94 7.96 1.24 1.01 

Formaldehyde 1.14 15.69 9.7 8.63 0.80 0.24 

Acetaldehyde 0.71 14.12 15 14.74 0.53 0.10 

Acetone 1.51 13.31 0.17 14.51 0.64 0.81 

MEK 1.16 8.97 1.22 9.51 0.14 0.06 

NEAQS data (de Gouw et al., 2005)       

Acetaldehyde 0.83 ± 0.07 6.9 ± 0.9 15 2.3 ± 0.4 0.063 ± 0.004 150 ± 10 

Propanal 0.24 ± 0.02 3 ± 1 20 1.3 ± 0.4 0.010 ± 0.001 22 ± 5 

Acetone 1.2 ± 0.2 1.6 ± 0.5 0.17 4 ± 3 0.23 ± 0.01 960 ± 40 

MEK 0.26 ± 0.02 1 ± 2 1.22 7 ± 2 0.031 ± 0.001 31 ± 5 

Methanol 2.3 ± 0.2 0 0.94 0 0.44 ± 0.02 1280 ± 70 

Ethanol 0.96 ± 0.04 0 3.2 0 0.022 ± 0.005 90 ± 10 

Formic acid 0 2.1 ± 0.5 0.4 6 ± 3 0.26 ± 0.03 150 ± 90 

Acetic acid 0.0 ± 0.4 1.8 ± 0.4 0.8 7 ± 4 0.19 ± 0.02 90 ± 70 

Beijing (Yuan et al., 2012)       
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Formaldehyde 0.72 ± 0.11 6.40 9.4 2.87 0.98 ± 0.07 0.94 ± 0.21 

Acetaldehyde 0.72 ± 0.05 3.45 15 2.41 0.17 ± 0.03 0.29 ± 0.10 

Propanal 0.02 ± 0.02 2.04 20 2.45 0.14 ± 0.01 0.31 ± 0.03 

n-Butanal 0.002 ± 0.005 1.66 24 0.58 0.04 ± 0.00 0.10 ± 0.01 

Acetone 0.57 ± 0.05 1.47 0.17 1.05 0.18 ± 0.03 1.98 ± 0.09 

MEK 0.31 ± 0.01 0 1.22 0 0.07 ± 0.01 0.06 ± 0.04 

Methanol 3.43 ± 0.11 0 0.94 0 0.02 ± 0.11 5.76 ± 0.37 

Units of EROVOC and ERprecursor are ppbv [ppbv Benzene]-1 of Huang et al. (2020); units of EROVOC and ERprecursor are ppbv [ppbv C2H2]-1 of de Gouw et al. (2005) and Yuan et al. (2012); unit of 

[background] is ppbv for Huang et al. (2020) and Yuan et al. (2012); unit of [background] is pptv for de Gouw et al. (2005). 

 

 

Table S9. Summary of publications on estimation methods of consumed VOCs (i.e., CVOCs) and models used for their source analyses. 

Literature Publication year Calculation methods Apportionment methods 

Ma et al. (2022) 2022 Difference method - 

Gao et al. (2018) 2018 Difference method - 

Gu et al. (2023) 2023 Difference method PMF 

Zhan et al. (2021) 2021 Difference method - 

Chen et al. (2023) 2023 Difference method - 

Wang et al. (2013) 2013 Difference method - 

Liu et al. (2023a) 2023 Difference method PMF 

Wang et al. (2023b) 2023 Difference method PMF/ME2-SR 

Xie et al. (2008) 2008 Isoprene loss reference method - 

Wang et al. (2022) 2022 Difference method PMF/ME2-SR 

Wiedinmyer et al. (2001) 2001 Isoprene loss reference method - 

Kong et al. (2023b) 

He et al. (2024) 

2023 

2024 

Difference method 

Difference method 

PMF 

PMF 



 S21 / S35 

 

Zhang et al. (2024a) 

Wang et al. (2024a) 

Cui et al. (2024a) 

2024 

2024 

2024 

Difference method 

Difference method 

Difference method 

PMF 

PMF/ME2-SR 

PMF 

PMF/ME2-SR denotes Positive Matrix Factorization/Multilinear Engine 2-Species Ratio. 

 

 

Table S10. Summary of information related to VOC measured and initial concentrations, and chemical losses in the reviewed publications. 

City (literature) Study period Season/year 
Initial concentration 

calculated time (LT) 

Numbers 

of species 

 TVOC conc. (ppbv)   CL rate d 

(%)  OC a IC b CL c  

Beijing (Gao et al., 2018) 2013/03-2013/04 Spring 08:30-09:00 and 13:30-14:00  90  64.9 72.6 7.72  10.6 

Qingdao (Gu et al., 2023) 2022/06-2022/08 Summer 06:00-19:00 89  20.2 65.3 45.1  69.1 

Beijing (Zhan et al., 2021) 2019/08 Summer -  51  11.2 14.6 3.40  23.3 

Taipei (Chen et al., 2023) 2020/03-2020/05 Spring 07:00-17:00 54  27.6 31.8 4.21  13.2 

Taipei (Chen et al., 2023) 2020/06-2020/08 Summer 07:00-17:00 54  22.0 30.3 8.29  27.3 

Taipei (Chen et al., 2023) 2020/09-2020/11 Autumn 07:00-17:00  54  20.6 22.1 1.48  6.71 

Taipei (Chen et al., 2023) 2020/12-2021/02 Winter 07:00-17:00  54  24.8 25.6 0.76  2.97 

Tianjin (Liu et al., 2023a) 2020/04-2020/08 Spring-Summer 06:00-23:00 54  19.4 - 17.8  56.5 

Beijing (Ma et al., 2022) 2019/01-2019/12 Year 00:00-23:00 56  18.6 24.5 6.90  28.2 

Tianjin (Wang et al., 2023b) 2018 Year -  -  21.4 24.3 2.90  11.9 

Guangzhou (Wang et al., 2023b) 2020 Year -  -  29.6 34.8 5.20  14.9 

Shanghai (Wang et al., 2013) 2009 Year 08:00-18:00 -  26.4 35.4 9.00  25.4 

Shanghai (Wang et al., 2013) 2010 Year 08:00-18:00 -  24.5 34.1 9.60  28.2 

Chengdu (Kong et al., 2023b) 2019 Spring 00:00-23:00 56  19.4 26.0 6.60  25.4 

Chengdu (Kong et al., 2023b) 2019 Summer 00:00-23:00 56  19.3 25.1 5.90  23.5 

Chengdu (Kong et al., 2023b) 2019 Autumn 00:00-23:00 56  23.5 26.6 3.10  11.7 
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Chengdu (Kong et al., 2023b) 

Guangzhou (He et al., 2024) 

Langfang (Zhang et al., 2024a) 

Zhengzhou (Wang et al., 2024a) 

Shijiazhuang (Cui et al., 2024a) 

Wuhan (Xu et al., 2023) 

Shanghai (Ren et al., 2024) 

Zibo (Wang et al., 2024b) 

Jinan (Liu et al., 2023c) 

Borlaza-Lacoste et al. (2024) 

2019 

2022 

2018/08-2018/10 

2019/05-2019/07 

2022/06-2022/08 

2020/01-2020/04 

2020/04-2020/10 

2022/05-2022/09 

2022/08 

2000-2021 

Winter 

Spring 

- 

Spring-Summer 

Summer 

- 

O3 polluted days 

- 

Summer 

- 

00:00-23:00  

07:00-18:00 

06:00-19:00 

- 

05:00-19:00 

08:00-18:00 

08:00-18:00 

05:00-18:00 

06:00-20:00 

06:00-23:00 

56 

56 

99 

106 

110 

91 

106 

114 

56 

54 

 33.6 

22.78 

227.4e 

23.74 

23.2 

23.9 

47.1 

36.1 

12.0 

9.74 

35.9 

26.88 

244.8e 

33.89 

56.4 

47.6 

61.1 

42.9 

16.0 

19.58 

2.30 

4.10 

17.4e 

10.15 

33.2 

23.7 

14.1 

6.8 

4.0 

9.84 

 6.41 

15.3 

7.11 

29.9 

58.9 

49.8 

23.1 

15.9 

25.0 

50.2 
a denotes observation concentrations; b denotes initial concentrations; c denotes chemical loss; d denotes the chemical loss rate (i.e., chemical loss×100/initial 

concentration); e denotes that unit is μg m-3. 
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Table S11. Summary of concentrations and percentages of the consumed VOC species in the reviewed publications. 

City (literature) Studying period Season 

Alkanes Alkenes 
Aromatic 

hydrocarbons 
Alkyne OVOCs 

Halo-

hydrocarbons 

Conc. a 

(ppbv) 

Per. b 

(%) 

Conc. 

(ppbv) 

Per. 

(%) 

Conc. 

(ppbv) 

Per. 

(%) 

Conc. 

(ppbv) 

Per. 

(%) 

Conc. 

(ppbv) 

Per. 

(%) 

Conc. 

(ppbv) 

Per. 

(%) 

Beijing (Gao et al., 2018) 2013/03-2013/04 Spring 0.83 10.7 5.26 68.0 1.51 19.5 0.13 1.68 - - - - 

Qingdao (Gu et al., 2023) 2022/06-2022/08 Summer 1.05 2.33 42.1 93.3 1.72 3.81 0.02 0.04 0.21 0.5 0.04 0.1 

Beijing (Zhan et al., 2021) 2019/08 Summer 0.21 6.18 2.74 80.6 0.45 13.2 0.00 0.00 - - - - 

Taipei (Chen et al., 2023) 2020/03-2020/05 Spring 0.53 12.8 2.52 61.2 1.03 25.1 0.04 0.85 - - - - 

Taipei (Chen et al., 2023) 2020/06-2020/08 Summer 0.55 6.61 6.51 78.6 1.20 14.5 0.03 0.30 - - - - 

Taipei (Chen et al., 2023) 2020/09-2020/11 Autumn 0.19 12.5 0.91 61.0 0.39 25.8 0.01 0.67 - - - - 

Taipei (Chen et al., 2023) 2020/12-2021/02 Winter 0.12 15.7 0.42 55.4 0.21 27.5 0.01 1.33 - - - - 

Tianjin (Liu et al., 2023a) 2020/04-2020/08 Spring/Summer 1.43 8.04 15.6 87.8 0.75 4.21 0.03 0.17 - - - - 

Chengdu (Kong et al., 2023b) 2019/01-2019/12 Spring 0.60 9.23 5.00 76.9 0.90 13.8 0.00 0.00 - - - - 

Chengdu (Kong et al., 2023b) 2019/01-2019/12 Summer 0.70 11.9 3.40 57.6 1.80 30.5 0.00 0.00 - - - - 

Chengdu (Kong et al., 2023b) 2019/01-2019/12 Autumn 0.50 16.1 1.40 45.2 1.20 38.7 0.00 0.00 - - - - 

Chengdu (Kong et al., 2023b) 

Zhengzhou (Wang et al., 2024a) 

Shijiazhuang (Cui et al., 2024a) 

Jinan (Liu et al., 2023c) 

NYC (Borlaza-Lacoste et al., 2024) 

2019/01-2019/12 

2019/05-2019/07 

2022/06-2022/08 

2022/08 

2000-2021 

Winter 

Spring/Summer 

Summer 

Summer 

- 

0.50 

1.10 

4.50 

0.44 

0.57 

22.7 

11.1 

13.6 

11.1 

5.80 

1.30 

6.61 

12.2 

3.23 

7.94 

59.1 

65.4 

36.7 

80.5 

80.9 

0.40 

2.20 

6.82 

0.28 

1.30 

18.2 

21.5 

20.5 

6.90 

13.2 

0.00 

- 

0.20 

0.06 

0.01 

0.00 

- 

0.60 

1.40 

0.10 

- 

0.20 

9.08 

- 

- 

- 

2.0 

27.4 

- 

- 

- 

- 

0.39 

- 

- 

- 

- 

1.17 

- 

- 

a denotes consumed concentrations; b denotes percentages of consumed concentrations of different species in total consumed concentrations. NYC represents New York City.
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Figure S1. The measured and initial concentrations of VOC groups, and their 

consumed concentrations in Beijing (Gao et al., 2018; Zhan et al., 2021), Qingdao 

(Gu et al., 2023), Tianjin (Liu et al., 2023a), Chengdu (Kong et al., 2023b), Taipei 

(Chen et al., 2023), Shijiazhuang (Cui et al., 2024a), Jinan (Liu et al., 2023c), 

Zhengzhou (Wang et al., 2024a), and New York City (Borlaza-Lacoste et al., 2024) in 

the reviewed publications. The data of Beijing was the average value from the two 

publications. 
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