Articles | Volume 24, issue 22
https://doi.org/10.5194/acp-24-12775-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-12775-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere
Qun He
College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China
Zhaowen Wang
College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China
Houfeng Liu
College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China
Pengju Xu
College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China
Rongbao Duan
College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China
Caihong Xu
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
Jianmin Chen
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
Min Wei
CORRESPONDING AUTHOR
College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
Related authors
No articles found.
Qianqian Gao, Guochao Chen, Xiaohui Lu, Jianmin Chen, Hongliang Zhang, and Xiaofei Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-596, https://doi.org/10.5194/egusphere-2025-596, 2025
Short summary
Short summary
Numerous lakes are shrinking due to climate change and human activities, releasing pollutants from dried lakebeds as dust aerosols. The health risks remain unclear. Recently, Poyang and Dongting Lakes faced record droughts, exposing 99 % and 88 % of their areas. We show lakebed dust can raise PM10 to 637.5 μg/m³ and exceed non-carcinogenic (HQ=4.13) and Cr carcinogenic (~2.10×10⁻⁶) risk thresholds, posing growing health threats.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Qianqian Gao, Shengqiang Zhu, Kaili Zhou, Jinghao Zhai, Shaodong Chen, Qihuang Wang, Shurong Wang, Jin Han, Xiaohui Lu, Hong Chen, Liwu Zhang, Lin Wang, Zimeng Wang, Xin Yang, Qi Ying, Hongliang Zhang, Jianmin Chen, and Xiaofei Wang
Atmos. Chem. Phys., 23, 13049–13060, https://doi.org/10.5194/acp-23-13049-2023, https://doi.org/10.5194/acp-23-13049-2023, 2023
Short summary
Short summary
Dust is a major source of atmospheric aerosols. Its chemical composition is often assumed to be similar to the parent soil. However, this assumption has not been rigorously verified. Dust aerosols are mainly generated by wind erosion, which may have some chemical selectivity. Mn, Cd and Pb were found to be highly enriched in fine-dust (PM2.5) aerosols. In addition, estimation of heavy metal emissions from dust generation by air quality models may have errors without using proper dust profiles.
Jianyan Lu, Sunling Gong, Jian Zhang, Jianmin Chen, Lei Zhang, and Chunhong Zhou
Atmos. Chem. Phys., 23, 8021–8037, https://doi.org/10.5194/acp-23-8021-2023, https://doi.org/10.5194/acp-23-8021-2023, 2023
Short summary
Short summary
WRF/CUACE was used to assess the cloud chemistry contribution in China. Firstly, the CUACE cloud chemistry scheme was found to reproduce well the cloud processing and consumption of H2O2, O3, and SO2, as well as the increase of sulfate. Secondly, during cloud availability in December under a heavy pollution episode, sulfate production increased 60–95 % and SO2 was reduced by over 80 %. This study provides a way to analyze the phenomenon of overestimation of SO2 in many chemical transport models.
Jinlong Ma, Shengqiang Zhu, Siyu Wang, Peng Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 23, 4311–4325, https://doi.org/10.5194/acp-23-4311-2023, https://doi.org/10.5194/acp-23-4311-2023, 2023
Short summary
Short summary
An updated version of the CMAQ model with biogenic volatile organic compound (BVOC) emissions from MEGAN was applied to study the impacts of different land cover inputs on O3 and secondary organic aerosol (SOA) in China. The estimated BVOC emissions ranged from 25.42 to 37.39 Tg using different leaf area index (LAI) and land cover (LC) inputs. Those differences further induced differences of 4.8–6.9 ppb in O3 concentrations and differences of 5.3–8.4 µg m−3 in SOA concentrations in China.
Yiqun Lu, Yingge Ma, Dan Dan Huang, Shengrong Lou, Sheng'ao Jing, Yaqin Gao, Hongli Wang, Yanjun Zhang, Hui Chen, Yunhua Chang, Naiqiang Yan, Jianmin Chen, Christian George, Matthieu Riva, and Cheng Huang
Atmos. Chem. Phys., 23, 3233–3245, https://doi.org/10.5194/acp-23-3233-2023, https://doi.org/10.5194/acp-23-3233-2023, 2023
Short summary
Short summary
N-containing oxygenated organic molecules have been identified as important precursors of aerosol particles. We used an ultra-high-resolution mass spectrometer coupled with an online sample inlet to accurately measure their molecular composition, concentration level and variation patterns. We show their formation process and influencing factors in a Chinese megacity involving various volatile organic compound precursors and atmospheric oxidants, and we highlight the influence of PM2.5 episodes.
Yu Han, Tao Wang, Rui Li, Hongbo Fu, Yusen Duan, Song Gao, Liwu Zhang, and Jianmin Chen
Atmos. Chem. Phys., 23, 2877–2900, https://doi.org/10.5194/acp-23-2877-2023, https://doi.org/10.5194/acp-23-2877-2023, 2023
Short summary
Short summary
Limited knowledge is available on volatile organic compound (VOC) multi-site research of different land-use types at city level. This study performed a concurrent multi-site observation campaign on the three typical land-use types of Shanghai, East China. The results showed that concentrations, sources and ozone and secondary organic aerosol formation potentials of VOCs varied with the land-use types.
Jian-yan Lu, Sunling Gong, Chun-hong Zhou, Jian Zhang, Jian-min Chen, and Lei Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-716, https://doi.org/10.5194/acp-2022-716, 2022
Revised manuscript not accepted
Short summary
Short summary
A regional online chemical weather model WRF/ CUACE was used to assess the contributions of cloud chemistry to the SO2 and sulfate levels in typical regions in China. The cloud chemistry scheme in CUACE was evaluated, and well reproduces the cloud chemistry processes. During cloud availability in a heavy pollution episode, the sulfate production increases 40–80 % and SO2 reduces over 80 %. This study provides a way to analyze the over-estimate phenomenon of SO2 in many chemical transport models.
Tao Wang, Yangyang Liu, Hanyun Cheng, Zhenzhen Wang, Hongbo Fu, Jianmin Chen, and Liwu Zhang
Atmos. Chem. Phys., 22, 13467–13493, https://doi.org/10.5194/acp-22-13467-2022, https://doi.org/10.5194/acp-22-13467-2022, 2022
Short summary
Short summary
This study compared the gas-phase, aqueous-phase, and heterogeneous SO2 oxidation pathways by combining laboratory work with a modelling study. The heterogeneous oxidation, particularly that induced by the dust surface drivers, presents positive implications for the removal of airborne SO2 and formation of sulfate aerosols. This work highlighted the atmospheric significance of heterogeneous oxidation and suggested a comparison model to evaluate the following heterogeneous laboratory research.
Chaoyang Xue, Can Ye, Jörg Kleffmann, Chenglong Zhang, Valéry Catoire, Fengxia Bao, Abdelwahid Mellouki, Likun Xue, Jianmin Chen, Keding Lu, Yong Zhao, Hengde Liu, Zhaoxin Guo, and Yujing Mu
Atmos. Chem. Phys., 22, 3149–3167, https://doi.org/10.5194/acp-22-3149-2022, https://doi.org/10.5194/acp-22-3149-2022, 2022
Short summary
Short summary
Summertime measurements of nitrous acid (HONO) and related parameters were conducted at the foot and the summit of Mt. Tai (1534 m above sea level). We proposed a rapid vertical air mass exchange between the foot and the summit level, which enhances the role of HONO in the oxidizing capacity of the upper boundary layer. Kinetics for aerosol-derived HONO sources were constrained. HONO formation from different paths was quantified and discussed.
Wei Sun, Yuzhen Fu, Guohua Zhang, Yuxiang Yang, Feng Jiang, Xiufeng Lian, Bin Jiang, Yuhong Liao, Xinhui Bi, Duohong Chen, Jianmin Chen, Xinming Wang, Jie Ou, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 21, 16631–16644, https://doi.org/10.5194/acp-21-16631-2021, https://doi.org/10.5194/acp-21-16631-2021, 2021
Short summary
Short summary
We sampled cloud water at a remote mountain site and investigated the molecular characteristics. CHON and CHO are dominant in cloud water. No statistical difference in the oxidation state is observed between cloud water and interstitial PM2.5. Most of the formulas are aliphatic and olefinic species. CHON, with aromatic structures and organosulfates, are abundant, especially in nighttime samples. The in-cloud and multi-phase dark reactions likely contribute significantly.
Men Xia, Xiang Peng, Weihao Wang, Chuan Yu, Zhe Wang, Yee Jun Tham, Jianmin Chen, Hui Chen, Yujing Mu, Chenglong Zhang, Pengfei Liu, Likun Xue, Xinfeng Wang, Jian Gao, Hong Li, and Tao Wang
Atmos. Chem. Phys., 21, 15985–16000, https://doi.org/10.5194/acp-21-15985-2021, https://doi.org/10.5194/acp-21-15985-2021, 2021
Short summary
Short summary
ClNO2 is an important precursor of chlorine radical that affects photochemistry. However, its production and impact are not well understood. Our study presents field observations of ClNO2 at three sites in northern China. These observations provide new insights into nighttime processes that produce ClNO2 and the significant impact of ClNO2 on secondary pollutions during daytime. The results improve the understanding of photochemical pollution in the lower part of the atmosphere.
Letizia Abis, Carmen Kalalian, Bastien Lunardelli, Tao Wang, Liwu Zhang, Jianmin Chen, Sébastien Perrier, Benjamin Loubet, Raluca Ciuraru, and Christian George
Atmos. Chem. Phys., 21, 12613–12629, https://doi.org/10.5194/acp-21-12613-2021, https://doi.org/10.5194/acp-21-12613-2021, 2021
Short summary
Short summary
Biogenic volatile organic compound (BVOC) emissions from rapeseed leaf litter have been investigated by means of a controlled atmospheric simulation chamber. The diversity of emitted VOCs increased also in the presence of UV light irradiation. SOA formation was observed when leaf litter was exposed to both UV light and ozone, indicating a potential contribution to particle formation or growth at local scales.
Zhenzhen Wang, Di Wu, Zhuoyu Li, Xiaona Shang, Qing Li, Xiang Li, Renjie Chen, Haidong Kan, Huiling Ouyang, Xu Tang, and Jianmin Chen
Atmos. Chem. Phys., 21, 12227–12241, https://doi.org/10.5194/acp-21-12227-2021, https://doi.org/10.5194/acp-21-12227-2021, 2021
Short summary
Short summary
This study firstly investigates the composition of sugars in the fine fraction of aerosol over three sites in southwest China. The result suggested no significant reduction in biomass burning emissions in southwest Yunnan Province to some extent. The result shown sheds light on the contributions of biomass burning and the characteristics of biogenic saccharides in these regions, which could be further applied to regional source apportionment models and global climate models.
Rui Li, Yilong Zhao, Hongbo Fu, Jianmin Chen, Meng Peng, and Chunying Wang
Atmos. Chem. Phys., 21, 8677–8692, https://doi.org/10.5194/acp-21-8677-2021, https://doi.org/10.5194/acp-21-8677-2021, 2021
Short summary
Short summary
Based on a random forest model, the strict lockdown measures significantly decreased primary components such as Cr (−67 %) and Fe (−61 %) in PM2.5 (p < 0.01), whereas the higher relative humidity (RH) and NH3 level and the lower air temperature (T) remarkably enhanced the production of secondary aerosol including SO42− (29 %), NO3− (29 %), and NH4+ (21 %) (p < 0.05). The natural experiment suggested that the NH3 emission should be strictly controlled.
Jinlong Ma, Juanyong Shen, Peng Wang, Shengqiang Zhu, Yu Wang, Pengfei Wang, Gehui Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 21, 7343–7355, https://doi.org/10.5194/acp-21-7343-2021, https://doi.org/10.5194/acp-21-7343-2021, 2021
Short summary
Short summary
Due to the reduced anthropogenic emissions during the COVID-19 lockdown, mainly from the transportation and industrial sectors, PM2.5 decreased significantly in the whole Yangtze River Delta (YRD) and its major cities. However, the contributions and relative importance of different source sectors and regions changed differently, indicating that control strategies should be adjusted accordingly for further pollution control.
Xiaona Shang, Ling Li, Xinlian Zhang, Huihui Kang, Guodong Sui, Gehui Wang, Xingnan Ye, Hang Xiao, and Jianmin Chen
Atmos. Meas. Tech., 14, 1037–1045, https://doi.org/10.5194/amt-14-1037-2021, https://doi.org/10.5194/amt-14-1037-2021, 2021
Short summary
Short summary
Oxidative stress can be used to evaluate not only adverse health effects but also adverse ecological effects. However, little research uses eco-toxicological assay to assess the risks posed by particle matter to non-human biomes. One important reason might be that the concentration of toxic components of atmospheric particles is far below the high detection limit of eco-toxic measurement. To solve the rapid detection problem, we extended a VACES for ecotoxicity aerosol measurement.
Yujiao Zhu, Likun Xue, Jian Gao, Jianmin Chen, Hongyong Li, Yong Zhao, Zhaoxin Guo, Tianshu Chen, Liang Wen, Penggang Zheng, Ye Shan, Xinfeng Wang, Tao Wang, Xiaohong Yao, and Wenxing Wang
Atmos. Chem. Phys., 21, 1305–1323, https://doi.org/10.5194/acp-21-1305-2021, https://doi.org/10.5194/acp-21-1305-2021, 2021
Short summary
Short summary
This work investigates the long-term changes in new particle formation (NPF) events under reduced SO2 emissions at the summit of Mt. Tai during seven campaigns from 2007 to 2018. We found the NPF intensity increased 2- to 3-fold in 2018 compared to 2007. In contrast, the probability of new particles growing to CCN size largely decreased. Changes to biogenic VOCs and anthropogenic emissions are proposed to explain the distinct NPF characteristics.
Jiarong Li, Chao Zhu, Hui Chen, Defeng Zhao, Likun Xue, Xinfeng Wang, Hongyong Li, Pengfei Liu, Junfeng Liu, Chenglong Zhang, Yujing Mu, Wenjin Zhang, Luming Zhang, Hartmut Herrmann, Kai Li, Min Liu, and Jianmin Chen
Atmos. Chem. Phys., 20, 13735–13751, https://doi.org/10.5194/acp-20-13735-2020, https://doi.org/10.5194/acp-20-13735-2020, 2020
Short summary
Short summary
Based on a field study at Mt. Tai, China, the simultaneous variations of cloud microphysics, aerosol microphysics and their potential interactions during cloud life cycles were discussed. Results demonstrated that clouds on clean days were more susceptible to the concentrations of particle number, while clouds formed on polluted days might be more sensitive to meteorological parameters. Particles larger than 150 nm played important roles in forming cloud droplets with sizes of 5–10 μm.
Cited articles
Amato, P., Parazols, M., Sancelme, M., Mailhot, G., Laj, P., and Delort, A.-M.: An important oceanic source of micro-organisms for cloud water at the Puy de Dôme (France), Atmos. Environ., 41, 8253–8263, https://doi.org/10.1016/j.atmosenv.2007.06.022, 2007.
Andrés, N., Ana, M. G., Diego, A. M., and Raúl, G.: Seasonal changes dominate long-term variability of the urban air microbiome across space and time, Environ. Int., 150, 106423, https://doi.org/10.1016/j.envint.2021.106423, 2021.
Archer, S. D. J., Lee, K. C., Caruso, T., King-Miaow, K., Harvey, M., Huang, D., Wainwright, B. J., and Pointing, S. B.: Air mass source determines airborne microbial diversity at the ocean–atmosphere interface of the Great Barrier Reef marine ecosystem, ISME J., 14, 871–876, https://doi.org/10.1038/s41396-019-0555-0, 2020.
Aswini, A. R. and Hegde, P.: Impact assessment of continental and marine air-mass on size-resolved aerosol chemical composition over coastal atmosphere: Significant organic contribution in coarse mode fraction, Atmos. Res., 248, 105216, https://doi.org/10.1016/j.atmosres.2020.105216, 2021.
Bensch, K., Braun, U., Groenewald, J. Z., and Crous, P. W.: The genus Cladosporium, Stud. Mycol., 72, 1–401, https://doi.org/10.3114/sim0003, 2012.
Bolger, A. M., Lohse, M., and Usadel, B.: Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 30, 2114–2120, https://doi.org/10.1093/bioinformatics/btu170, 2014.
Brouwer, S., Rivera-Hernandez, T., Curren, B. F., Harbison-Price, N., De Oliveira, D. M. P., Jespersen, M. G., Davies, M. R., and Walker, M. J.: Pathogenesis, epidemiology and control of Group A Streptococcus infection, Nat. Rev. Microbiol., 21, 431–447, https://doi.org/10.1038/s41579-023-00865-7, 2023.
Cáliz, J., Triadó-Margarit, X., Camarero, L., and Casamayor, E. O.: A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations, P. Natl. Acad. Sci. USA, 115, 12229–12234, https://doi.org/10.1073/pnas.1812826115, 2018.
Callegan, R. P., Nobre, M. F., McTernan, P. M., Battista, J. R., Navarro-Gonzalez, R., McKay, C. P., da Costa, M. S., and Rainey, F. A.: Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments, Int. J. Syst. Evol. Microbiol., 58, 1252–1258, https://doi.org/10.1099/ijs.0.65405-0, 2008.
Cao, F., Zhang, Y., Zhang, Y., Song, W., Zhang, Y., Lin, Y., Gul, C., and Haque, M. M.: Molecular compositions of marine organic aerosols over the Bohai and Yellow Seas: Influence of primary emission and secondary formation, Atmos. Res., 297, 107088, https://doi.org/10.1016/j.atmosres.2023.107088, 2024.
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., and Knight, R.: QIIME allows analysis of high-throughput community sequencing data, Nat. Meth., 7, 335–336, https://doi.org/10.1038/nmeth.f.303, 2010.
Chen, J., Zang, Y., Yang, Z., Qu, T., Sun, T., Liang, S., Zhu, M., Wang, Y., and Tang, X.: Composition and Functional Diversity of Epiphytic Bacterial and Fungal Communities on Marine Macrophytes in an Intertidal Zone, Front. Microbiol., 13, 839465, https://doi.org/10.3389/fmicb.2022.839465, 2022.
Cheung, G. Y. C., Bae, J. S., and Otto, M.: Pathogenicity and virulence of Staphylococcus aureus, Virulence, 12, 547–569, https://doi.org/10.1080/21505594.2021.1878688, 2021.
Cho, B. C. and Hwang, C. Y.: Prokaryotic abundance and 16S rRNA gene sequences detected in marine aerosols on the East Sea (Korea), FEMS Microbiol. Ecol., 76, 327–341, https://doi.org/10.1111/j.1574-6941.2011.01053.x, 2011.
CNEMC – China National Environmental Monitoring Centre: CNEMC Date, http://www.cnemc.cn/ (last access: 19 September 2024), 2024.
Cordeiro, R., Luz, R., Vasconcelos, V., Gonçalves, V., and Fonseca, A.: Cyanobacteria Phylogenetic Studies Reveal Evidence for Polyphyletic Genera from Thermal and Freshwater Habitats, Diversity, 12, 298–311, https://doi.org/10.3390/d12080298, 2020.
Curren, E. and Leong, S. C. Y.: Natural and anthropogenic dispersal of cyanobacteria: a review, Hydrobiologia, 847, 2801–2822, https://doi.org/10.1007/s10750-020-04286-y, 2020.
DeAngelis, Y. M., Saunders, C. W., Johnstone, K. R., Reeder, N. L., Coleman, C. G., Kaczvinsky, J. R., Gale, C., Walter, R., Mekel, M., Lacey, M. P., Keough, T. W., Fieno, A., Grant, R. A., Begley, B., Sun, Y., Fuentes, G., Scott Youngquist, R., Xu, J., and Dawson, T. L.: Isolation and Expression of a Malassezia globosa Lipase Gene, LIP1, J. Invest. Dermatol., 127, 2138–2146, https://doi.org/10.1038/sj.jid.5700844, 2007.
DeLeon-Rodriguez, N., Lathem, T. L., Rodriguez-R, L. M., Barazesh, J. M., Anderson, B. E., Beyersdorf, A. J., Ziemba, L. D., Bergin, M., Nenes, A., and Konstantinidis, K. T.: Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications, P. Natl. Acad. Sci. USA, 110, 2575–2580, https://doi.org/10.1073/pnas.1212089110, 2013.
Du, P., Du, R., Ren, W., Lu, Z., and Fu, P.: Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China, Sci. Total Environ., 610–611, 308–315, https://doi.org/10.1016/j.scitotenv.2017.07.097, 2018.
Edgar, R. C.: UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nat. Meth., 10, 996–998, https://doi.org/10.1038/nmeth.2604, 2013.
Elbert, W., Taylor, P. E., Andreae, M. O., and Pöschl, U.: Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions, Atmos. Chem. Phys., 7, 4569–4588, https://doi.org/10.5194/acp-7-4569-2007, 2007.
El-Morsy, E. S. M.: Fungi isolated from the endorhizosphere of halophytic plants from the Red Sea Coast of Egypt, Fungal. Divers, 5, 43–54, 2000.
Fakunle, A. G., Jafta, N., Naidoo, R. N., and Smit, L. A. M.: Association of indoor microbial aerosols with respiratory symptoms among under-five children: a systematic review and meta-analysis, Environ. Health, 20, 77, https://doi.org/10.1186/s12940-021-00759-2, 2021.
Fan, X., Gao, J., Pan, K., Li, D., Dai, H., and Li, X.: More obvious air pollution impacts on variations in bacteria than fungi and their co-occurrences with ammonia-oxidizing microorganisms in PM2.5, Environ. Pollut., 251, 668–680, https://doi.org/10.1016/j.envpol.2019.05.004, 2019.
Federici, E., Petroselli, C., Montalbani, E., Casagrande, C., Ceci, E., Moroni, B., La Porta, G., Castellini, S., Selvaggi, R., Sebastiani, B., Crocchianti, S., Gandolfi, I., Franzetti, A., and Cappelletti, D.: Airborne bacteria and persistent organic pollutants associated with an intense Saharan dust event in the Central Mediterranean, Sci. Total Environ., 645, 401–410, https://doi.org/10.1016/j.scitotenv.2018.07.128, 2018.
Frączek, K., Kozdrój, J., Górny, R. L., Cyprowski, M., and Gołofit-Szymczak, M.: Fungal air contamination in distinct sites within a municipal landfill area, Int. J. Environ. Sci. Technol., 14, 2637–2648, https://doi.org/10.1007/s13762-017-1344-9, 2017.
Fröhlich-Nowoisky, J., Pickersgill, D. A., Després, V. R., and Pöschl, U.: High diversity of fungi in air particulate matter, P. Natl. Acad. Sci. USA, 106, 12814–12819, https://doi.org/10.1073/pnas.0811003106, 2009.
Galbán, S., Justel, A., González, S., and Quesada, A.: Local meteorological conditions, shape and desiccation influence dispersal capabilities for airborne microorganisms, Sci. Total Environ., 780, 146653, https://doi.org/10.1016/j.scitotenv.2021.146653, 2021.
GDAS – Global Data Assimilation System: GDAS Data, ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1/ (last access: 19 September 2024), 2024.
Gong, J., Qi, J., E, B., Yin, Y., and Gao, D.: Concentration, viability and size distribution of bacteria in atmospheric bioaerosols under different types of pollution, Environ. Pollut., 257, 113485, https://doi.org/10.1016/j.envpol.2019.113485, 2020.
Griffin, D. W., Kellogg, C. A., Garrison, V. H., Lisle, J. T., and Borden, T. C.: Atmospheric microbiology in the northern Caribbean during African dust events, Aerobiologia, 19, 143–157, https://doi.org/10.1023/B:AERO.0000006530.32845.8d, 2003.
Han, Y., Yang, K., Yang, T., Zhang, M., and Li, L.: Bioaerosols emission and exposure risk of a wastewater treatment plant with A2O treatment process, Ecotoxicol. Environ. Safe., 169, 161–168, https://doi.org/10.1016/j.ecoenv.2018.11.018, 2019.
Hu, G., Zhang, Y., Sun, J., Zhang, L., Shen, X., Lin, W., and Yang, Y.: Variability, formation and acidity of water-soluble ions in PM2.5 in Beijing based on the semi-continuous observations, Atmos. Res., 145–146, 1–11, https://doi.org/10.1016/j.atmosres.2014.03.014, 2014.
Hu, J., He, X., Li, D., and Liu, Q.: Progress in research of Sphingomonas, Chinese J. Appl. Environ. Biol., 13, 431–437, 2007.
Hu, W., Wang, Z., Huang, S., Ren, L., Yue, S., Li, P., Xie, Q., Zhao, W., Wei, L., Ren, H., Wu, L., Deng, J., and Fu, P.: Biological Aerosol Particles in Polluted Regions, Curr. Pollut. Rep., 6, 65–89, https://doi.org/10.1007/s40726-020-00138-4, 2020.
Huang, D., Zhang, Z., Sun, M., Feng, Z., and Ye, M.: Characterization and ecological function of bacterial communities in seabed sediments of the southwestern Yellow Sea and northwestern East China Sea, Western Pacific, Sci. Total Environ., 761, 143233, https://doi.org/10.1016/j.scitotenv.2020.143233, 2021.
Islam, M. and Hasin, F.: Studies on the phylloplane mycoflora of Amaranthus viridis. L., Natl. Acad. Sci. Lett., 23, 121–123, 2000.
Jiang, X., Wang, C., Guo, J., Hou, J., Guo, X., Zhang, H., Tan, J., Li, M., Li, X., and Zhu, H.: Global Meta-analysis of Airborne Bacterial Communities and Associations with Anthropogenic Activities, Environ. Sci. Technol., 56, 9891–9902, https://doi.org/10.1021/acs.est.1c07923, 2022.
Jones, A. M. and Harrison, R. M.: The effects of meteorological factors on atmospheric bioaerosol concentrations – a review, Sci. Total Environ., 326, 151–180, https://doi.org/10.1016/j.scitotenv.2003.11.021, 2004.
Kakikawa, M., Kobayashi, F., Maki, T., Yamada, M., Higashi, T., Chen, B., Shi, G., Hong, C., Tobo, Y., and Iwasaka, Y.: Dustborne microorganisms in the atmosphere over an Asian dust source region, Dunhuang, Air Qual. Atmos. Health, 1, 195-202, https://doi.org/10.1007/s11869-008-0024-9, 2009.
Kassambara, A.: Comparing groups: Numerical variables, Datanovia, https://www.datanovia.com/en (last access: 19 September 2024), 2019.
Kendrick, D.-W. L. B.: A year-round study on functional relationships of airborne fungi with meteorological factors, Int. J. Biometeorol., 39, 74–80, https://doi.org/10.1007/BF01212584, 1995.
Koh, E. Y., Cowie, R. O. M., Simpson, A. M., O'Toole, R., and Ryan, K. G.: The origin of cyanobacteria in Antarctic sea ice: marine or freshwater?, Environ. Microbiol. Rep., 4, 479–483, https://doi.org/10.1111/j.1758-2229.2012.00346.x, 2012.
Kullman, B., Tamm, H., and Kullman, K.: Fungal genome size database, http://www.zbi.ee/fungal-genomesize (last access: 19 September 2024), 2005.
Lang-Yona, N., Flores, J. M., Haviv, R., Alberti, A., Poulain, J., Belser, C., Trainic, M., Gat, D., Ruscheweyh, H.-J., Wincker, P., Sunagawa, S., Rudich, Y., Koren, I., and Vardi, A.: Terrestrial and marine influence on atmospheric bacterial diversity over the north Atlantic and Pacific Oceans, Commun. Earth Environ., 3, 121–131, https://doi.org/10.1038/s43247-022-00441-6, 2022.
Larson, M. G.: Analysis of Variance, Circulation, 117, 115–121, https://doi.org/10.1161/circulationaha.107.654335, 2008.
Li, H., Zhou, X. Y., Yang, X. R., Zhu, Y. G., Hong, Y. W., and Su, J. Q.: Spatial and seasonal variation of the airborne microbiome in a rapidly developing city of China, Sci. Total Environ., 665, 61–68, https://doi.org/10.1016/j.scitotenv.2019.01.367, 2019.
Li, M., Qi, J., Zhang, H., Huang, S., Li, L., and Gao, D.: Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region, Sci. Total Environ., 409, 3812–3819, https://doi.org/10.1016/j.scitotenv.2011.06.001, 2011.
Liang, B., Cai, M., Sun, Q., Zhou, S., and Zhao, J.: Source apportionment of marine atmospheric aerosols in northern South China Sea during summertime 2018, Environ. Pollut., 289, 117948, https://doi.org/10.1016/j.envpol.2021.117948, 2021.
Liu, H., Hu, Z., Zhou, M., Hu, J., Yao, X., Zhang, H., Li, Z., Lou, L., Xi, C., Qian, H., Li, C., Xu, X., Zheng, P., and Hu, B.: The distribution variance of airborne microorganisms in urban and rural environments, Environ. Pollut., 247, 898–906, https://doi.org/10.1016/j.envpol.2019.01.090, 2019.
Liu, Y., Zhang, Y., Shi, Y., Shen, F., Yang, Y., Wang, M., Zhang, G., Deng, T., and Lai, S.: Characterization of fungal aerosol in a landfill and an incineration plants in Guangzhou, Southern China: The link to potential impacts, Sci. Total Environ., 764, 142908, https://doi.org/10.1016/j.scitotenv.2020.142908, 2021.
Maki, T., Susuki, S., Kobayashi, F., Kakikawa, M., Tobo, Y., Yamada, M., Higashi, T., Matsuki, A., Hong, C., Hasegawa, H., and Iwasaka, Y.: Phylogenetic analysis of atmospheric halotolerant bacterial communities at high altitude in an Asian dust (KOSA) arrival region, Suzu City, Sci. Total Environ., 408, 4556–4562, https://doi.org/10.1016/j.scitotenv.2010.04.002, 2010.
Maki, T., Puspitasari, F., Hara, K., Yamada, M., Kobayashi, F., Hasegawa, H., and Iwasaka, Y.: Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event, Sci. Total Environ., 488–489, 75–84, https://doi.org/10.1016/j.scitotenv.2014.04.044, 2014.
Mason, P. E., Darvell, L. I., Jones, J. M., and Williams, A.: Observations on the release of gas-phase potassium during the combustion of single particles of biomass, Fuel, 182, 110–117, https://doi.org/10.1016/j.fuel.2016.05.077, 2016.
Masoud, W., Takamiya, M., Vogensen, F. K., Lillevang, S., Al-Soud, W. A., Sørensen, S. J., and Jakobsen, M.: Characterization of bacterial populations in Danish raw milk cheeses made with different starter cultures by denaturating gradient gel electrophoresis and pyrosequencing, Int. Dairy J., 21, 142–148, https://doi.org/10.1016/j.idairyj.2010.10.007, 2011.
Mayol, E., Jiménez, M. A., Herndl, G. J., Duarte, C. M., and Arrieta, J. M.: Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean, Front. Microbiol., 5, 557, https://doi.org/10.3389/fmicb.2014.00557, 2014.
Mayol, E., Arrieta, J. M., Jiménez, M. A., Martínez-Asensio, A., Garcias-Bonet, N., Dachs, J., González-Gaya, B., Royer, S.-J., Benítez-Barrios, V. M., Fraile-Nuez, E., and Duarte, C. M.: Long-range transport of airborne microbes over the global tropical and subtropical ocean, Nat. Commun., 8, 201–210, https://doi.org/10.1038/s41467-017-00110-9, 2017.
MeteoInfo: Downloads, http://www.meteothink.org/downloads/index.html (last access: 19 September 2024), 2024.
Nguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., Schilling, J. S., and Kennedy, P. G.: FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild, Fungal Ecol., 20, 241–248, https://doi.org/10.1016/j.funeco.2015.06.006, 2016.
NIH: PRJNA1101427, NIH [data set], https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA1101427&o=acc_s:a (last access: 19 September 2024), 2024a.
NIH: BioProject: PRJNA1101176, NIH [data set], https://dataview.ncbi.nlm.nih.gov/object/PRJNA1101176?reviewer=mu6a68nm61vnh0g1lahff3qvma (last access: 19 September 2024), 2024b.
Park, J., Li, P.-F., Ichijo, T., Nasu, M., and Yamaguchi, N.: Effects of Asian dust events on atmospheric bacterial communities at different distances downwind of the source region, J. Environ. Sci., 72, 133–139, https://doi.org/10.1016/j.jes.2017.12.019, 2018.
Pathak, R. K., Wu, W. S., and Wang, T.: Summertime PM2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere, Atmos. Chem. Phys., 9, 1711–1722, https://doi.org/10.5194/acp-9-1711-2009, 2009.
Polymenakou, P. N., Mandalakis, M., Stephanou, E. G., and Tselepides, A.: Particle Size Distribution of Airborne Microorganisms and Pathogens during an Intense African Dust Event in the Eastern Mediterranean, Environ. Health Perspect., 116, 292–296, https://doi.org/10.1289/ehp.10684, 2008.
Prospero, J. M., Blades, E., Mathison, G., and Naidu, R.: Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust, Aerobiologia, 21, 1–19, https://doi.org/10.1007/s10453-004-5872-7, 2005.
Qi, J., Huang, Z., Maki, T., Kang, S., Guo, J., Liu, K., and Liu, Y.: Airborne bacterial communities over the Tibetan and Mongolian Plateaus: variations and their possible sources, Atmos. Res., 247, 105215, https://doi.org/10.1016/j.atmosres.2020.105215, 2021.
Rainey, F. A., Ferreira, M., Nobre, M. F., Ray, K., Bagaley, D., Earl, A. M., Battista, J. R., Gómez-Silva, B., McKay, C. P., and da Costa, M. S.: Deinococcus peraridilitoris sp. nov., isolated from a coastal desert, Int. J. Syst. Evol. Microbiol., 57, 1408–1412, https://doi.org/10.1099/ijs.0.64956-0, 2007.
Rooney, A. P. and Ward, T. J.: Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm, P. Natl. Acad. Sci. USA, 102, 5084–5089, https://doi.org/10.1073/pnas.0409689102, 2005.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., and Weber, C. F.: Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities, Appl. Environ. Microbiol., 75, 7537–7541, https://doi.org/10.1128/aem.01541-09, 2009.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Phys. Today, 51, 88–90, 1998.
Sharoni, S., Trainic, M., Schatz, D., Lehahn, Y., Flores, M. J., Bidle, K. D., Ben-Dor, S., Rudich, Y., Koren, I., and Vardi, A.: Infection of phytoplankton by aerosolized marine viruses, P. Natl. Acad. Sci. USA, 112, 6643–6647, https://doi.org/10.1073/pnas.1423667112, 2015.
Shen, F. and Yao, M.: Bioaerosol nexus of air quality, climate system and human health, Natl. Sci. Open, 2, 20220050, https://doi.org/10.1360/nso/20220050, 2023.
Shi, Y., Lai, S., Liu, Y., Gromov, S., and Zhang, Y.: Fungal Aerosol Diversity Over the Northern South China Sea: The Influence of Land and Ocean, J. Geophys. Res.-Atmos., 127, e2021JD035213, https://doi.org/10.1029/2021jd035213, 2022.
Smets, W., Moretti, S., Denys, S., and Lebeer, S.: Airborne bacteria in the atmosphere: Presence, purpose, and potential, Atmos. Environ., 139, 214–221, https://doi.org/10.1016/j.atmosenv.2016.05.038, 2016.
Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K., and Schmidt, T. M.: rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development, Nucl. Acids Res., 43, D593–D598, https://doi.org/10.1093/nar/gku1201, 2015.
Sun, H., Sun, J., Zhu, C., Yu, L., Lou, Y., Li, R., and Lin, Z.: Chemical characterizations and sources of PM2.5 over the offshore Eastern China sea: Water soluble ions, stable isotopic compositions, and metal elements, Atmos. Pollut. Res., 13, 101410, https://doi.org/10.1016/j.apr.2022.101410, 2022.
Sun, Y., Xu, S., Zheng, D., Li, J., Tian, H., and Wang, Y.: Effects of haze pollution on microbial community changes and correlation with chemical components in atmospheric particulate matter, Sci. Total Environ., 637–638, 507–516, https://doi.org/10.1016/j.scitotenv.2018.04.203, 2018.
Temraleeva, A. D., Dronova, S. A., Moskalenko, S. V., and Didovich, S. V.: Modern methods for isolation, purification, and cultivation of soil cyanobacteria, Microbiology, 85, 389–399, https://doi.org/10.1134/s0026261716040159, 2016.
Wang, B., Li, Y., Xie, Z., Du, S., Zeng, X., Hou, J., and Ma, T.: Characteristics of microbial activity in atmospheric aerosols and its relationship to chemical composition of PM2.5 in Xi'an, China, J. Aerosol Sci., 146, 105572, https://doi.org/10.1016/j.jaerosci.2020.105572, 2020.
Wang, J.: Air quality historical data query, CNEMC [data set], https://www.aqistudy.cn/historydata/ (last access: 19 September 2024), 2024.
Wei, M., Li, M., Xu, C., Xu, P., and Liu, H.: Pollution characteristics of bioaerosols in PM2.5 during the winter heating season in a coastal city of northern China, Environ. Sci. Pollut. Res., 27, 27750–27761, https://doi.org/10.1007/s11356-020-09070-y, 2020.
Xia, F., Chen, Z., Tian, E., and Mo, J.: A super sandstorm altered the abundance and composition of airborne bacteria in Beijing, J. Environ. Sci., 144, 35–44, https://doi.org/10.1016/j.jes.2023.07.029, 2024.
Xie, W., Li, Y., Bai, W., Hou, J., Ma, T., Zeng, X., Zhang, L., and An, T.: The source and transport of bioaerosols in the air: A review, Front. Environ. Sci. Eng., 15, 44, https://doi.org/10.1007/s11783-020-1336-8, 2021.
Xu, C., Wei, M., Chen, J., Wang, X., Zhu, C., and Li, J.: Bacterial characterization in ambient submicron particles during severe haze episodes at Ji'nan, China, Sci. Total Environ., 580, 188–196, https://doi.org/10.1016/j.scitotenv.2016.11.145, 2017.
Xu, C., Wei, M., Chen, J., Zhu, C., Li, J., Xu, X., Wang, W., Zhang, Q., Ding, A., Kan, H., Zhao, Z., and Mellouki, A.: Profile of inhalable bacteria in PM2.5 at Mt. Tai, China: Abundance, community, and influence of air mass trajectories, Ecotoxicol. Environ. Safe., 168, 110–119, https://doi.org/10.1016/j.ecoenv.2018.10.071, 2019.
Xu, C., Chen, J., Wang, Z., Chen, H., Feng, H., Wang, L., Xie, Y., Wang, Z., Ye, X., Kan, H., Zhao, Z., and Mellouki, A.: Diverse bacterial populations of PM2.5 in urban and suburb Shanghai, China, Front. Environ. Sci. Eng., 15, 37, https://doi.org/10.1007/s11783-020-1329-7, 2021.
Xue, F., Yang, Y., Zou, S., Zhang, Y., Yue, D., Zhao, Y., and Lai, S.: Characterization of airborne bacteria and fungi at a land-sea transition site in Southern China, Sci. Total Environ., 849, 157786, https://doi.org/10.1016/j.scitotenv.2022.157786, 2022.
Yan, D., Zhang, T., Su, J., Zhao, L.-L., Wang, H., Fang, X.-M., Zhang, Y.-Q., Liu, H.-Y., and Yu, L.-Y.: Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days, Front. Microbiol., 7, 487, https://doi.org/10.3389/fmicb.2016.00487, 2016.
Yan, Z., Lingui, X., Lin, L. I., and Hongguang, Z.: Advance in environmental pollutants degradation of Comamonas, Microbiol. China, 39, 1471–1478, https://doi.org/10.13344/j.microbiol.china.2012.10.011, 2012.
Yao, L., Zhan, B., Xian, A., Sun, W., Li, Q., and Chen, J.: Contribution of transregional transport to particle pollution and health effects in Shanghai during 2013–2017, Sci. Total Environ., 677, 564–570, https://doi.org/10.1016/j.scitotenv.2019.03.488, 2019.
Yu, J., Yan, C., Liu, Y., Li, X., Zhou, T., and Zheng, M.: Potassium: A Tracer for Biomass Burning in Beijing?, Aerosol Air Qual. Res., 18, 2447–2459, https://doi.org/10.4209/aaqr.2017.11.0536, 2018.
Zeng, X., Kong, S., Zheng, S., Cheng, Y., Wu, F., Niu, Z., Yan, Q., Wu, J., Zheng, H., Zheng, M., Zeng, X., Chen, N., Xu, K., Zhu, B., Yan, Y., and Qi, S.: Variation of airborne DNA mass ratio and fungal diversity in fine particles with day-night difference during an entire winter haze evolution process of Central China, Sci. Total Environ., 694, 133802, https://doi.org/10.1016/j.scitotenv.2019.133802, 2019.
Zhang, F., Chen, Y., Tian, C., Wang, X., Huang, G., Fang, Y., and Zong, Z.: Identification and quantification of shipping emissions in Bohai Rim, China, Sci. Total Environ., 497–498, 570–577, https://doi.org/10.1016/j.scitotenv.2014.08.016, 2014.
Zhang, M., Zhao, B., Yan, Y., Cheng, Z., Li, Z., Han, L., Sun, Y., Zheng, Y., and Xia, Y.: Comamonas-dominant microbial community in carbon poor aquitard sediments revealed by metagenomic-based growth rate investigation, Sci. Total Environ., 912, 169203, https://doi.org/10.1016/j.scitotenv.2023.169203, 2024.
Zhang, N., Cao, J., Ho, K., and He, Y.: Chemical characterization of aerosol collected at Mt. Yulong in wintertime on the southeastern Tibetan Plateau, Atmos. Res., 107, 76–85, https://doi.org/10.1016/j.atmosres.2011.12.012, 2012.
Zhang, T., Li, X., Wang, M., Chen, H., and Yao, M.: Microbial aerosol chemistry characteristics in highly polluted air, Sci. China: Chem., 62, 1051–1063, https://doi.org/10.1007/s11426-019-9488-3, 2019.
Zhang, Y., Guo, C., Ma, K., Tang, A., Goulding, K., and Liu, X.: Characteristics of airborne bacterial communities across different PM2.5 levels in Beijing during winter and spring, Atmos. Res., 273, 106179, https://doi.org/10.1016/j.atmosres.2022.106179, 2022.
Zhao, J., Jin, L., Wu, D., Zhang, G., Xie, J., Li, J., and Fue, X.: Global airborne bacterial community – interactions with Earth's microbiomes and anthropogenic activities, P. Natl. Acad. Sci. USA, 119, e2204465119, https://doi.org/10.1073/pnas.2204465119, 2022.
Zhou, Y., Xue, L., Wang, T., Gao, X., Wang, Z., Wang, X., Zhang, J., Zhang, Q., and Wang, W.: Characterization of aerosol acidity at a high mountain site in central eastern China, Atmos. Environ., 51, 11–20, https://doi.org/10.1016/j.atmosenv.2012.01.061, 2012.
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial...
Altmetrics
Final-revised paper
Preprint