Articles | Volume 23, issue 16
https://doi.org/10.5194/acp-23-9037-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-9037-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Earth-system-model evaluation of cloud and precipitation occurrence for supercooled and warm clouds over the Southern Ocean's Macquarie Island
Center for Climate Systems Research, Columbia University, New York, NY, USA
NASA Goddard Institute for Space Studies, New York, NY, USA
Ann M. Fridlind
NASA Goddard Institute for Space Studies, New York, NY, USA
Israel Silber
Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA
Andrew S. Ackerman
NASA Goddard Institute for Space Studies, New York, NY, USA
Greg Cesana
Center for Climate Systems Research, Columbia University, New York, NY, USA
NASA Goddard Institute for Space Studies, New York, NY, USA
Johannes Mülmenstädt
Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
Alain Protat
Australian Bureau of Meteorology, Melbourne, VIC, Australia
Australian Antarctic Partnership Program, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
Simon Alexander
Australian Antarctic Division, Kingston, TAS, Australia
Australian Antarctic Partnership Program, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
Adrian McDonald
School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
Related authors
McKenna Stanford, Ann Fridlind, Andrew Ackerman, Bastiaan van Diedenhoven, Qian Xiao, Jian Wang, Toshihisa Matsui, Daniel Hernandez-Deckers, and Paul Lawson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2413, https://doi.org/10.5194/egusphere-2024-2413, 2024
Short summary
Short summary
The evolution of cloud droplets, from the point they are activated by atmospheric aerosol to the formation of precipitation, is an important process relevant to understanding cloud-climate feedbacks. This study demonstrates a benchmark framework for using novel airborne measurements and retrievals to constrain high-resolution simulations of moderately deep cumulus clouds and pathways for scaling results to large-scale models and space-based observational platforms.
Dan Lubin, Xun Zou, Johannes Mülmenstädt, Andrew Vogelmann, Maria Cadeddu, and Damao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2768, https://doi.org/10.5194/egusphere-2025-2768, 2025
Short summary
Short summary
The US Department of Energy Atmospheric Radiation Measurement (ARM) North Slope of Alaska Facility has measured solar and atmospheric infrared radiation, and cloud properties, for the past 25 years. Statistically significant trends are emerging, including increasing infrared radiation due to a warming atmosphere, and decreasing solar radiation due to increasing liquid water content in clouds. These trends are influenced by large-scale atmospheric circulation patterns and by atmospheric rivers.
Florian Tornow, Ann Fridlind, George Tselioudis, Brian Cairns, Andrew Ackerman, Seethala Chellappan, David Painemal, Paquita Zuidema, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
Atmos. Chem. Phys., 25, 5053–5074, https://doi.org/10.5194/acp-25-5053-2025, https://doi.org/10.5194/acp-25-5053-2025, 2025
Short summary
Short summary
The recent NASA campaign ACTIVATE (Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment) performed 71 tandem flights in mid-latitude marine cold-air outbreaks off the US eastern seaboard. We provide meteorological and cloud transition stage context, allowing us to identify days that are most suitable for Lagrangian modeling and analysis. Surveyed cloud properties show signatures of cloud microphysical processes, such as cloud-top entrainment and secondary ice formation.
Naser Mahfouz, Hassan Beydoun, Johannes Mülmenstädt, Noel Keen, Adam C. Varble, Luca Bertagna, Peter Bogenschutz, Andrew Bradley, Matthew W. Christensen, T. Conrad Clevenger, Aaron Donahue, Jerome Fast, James Foucar, Jean-Christophe Golaz, Oksana Guba, Walter Hannah, Benjamin Hillman, Robert Jacob, Wuyin Lin, Po-Lun Ma, Yun Qian, Balwinder Singh, Christopher Terai, Hailong Wang, Mingxuan Wu, Kai Zhang, Andrew Gettelman, Mark Taylor, L. Ruby Leung, Peter Caldwell, and Susannah Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2025-1868, https://doi.org/10.5194/egusphere-2025-1868, 2025
Short summary
Short summary
Our study assesses the aerosol effective radiative forcing in a global cloud-resolving atmosphere model at ultra-high resolution. We demonstrate that global ERFaer signal can be robustly reproduced across resolutions when aerosol activation processes are carefully parameterized. Further, we argue that simplified prescribed aerosol schemes will open the door for further process/mechanism studies under controlled conditions.
Fan Mei, Qi Zhang, Damao Zhang, Jerome D. Fast, Gourihar Kulkarni, Mikhail S. Pekour, Christopher R. Niedek, Susanne Glienke, Israel Silber, Beat Schmid, Jason M. Tomlinson, Hardeep S. Mehta, Xena Mansoura, Zezhen Cheng, Gregory W. Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
Atmos. Chem. Phys., 25, 3425–3444, https://doi.org/10.5194/acp-25-3425-2025, https://doi.org/10.5194/acp-25-3425-2025, 2025
Short summary
Short summary
This study highlights the unique capability of the ArcticShark, an uncrewed aerial system, in measuring vertically resolved atmospheric properties. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Israel Silber, Jennifer M. Comstock, Michael R. Kieburtz, and Lynn M. Russell
Earth Syst. Sci. Data, 17, 29–42, https://doi.org/10.5194/essd-17-29-2025, https://doi.org/10.5194/essd-17-29-2025, 2025
Short summary
Short summary
We present ARMTRAJ, a set of multipurpose trajectory datasets, which augments cloud, aerosol, and boundary layer studies utilizing the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) user facility data. ARMTRAJ data include ensemble run statistics that enhance consistency and serve as uncertainty metrics for air mass coordinates and state variables. ARMTRAJ will soon become a near real-time product that will accompany past, ongoing, and future ARM deployments.
Johannes Mülmenstädt, Andrew S. Ackerman, Ann M. Fridlind, Meng Huang, Po-Lun Ma, Naser Mahfouz, Susanne E. Bauer, Susannah M. Burrows, Matthew W. Christensen, Sudhakar Dipu, Andrew Gettelman, L. Ruby Leung, Florian Tornow, Johannes Quaas, Adam C. Varble, Hailong Wang, Kai Zhang, and Youtong Zheng
Atmos. Chem. Phys., 24, 13633–13652, https://doi.org/10.5194/acp-24-13633-2024, https://doi.org/10.5194/acp-24-13633-2024, 2024
Short summary
Short summary
Stratocumulus clouds play a large role in Earth's climate by reflecting incoming solar energy back to space. Turbulence at stratocumulus cloud top mixes in dry, warm air, which can lead to cloud dissipation. This process is challenging for coarse-resolution global models to represent. We show that global models nevertheless agree well with our process understanding. Global models also think the process is less important for the climate than other lines of evidence have led us to conclude.
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024, https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Short summary
The phenomenon of high ice water content (HIWC) occurs in mesoscale convective systems (MCSs) when a large number of small ice particles with typical sizes of a few hundred micrometers is found at high altitudes. It was found that secondary ice production in the vicinity of the melting layer plays a key role in the formation and maintenance of HIWC. This study presents a conceptual model of the formation of HIWC in tropical MCSs based on in situ observations and numerical simulation.
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 24, 11791–11805, https://doi.org/10.5194/acp-24-11791-2024, https://doi.org/10.5194/acp-24-11791-2024, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentrations, smaller Hoppel minima, lower effective supersaturations, and accumulation-mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol–cloud interactions in order to improve their accurate representation in models.
Sonya L. Fiddes, Matthew T. Woodhouse, Marc D. Mallet, Liam Lamprey, Ruhi S. Humphries, Alain Protat, Simon P. Alexander, Hakase Hayashida, Samuel G. Putland, Branka Miljevic, and Robyn Schofield
EGUsphere, https://doi.org/10.5194/egusphere-2024-3125, https://doi.org/10.5194/egusphere-2024-3125, 2024
Short summary
Short summary
The interaction between natural marine aerosols, clouds and radiation in the Southern Ocean is a major source of uncertainty in climate models. We evaluate the Australian climate model using aerosol observations and find it underestimates aerosol number often by over 50 %. Model changes were tested to improve aerosol concentrations, but some of our changes had severe negative effects on the larger climate system, highlighting issues in aerosol-cloud interaction modelling.
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024, https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
Short summary
Supercooled liquid water cloud is important to represent in weather and climate models, particularly in the Southern Hemisphere. Previous work has developed a new machine learning method for measuring supercooled liquid water in Antarctic clouds using simple lidar observations. We evaluate this technique using a lidar dataset from Christchurch, New Zealand, and develop an updated algorithm for accurate supercooled liquid water detection at mid-latitudes.
Toshi Matsui, Daniel Hernandez-Deckers, Scott E. Giangrande, Thiago S. Biscaro, Ann Fridlind, and Scott Braun
Atmos. Chem. Phys., 24, 10793–10814, https://doi.org/10.5194/acp-24-10793-2024, https://doi.org/10.5194/acp-24-10793-2024, 2024
Short summary
Short summary
Using computer simulations and real measurements, we discovered that storms over the Amazon were narrower but more intense during the dry periods, producing heavier rain and more ice particles in the clouds. Our research showed that cumulus bubbles played a key role in creating these intense storms. This study can improve the representation of the effect of continental and ocean environments on tropical regions' rainfall patterns in simulations.
McKenna Stanford, Ann Fridlind, Andrew Ackerman, Bastiaan van Diedenhoven, Qian Xiao, Jian Wang, Toshihisa Matsui, Daniel Hernandez-Deckers, and Paul Lawson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2413, https://doi.org/10.5194/egusphere-2024-2413, 2024
Short summary
Short summary
The evolution of cloud droplets, from the point they are activated by atmospheric aerosol to the formation of precipitation, is an important process relevant to understanding cloud-climate feedbacks. This study demonstrates a benchmark framework for using novel airborne measurements and retrievals to constrain high-resolution simulations of moderately deep cumulus clouds and pathways for scaling results to large-scale models and space-based observational platforms.
Grégory V. Cesana, Olivia Pierpaoli, Matteo Ottaviani, Linh Vu, Zhonghai Jin, and Israel Silber
Atmos. Chem. Phys., 24, 7899–7909, https://doi.org/10.5194/acp-24-7899-2024, https://doi.org/10.5194/acp-24-7899-2024, 2024
Short summary
Short summary
Better characterizing the relationship between sea ice and clouds is key to understanding Arctic climate because clouds and sea ice affect surface radiation and modulate Arctic surface warming. Our results indicate that Arctic liquid clouds robustly increase in response to sea ice decrease. This increase has a cooling effect on the surface because more solar radiation is reflected back to space, and it should contribute to dampening future Arctic surface warming.
Johannes Mülmenstädt, Edward Gryspeerdt, Sudhakar Dipu, Johannes Quaas, Andrew S. Ackerman, Ann M. Fridlind, Florian Tornow, Susanne E. Bauer, Andrew Gettelman, Yi Ming, Youtong Zheng, Po-Lun Ma, Hailong Wang, Kai Zhang, Matthew W. Christensen, Adam C. Varble, L. Ruby Leung, Xiaohong Liu, David Neubauer, Daniel G. Partridge, Philip Stier, and Toshihiko Takemura
Atmos. Chem. Phys., 24, 7331–7345, https://doi.org/10.5194/acp-24-7331-2024, https://doi.org/10.5194/acp-24-7331-2024, 2024
Short summary
Short summary
Human activities release copious amounts of small particles called aerosols into the atmosphere. These particles change how much sunlight clouds reflect to space, an important human perturbation of the climate, whose magnitude is highly uncertain. We found that the latest climate models show a negative correlation but a positive causal relationship between aerosols and cloud water. This means we need to be very careful when we interpret observational studies that can only see correlation.
Naser Mahfouz, Johannes Mülmenstädt, and Susannah Burrows
Atmos. Chem. Phys., 24, 7253–7260, https://doi.org/10.5194/acp-24-7253-2024, https://doi.org/10.5194/acp-24-7253-2024, 2024
Short summary
Short summary
Climate models are our primary tool to probe past, present, and future climate states unlike the more recent observation record. By constructing a hypothetical model configuration, we show that present-day correlations are insufficient to predict a persistent uncertainty in climate projection (how much sun because clouds will reflect in a changing climate). We hope our result will contribute to the scholarly conversation on better utilizing observations to constrain climate uncertainties.
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
Atmos. Chem. Phys., 24, 5287–5302, https://doi.org/10.5194/acp-24-5287-2024, https://doi.org/10.5194/acp-24-5287-2024, 2024
Short summary
Short summary
Single-layer warm liquid clouds cover nearly one-third of the Earth's surface, and uncertainties regarding the impact of aerosols on their radiative properties pose a significant challenge to climate prediction. Here, we demonstrate how satellite observations can be used to constrain Earth system model estimates of the radiative forcing from the interactions of aerosols with clouds due to warm rain processes.
Sonya L. Fiddes, Marc D. Mallet, Alain Protat, Matthew T. Woodhouse, Simon P. Alexander, and Kalli Furtado
Geosci. Model Dev., 17, 2641–2662, https://doi.org/10.5194/gmd-17-2641-2024, https://doi.org/10.5194/gmd-17-2641-2024, 2024
Short summary
Short summary
In this study we present an evaluation that considers complex, non-linear systems in a holistic manner. This study uses XGBoost, a machine learning algorithm, to predict the simulated Southern Ocean shortwave radiation bias in the ACCESS model using cloud property biases as predictors. We then used a novel feature importance analysis to quantify the role that each cloud bias plays in predicting the radiative bias, laying the foundation for advanced Earth system model evaluation and development.
Kamil Mroz, Alessandro Battaglia, and Ann M. Fridlind
Atmos. Meas. Tech., 17, 1577–1597, https://doi.org/10.5194/amt-17-1577-2024, https://doi.org/10.5194/amt-17-1577-2024, 2024
Short summary
Short summary
In this study, we examine the extent to which radar measurements from space can inform us about the properties of clouds and precipitation. Surprisingly, our analysis showed that the amount of ice turning into rain was lower than expected in the current product. To improve on this, we came up with a new way to extract information about the size and concentration of particles from radar data. As long as we use this method in the right conditions, we can even estimate how dense the ice is.
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech., 17, 407–422, https://doi.org/10.5194/amt-17-407-2024, https://doi.org/10.5194/amt-17-407-2024, 2024
Short summary
Short summary
The paper addresses the crucial topic of hail damage quantification using radar observations. We propose a new radar-derived hail product that utilizes a large dataset of insurance hail damage claims and radar observations. A deep neural network was employed, trained with local meteorological variables and the radar observations, to better quantify hail damage. Key meteorological variables were identified to have the most predictive capability in this regard.
Yusuf A. Bhatti, Laura E. Revell, Alex J. Schuddeboom, Adrian J. McDonald, Alex T. Archibald, Jonny Williams, Abhijith U. Venugopal, Catherine Hardacre, and Erik Behrens
Atmos. Chem. Phys., 23, 15181–15196, https://doi.org/10.5194/acp-23-15181-2023, https://doi.org/10.5194/acp-23-15181-2023, 2023
Short summary
Short summary
Aerosols are a large source of uncertainty over the Southern Ocean. A dominant source of sulfate aerosol in this region is dimethyl sulfide (DMS), which is poorly simulated by climate models. We show the sensitivity of simulated atmospheric DMS to the choice of oceanic DMS data set and emission scheme. We show that oceanic DMS has twice the influence on atmospheric DMS than the emission scheme. Simulating DMS more accurately in climate models will help to constrain aerosol uncertainty.
Zhangcheng Pei, Sonya L. Fiddes, W. John R. French, Simon P. Alexander, Marc D. Mallet, Peter Kuma, and Adrian McDonald
Atmos. Chem. Phys., 23, 14691–14714, https://doi.org/10.5194/acp-23-14691-2023, https://doi.org/10.5194/acp-23-14691-2023, 2023
Short summary
Short summary
In this paper, we use ground-based observations to evaluate a climate model and a satellite product in simulating surface radiation and investigate how radiation biases are influenced by cloud properties over the Southern Ocean. We find that significant radiation biases exist in both the model and satellite. The cloud fraction and cloud occurrence play an important role in affecting radiation biases. We suggest further development for the model and satellite using ground-based observations.
Adam C. Varble, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Shuaiqi Tang, and Jerome Fast
Atmos. Chem. Phys., 23, 13523–13553, https://doi.org/10.5194/acp-23-13523-2023, https://doi.org/10.5194/acp-23-13523-2023, 2023
Short summary
Short summary
We evaluate how clouds change in response to changing atmospheric particle (aerosol) concentrations in a climate model and find that the model-predicted cloud brightness increases too much as aerosols increase because the cloud drop number increases too much. Excessive drizzle in the model mutes this difference. Many differences between observational and model estimates are explained by varying assumptions of how much liquid has been lost in clouds, which impacts the estimated cloud drop number.
Adrien Guyot, Jordan P. Brook, Alain Protat, Kathryn Turner, Joshua Soderholm, Nicholas F. McCarthy, and Hamish McGowan
Atmos. Meas. Tech., 16, 4571–4588, https://doi.org/10.5194/amt-16-4571-2023, https://doi.org/10.5194/amt-16-4571-2023, 2023
Short summary
Short summary
We propose a new method that should facilitate the use of weather radars to study wildfires. It is important to be able to identify the particles emitted by wildfires on radar, but it is difficult because there are many other echoes on radar like clear air, the ground, sea clutter, and precipitation. We came up with a two-step process to classify these echoes. Our method is accurate and can be used by fire departments in emergencies or by scientists for research.
Aishwarya Raman, Thomas Hill, Paul J. DeMott, Balwinder Singh, Kai Zhang, Po-Lun Ma, Mingxuan Wu, Hailong Wang, Simon P. Alexander, and Susannah M. Burrows
Atmos. Chem. Phys., 23, 5735–5762, https://doi.org/10.5194/acp-23-5735-2023, https://doi.org/10.5194/acp-23-5735-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) play an important role in cloud processes and associated precipitation. Yet, INPs are not accurately represented in climate models. This study attempts to uncover these gaps by comparing model-simulated INP concentrations against field campaign measurements in the SO for an entire year, 2017–2018. Differences in INP concentrations and variability between the model and observations have major implications for modeling cloud properties in high latitudes.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys., 23, 3749–3777, https://doi.org/10.5194/acp-23-3749-2023, https://doi.org/10.5194/acp-23-3749-2023, 2023
Short summary
Short summary
Observations of aerosols in pristine regions are rare but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Matthew W. Christensen, Po-Lun Ma, Peng Wu, Adam C. Varble, Johannes Mülmenstädt, and Jerome D. Fast
Atmos. Chem. Phys., 23, 2789–2812, https://doi.org/10.5194/acp-23-2789-2023, https://doi.org/10.5194/acp-23-2789-2023, 2023
Short summary
Short summary
An increase in aerosol concentration (tiny airborne particles) is shown to suppress rainfall and increase the abundance of droplets in clouds passing over Graciosa Island in the Azores. Cloud drops remain affected by aerosol for several days across thousands of kilometers in satellite data. Simulations from an Earth system model show good agreement, but differences in the amount of cloud water and its extent remain despite modifications to model parameters that control the warm-rain process.
Peter Kuma, Frida A.-M. Bender, Alex Schuddeboom, Adrian J. McDonald, and Øyvind Seland
Atmos. Chem. Phys., 23, 523–549, https://doi.org/10.5194/acp-23-523-2023, https://doi.org/10.5194/acp-23-523-2023, 2023
Short summary
Short summary
We present a machine learning method for determining cloud types in climate model output and satellite observations based on ground observations of cloud genera. We analyse cloud type biases and changes with temperature in climate models and show that the bias is anticorrelated with climate sensitivity. Models simulating decreasing stratiform and increasing cumuliform clouds with increased CO2 concentration tend to have higher climate sensitivity than models simulating the opposite tendencies.
Sonya L. Fiddes, Alain Protat, Marc D. Mallet, Simon P. Alexander, and Matthew T. Woodhouse
Atmos. Chem. Phys., 22, 14603–14630, https://doi.org/10.5194/acp-22-14603-2022, https://doi.org/10.5194/acp-22-14603-2022, 2022
Short summary
Short summary
Climate models have difficulty simulating Southern Ocean clouds, impacting how much sunlight reaches the surface. We use machine learning to group different cloud types observed from satellites and simulated in a climate model. We find the model does a poor job of simulating the same cloud type as what the satellite shows and, even when it does, the cloud properties and amount of reflected sunlight are incorrect. We have a lot of work to do to model clouds correctly over the Southern Ocean.
Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon
Atmos. Chem. Phys., 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022, https://doi.org/10.5194/acp-22-12467-2022, 2022
Short summary
Short summary
The role of ice precipitation in the Earth water budget is not well known because ice particles are complex, and their formation involves intricate processes. Riming of ice crystals by supercooled water droplets is an efficient process, but little is known about its importance at high latitudes. In this work, by exploiting the deployment of an unprecedented number of remote sensing systems in Antarctica, we find that riming occurs at much lower temperatures compared with the mid-latitudes.
Michael S. Diamond, Pablo E. Saide, Paquita Zuidema, Andrew S. Ackerman, Sarah J. Doherty, Ann M. Fridlind, Hamish Gordon, Calvin Howes, Jan Kazil, Takanobu Yamaguchi, Jianhao Zhang, Graham Feingold, and Robert Wood
Atmos. Chem. Phys., 22, 12113–12151, https://doi.org/10.5194/acp-22-12113-2022, https://doi.org/10.5194/acp-22-12113-2022, 2022
Short summary
Short summary
Smoke from southern Africa blankets the southeast Atlantic from June-October, overlying a major transition region between overcast and scattered clouds. The smoke affects Earth's radiation budget by absorbing sunlight and changing cloud properties. We investigate these effects in regional climate and large eddy simulation models based on international field campaigns. We find that large-scale circulation changes more strongly affect cloud transitions than smoke microphysical effects in our case.
Adrien Guyot, Alain Protat, Simon P. Alexander, Andrew R. Klekociuk, Peter Kuma, and Adrian McDonald
Atmos. Meas. Tech., 15, 3663–3681, https://doi.org/10.5194/amt-15-3663-2022, https://doi.org/10.5194/amt-15-3663-2022, 2022
Short summary
Short summary
Ceilometers are instruments that are widely deployed as part of operational networks. They are usually not able to detect cloud phase. Here, we propose an evaluation of various methods to detect supercooled liquid water with ceilometer observations, using an extensive dataset from Davis, Antarctica. Our results highlight the possibility for ceilometers to detect supercooled liquid water in clouds.
Alex R. Aves, Laura E. Revell, Sally Gaw, Helena Ruffell, Alex Schuddeboom, Ngaire E. Wotherspoon, Michelle LaRue, and Adrian J. McDonald
The Cryosphere, 16, 2127–2145, https://doi.org/10.5194/tc-16-2127-2022, https://doi.org/10.5194/tc-16-2127-2022, 2022
Short summary
Short summary
This study confirms the presence of microplastics in Antarctic snow, highlighting the extent of plastic pollution globally. Fresh snow was collected from Ross Island, Antarctica, and subsequent analysis identified an average of 29 microplastic particles per litre of melted snow. The most likely source of these airborne microplastics is local scientific research stations; however, modelling shows their origin could have been up to 6000 km away.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Sonya L. Fiddes, Matthew T. Woodhouse, Steve Utembe, Robyn Schofield, Simon P. Alexander, Joel Alroe, Scott D. Chambers, Zhenyi Chen, Luke Cravigan, Erin Dunne, Ruhi S. Humphries, Graham Johnson, Melita D. Keywood, Todd P. Lane, Branka Miljevic, Yuko Omori, Alain Protat, Zoran Ristovski, Paul Selleck, Hilton B. Swan, Hiroshi Tanimoto, Jason P. Ward, and Alastair G. Williams
Atmos. Chem. Phys., 22, 2419–2445, https://doi.org/10.5194/acp-22-2419-2022, https://doi.org/10.5194/acp-22-2419-2022, 2022
Short summary
Short summary
Coral reefs have been found to produce the climatically relevant chemical compound dimethyl sulfide (DMS). It has been suggested that corals can modify their environment via the production of DMS. We use an atmospheric chemistry model to test this theory at a regional scale for the first time. We find that it is unlikely that coral-reef-derived DMS has an influence over local climate, in part due to the proximity to terrestrial and anthropogenic aerosol sources.
Alain Protat, Valentin Louf, Joshua Soderholm, Jordan Brook, and William Ponsonby
Atmos. Meas. Tech., 15, 915–926, https://doi.org/10.5194/amt-15-915-2022, https://doi.org/10.5194/amt-15-915-2022, 2022
Short summary
Short summary
This study uses collocated ship-based, ground-based, and spaceborne radar observations to validate the concept of using the GPM spaceborne radar observations to calibrate national weather radar networks to the accuracy required for operational severe weather applications such as rainfall and hail nowcasting.
Israel Silber, Robert C. Jackson, Ann M. Fridlind, Andrew S. Ackerman, Scott Collis, Johannes Verlinde, and Jiachen Ding
Geosci. Model Dev., 15, 901–927, https://doi.org/10.5194/gmd-15-901-2022, https://doi.org/10.5194/gmd-15-901-2022, 2022
Short summary
Short summary
The Earth Model Column Collaboratory (EMC2) is an open-source ground-based (and air- or space-borne) lidar and radar simulator and subcolumn generator designed for large-scale models, in particular climate models, applicable also for high-resolution models. EMC2 emulates measurements while remaining faithful to large-scale models' physical assumptions implemented in their cloud or radiation schemes. We demonstrate the use of EMC2 to compare AWARE measurements with the NASA GISS ModelE3 and LES.
Daniel Hernandez-Deckers, Toshihisa Matsui, and Ann M. Fridlind
Atmos. Chem. Phys., 22, 711–724, https://doi.org/10.5194/acp-22-711-2022, https://doi.org/10.5194/acp-22-711-2022, 2022
Short summary
Short summary
We investigate how the concentration of aerosols (small particles that serve as seeds for cloud droplets) affect the dynamics of simulated clouds using two different frameworks, i.e., the traditional selection of cloudy rising grid points and tracking small-scale coherent rising features (cumulus thermals). By doing so, we find that these cumulus thermals reveal useful information about the coupling between internal cloud circulations and cloud droplet and raindrop formation.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Kamil Mroz, Alessandro Battaglia, Cuong Nguyen, Andrew Heymsfield, Alain Protat, and Mengistu Wolde
Atmos. Meas. Tech., 14, 7243–7254, https://doi.org/10.5194/amt-14-7243-2021, https://doi.org/10.5194/amt-14-7243-2021, 2021
Short summary
Short summary
A method for estimating microphysical properties of ice clouds based on radar measurements is presented. The algorithm exploits the information provided by differences in the radar response at different frequency bands in relation to changes in the snow morphology. The inversion scheme is based on a statistical relation between the radar simulations and the properties of snow calculated from in-cloud sampling.
Ruhi S. Humphries, Melita D. Keywood, Sean Gribben, Ian M. McRobert, Jason P. Ward, Paul Selleck, Sally Taylor, James Harnwell, Connor Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Alain Protat, Simon P. Alexander, and Greg McFarquhar
Atmos. Chem. Phys., 21, 12757–12782, https://doi.org/10.5194/acp-21-12757-2021, https://doi.org/10.5194/acp-21-12757-2021, 2021
Short summary
Short summary
The Southern Ocean region is one of the most pristine in the world and serves as an important proxy for the pre-industrial atmosphere. Improving our understanding of the natural processes in this region is likely to result in the largest reductions in the uncertainty of climate and earth system models. In this paper we present a statistical summary of the latitudinal gradient of aerosol and cloud condensation nuclei concentrations obtained from five voyages spanning the Southern Ocean.
Florian Tornow, Andrew S. Ackerman, and Ann M. Fridlind
Atmos. Chem. Phys., 21, 12049–12067, https://doi.org/10.5194/acp-21-12049-2021, https://doi.org/10.5194/acp-21-12049-2021, 2021
Short summary
Short summary
Cold air outbreaks affect the local energy budget by forming bright boundary layer clouds that, once it rains, evolve into dimmer, broken cloud fields that are depleted of condensation nuclei – an evolution consistent with closed-to-open cell transitions. We find that cloud ice accelerates this evolution, primarily via riming prior to rain onset, which (1) reduces liquid water, (2) reduces condensation nuclei, and (3) leads to early precipitation cooling and moistening below cloud.
Stefanie Kremser, Mike Harvey, Peter Kuma, Sean Hartery, Alexia Saint-Macary, John McGregor, Alex Schuddeboom, Marc von Hobe, Sinikka T. Lennartz, Alex Geddes, Richard Querel, Adrian McDonald, Maija Peltola, Karine Sellegri, Israel Silber, Cliff S. Law, Connor J. Flynn, Andrew Marriner, Thomas C. J. Hill, Paul J. DeMott, Carson C. Hume, Graeme Plank, Geoffrey Graham, and Simon Parsons
Earth Syst. Sci. Data, 13, 3115–3153, https://doi.org/10.5194/essd-13-3115-2021, https://doi.org/10.5194/essd-13-3115-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions over the Southern Ocean are poorly understood and remain a major source of uncertainty in climate models. This study presents ship-borne measurements, collected during a 6-week voyage into the Southern Ocean in 2018, that are an important supplement to satellite-based measurements. For example, these measurements include data on low-level clouds and aerosol composition in the marine boundary layer, which can be used in climate model evaluation efforts.
Ethan R. Dale, Stefanie Kremser, Jordis S. Tradowsky, Greg E. Bodeker, Leroy J. Bird, Gustavo Olivares, Guy Coulson, Elizabeth Somervell, Woodrow Pattinson, Jonathan Barte, Jan-Niklas Schmidt, Nariefa Abrahim, Adrian J. McDonald, and Peter Kuma
Earth Syst. Sci. Data, 13, 2053–2075, https://doi.org/10.5194/essd-13-2053-2021, https://doi.org/10.5194/essd-13-2053-2021, 2021
Short summary
Short summary
MAPM is a project whose goal is to develop a method to infer particulate matter (PM) emissions maps from PM concentration measurements. In support of MAPM, we conducted a winter field campaign in New Zealand. In addition to two types of instruments measuring PM, an array of other meteorological sensors were deployed, measuring temperature and wind speed as well as probing the vertical structure of the lower atmosphere. In this article, we present the measurements taken during this campaign.
Israel Silber, Ann M. Fridlind, Johannes Verlinde, Andrew S. Ackerman, Grégory V. Cesana, and Daniel A. Knopf
Atmos. Chem. Phys., 21, 3949–3971, https://doi.org/10.5194/acp-21-3949-2021, https://doi.org/10.5194/acp-21-3949-2021, 2021
Short summary
Short summary
Long-term ground-based radar and sounding measurements over Alaska (Antarctica) indicate that more than 85 % (75 %) of supercooled clouds are precipitating at cloud base and that 75 % (50 %) are precipitating to the surface. Such high prevalence is reconciled with lesser spaceborne estimates by considering radar sensitivity. Results provide a strong observational constraint for polar cloud processes in large-scale models.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Richard Querel, Israel Silber, and Connor J. Flynn
Geosci. Model Dev., 14, 43–72, https://doi.org/10.5194/gmd-14-43-2021, https://doi.org/10.5194/gmd-14-43-2021, 2021
Robert Jackson, Scott Collis, Valentin Louf, Alain Protat, Die Wang, Scott Giangrande, Elizabeth J. Thompson, Brenda Dolan, and Scott W. Powell
Atmos. Meas. Tech., 14, 53–69, https://doi.org/10.5194/amt-14-53-2021, https://doi.org/10.5194/amt-14-53-2021, 2021
Short summary
Short summary
About 4 years of 2D video disdrometer data in Darwin are used to develop and validate rainfall retrievals for tropical convection in C- and X-band radars in Darwin. Using blended techniques previously used for Colorado and Manus and Gan islands, with modified coefficients in each estimator, provided the most optimal results. Using multiple radar observables to develop a rainfall retrieval provided a greater advantage than using a single observable, including using specific attenuation.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Cited articles
Abdul-Razzak, H., Ghan, S. J., and Rivera-Carpio, C.: A parameterization of
aerosol activation: 1. Single aerosol type, J. Geophys. Res.-Atmos., 103, 6123–6131, https://doi.org/10.1029/97JD03735, 1998. a
Adams, N.: Climate trends at Macquarie Island and expectations of future
climate change in the sub-Antarctic, Papers Proc. Roy.
Soc. Tasmania, 143, 1–8, https://doi.org/10.26749/RSTPP.143.1.1, 2009. a
Alexander, S.: BASTA Cloud Radar data from Macquarie Island, 2016–2017, Ver. 1, Australian Antarctic Data Centre [data set], https://doi.org/10.26179/5d91836ca8fc3, 2019. a
Alexander, S. and McDonald, A.: University of Canterbury's Vaisala CL51 Ceilometer at Macquarie Island 2016–2018, Australian Antarctic Data Centre [data set], https://doi.org/10.26179/5d91835e2ccc3, 2019. a
Alexander, S. and McDonald, A.: University of Canterbury's Vaisala CL51 Ceilometer at Macquarie Island 2016–2018, Ver. 1, Australian Antarctic Data Centre [data set], https://doi.org/10.26179/5d91835e2ccc3, 2020. a
Alexander, S. P. and Protat, A.: Cloud Properties Observed From the Surface
and by Satellite at the Northern Edge of the Southern Ocean, J.
Geophys. Res.-Atmos., 123, 443–456, https://doi.org/10.1002/2017JD026552,
2018. a, b
Alexander, S. P., McFarquhar, G. M., Marchand, R., Protat, A., Vignon, Mace, G. G., and Klekociuk, A. R.: Mixed-Phase Clouds and Precipitation in
Southern Ocean Cyclones and Cloud Systems Observed Poleward of
64∘S by Ship-Based Cloud Radar and Lidar, J. Geophys.
Res.-Atmos., 126, e2020JD033626, https://doi.org/10.1029/2020JD033626,
2021. a
Ansmann, A., Mamouri, R.-E., Bühl, J., Seifert, P., Engelmann, R., Hofer, J., Nisantzi, A., Atkinson, J. D., Kanji, Z. A., Sierau, B., Vrekoussis, M., and Sciare, J.: Ice-nucleating particle versus ice crystal number concentrationin altocumulus and cirrus layers embedded in Saharan dust:a closure study, Atmos. Chem. Phys., 19, 15087–15115, https://doi.org/10.5194/acp-19-15087-2019, 2019. a
Austin, P. M. and Bemis, A. C.: A Quantitative Study Of The “Bright Band” In Radar Precipitation Echoes, J. Atmos. Sci., 7, 145–151,
https://doi.org/10.1175/1520-0469(1950)007<0145:AQSOTB>2.0.CO;2, 1950. a
Bodas-Salcedo, A., Williams, K. D., Field, P. R., and Lock, A. P.: The Surface Downwelling Solar Radiation Surplus over the Southern Ocean in the Met Office Model: The Role of Midlatitude Cyclone Clouds, J. Climate, 25,
7467–7486, https://doi.org/10.1175/JCLI-D-11-00702.1, 2012. a
Bodas-Salcedo, A., Williams, K. D., Ringer, M. A., Beau, I., Cole, J. N.,
Dufresne, J. L., Koshiro, T., Stevens, B., Wang, Z., and Yokohata, T.:
Origins of the solar radiation biases over the Southern Ocean in CFMIP2
models, J. Climate, 27, 41–56, https://doi.org/10.1175/JCLI-D-13-00169.1,
2014. a, b
Bodas-Salcedo, A., Andrews, T., Karmalkar, A. V., and Ringer, M. A.: Cloud
liquid water path and radiative feedbacks over the Southern Ocean,
Geophys. Res. Lett., 43, 938–10, https://doi.org/10.1002/2016GL070770, 2016. a, b
Bühl, J., Seifert, P., Myagkov, A., and Ansmann, A.: Measuring ice- and liquid-water properties in mixed-phase cloud layers at the Leipzig Cloudnet station, Atmos. Chem. Phys., 16, 10609–10620, https://doi.org/10.5194/acp-16-10609-2016, 2016. a, b, c
Bühl, J., Seifert, P., Radenz, M., Baars, H., and Ansmann, A.: Ice crystal number concentration from lidar, cloud radar and radar wind profiler measurements, Atmos. Meas. Tech., 12, 6601–6617, https://doi.org/10.5194/amt-12-6601-2019, 2019. a, b
Caldwell, P. M., Zelinka, M. D., Taylor, K. E., and Marvel, K.: Quantifying
the Sources of Intermodel Spread in Equilibrium Climate Sensitivity, J. Climate, 29, 513–524, https://doi.org/10.1175/JCLI-D-15-0352.1, 2016. a
Cesana, G. and Chepfer, H.: Evaluation of the cloud thermodynamic phase in a
climate model using CALIPSO-GOCCP, J. Geophys. Res.-Atmos., 118, 7922–7937, https://doi.org/10.1002/JGRD.50376, 2013. a
Cesana, G., Del Genio, A. D., and Chepfer, H.: The Cumulus And Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD), Earth Syst. Sci. Data, 11, 1745–1764, https://doi.org/10.5194/essd-11-1745-2019, 2019a. a
Cesana, G., Del Genio, A. D., Ackerman, A. S., Kelley, M., Elsaesser, G., Fridlind, A. M., Cheng, Y., and Yao, M.-S.: Evaluating models' response of tropical low clouds to SST forcings using CALIPSO observations, Atmos. Chem. Phys., 19, 2813–2832, https://doi.org/10.5194/acp-19-2813-2019, 2019b. a, b
Cesana, G. V., Ackerman, A. S., Fridlind, A. M., Silber, I., and Kelley, M.:
Snow Reconciles Observed and Simulated Phase Partitioning and Increases
Cloud Feedback, Geophys. Res. Lett., 48, e2021GL094876,
https://doi.org/10.1029/2021GL094876, 2021. a, b, c, d
Cesana, G. V., Khadir, T., Chepfer, H., and Chiriaco, M.: Southern Ocean Solar
Reflection Biases in CMIP6 Models Linked to Cloud Phase and Vertical
Structure Representations, Geophys. Res. Lett., 49,
e2022GL099777, https://doi.org/10.1029/2022GL099777, 2022. a, b, c, d
Chubb, T. H., Jensen, J. B., Siems, S. T., and Manton, M. J.: In situ
observations of supercooled liquid clouds over the Southern Ocean during the
HIAPER Pole-to-Pole Observation campaigns, Geophys. Res. Lett., 40,
5280–5285, https://doi.org/10.1002/grl.50986, 2013. a
Comstock, K. K., Wood, R., Yuter, S. E., and Bretherton, C. S.: Reflectivity
and rain rate in and below drizzling stratocumulus, Q. J.
Roy. Meteorol. Soc., 130, 2891–2918, https://doi.org/10.1256/QJ.03.187, 2004. a, b
Delanoë, J., Protat, A., Vinson, J. P., Brett, W., Caudoux, C., Bertrand,
F., du Chatelet, J. P., Hallali, R., Barthes, L., Haeffelin, M., and Dupont,
J. C.: BASTA: A 95-GHz FMCW Doppler radar for cloud and fog studies,
J. Atmos. Ocean. Technol., 33, 1023–1038,
https://doi.org/10.1175/JTECH-D-15-0104.1, 2016. a, b, c, d
Fan, J., Ghan, S., Ovchinnikov, M., Liu, X., Rasch, P. J., and Korolev, A.:
Representation of Arctic mixed-phase clouds and the
Wegener-Bergeron-Findeisen process in climate models: Perspectives from a
cloud-resolving study, J. Geophys. Res.-Atmos., 116,
0–07, https://doi.org/10.1029/2010JD015375, 2011. a
Fiddes, S. L., Protat, A., Mallet, M. D., Alexander, S. P., and Woodhouse, M. T.: Southern Ocean cloud and shortwave radiation biases in a nudged climate model simulation: does the model ever get it right?, Atmos. Chem. Phys., 22, 14603–14630, https://doi.org/10.5194/acp-22-14603-2022, 2022. a, b
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., Collins, W.,
Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.:
Evaluation of climate models, in: Climate Change 2013 the Physical Science
Basis: Working Group I Contribution to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, vol. 9781107057999, 741–866,
Cambridge University Press, https://doi.org/10.1017/CBO9781107415324.020, 2013. a
Fukuta, N. and Takahashi, T.: The Growth of Atmospheric Ice Crystals: A
Summary of Findings in Vertical Supercooled Cloud Tunnel Studies, J. Atmos. Sci., 56, 1963–1979, https://doi.org/10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2,
1999. a
Gates, W. L.: AN AMS CONTINUING SERIES: GLOBAL CHANGE–AMIP: The Atmospheric
Model Intercomparison Project, B. Am. Meteorol.
Soc., 73, 1962–1970,
https://doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2, 1992. a
Gates, W. L., Boyle, J. S., Covey, C., Dease, C. G., Doutriaux, C. M., Drach,
R. S., Fiorino, M., Gleckler, P. J., Hnilo, J. J., Marlais, S. M., Phillips,
T. J., Potter, G. L., Santer, B. D., Sperber, K. R., Taylor, K. E., and
Williams, D. N.: An Overview of the Results of the Atmospheric Model
Intercomparison Project (AMIP I), B. Am. Meteorol.
Soc., 80, 29–56, https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2,
1999. a
Gettelman, A. and Morrison, H.: Advanced Two-Moment Bulk Microphysics for
Global Models. Part I: Off-Line Tests and Comparison with Other Schemes,
J. Climate, 28, 1268–1287, https://doi.org/10.1175/JCLI-D-14-00102.1, 2015. a
Gettelman, A., Bardeen, C. G., McCluskey, C. S., Järvinen, E., Stith, J.,
Bretherton, C., McFarquhar, G., Twohy, C., D'Alessandro, J., and Wu, W.:
Simulating Observations of Southern Ocean Clouds and Implications for
Climate, J. Geophys. Res.-Atmos., 125, e2020JD032619,
https://doi.org/10.1029/2020JD032619, 2020. a
Griesche, H. J., Ohneiser, K., Seifert, P., Radenz, M., Engelmann, R., and Ansmann, A.: Contrasting ice formation in Arctic clouds: surface-coupled vs. surface-decoupled clouds, Atmos. Chem. Phys., 21, 10357–10374, https://doi.org/10.5194/acp-21-10357-2021, 2021. a, b
Guyot, A., Protat, A., Alexander, S. P., Klekociuk, A. R., Kuma, P., and McDonald, A.: Detection of supercooled liquid water containing clouds with ceilometers: development and evaluation of deterministic and data-driven retrievals, Atmos. Meas. Tech., 15, 3663–3681, https://doi.org/10.5194/amt-15-3663-2022, 2022. a
Haynes, J. M., L'Ecuyer, T. S., Stephens, G. L., Miller, S. D., Mitrescu, C.,
Wood, N. B., and Tanelli, S.: Rainfall retrieval over the ocean with
spaceborne W-band radar, J. Geophys. Res.-Atmos., 114, D00A22,
https://doi.org/10.1029/2008JD009973, 2009. a
He, Y., Yi, F., Liu, F., Yin, Z., Yi, Y., Zhou, J., Yu, C., and Zhang, Y.:
Natural Seeder-Feeder Process Originating From Mixed-Phase Clouds Observed
With Polarization Lidar and Radiosonde at a Mid-Latitude Plain Site, J. Geophys. Res.-Atmos., 127, e2021JD036094,
https://doi.org/10.1029/2021JD036094, 2022. a
Heymsfield, A. J., Schmitt, C., Chen, C. C. J., Bansemer, A., Gettelman, A.,
Field, P. R., and Liu, C.: Contributions of the Liquid and Ice Phases to
Global Surface Precipitation: Observations and Global Climate Modeling,
J. Atmos. Sci., 77, 2629–2648,
https://doi.org/10.1175/JAS-D-19-0352.1, 2020. a
Hillman, B. R., Marchand, R. T., and Ackerman, T. P.: Sensitivities of
Simulated Satellite Views of Clouds to Subgrid-Scale Overlap and Condensate
Heterogeneity, J. Geophys. Res.-Atmos., 123,
7506–7529, https://doi.org/10.1029/2017JD027680, 2018. a
Hogan, R. J., Mittermaier, M. P., and Illingworth, A. J.: The Retrieval of Ice
Water Content from Radar Reflectivity Factor and Temperature and Its Use in
Evaluating a Mesoscale Model, J. Appl. Meteorol.
Climatol., 45, 301–317, https://doi.org/10.1175/JAM2340.1, 2006. a
Holdridge, G.: Balloon-Borne Sounding System (SONDE) Instrument Handbook,
ARM-TR-029, DOE Office of Science, Office of Biological and Environmental
Research, United States, 38 pp., https://doi.org/10.2172/1020712, 2020. a
Hoose, C., Lohmann, U., Bennartz, R., Croft, B., and Lesins, G.: Global simulations of aerosol processing in clouds, Atmos. Chem. Phys., 8, 6939–6963, https://doi.org/10.5194/acp-8-6939-2008, 2008. a, b
Hopkin, E., Illingworth, A. J., Charlton-Perez, C., Westbrook, C. D., and Ballard, S.: A robust automated technique for operational calibration of ceilometers using the integrated backscatter from totally attenuating liquid clouds, Atmos. Meas. Tech., 12, 4131–4147, https://doi.org/10.5194/amt-12-4131-2019, 2019. a
Howie, J. and Protat, A.: Surface Meteorological Instrumentation (ABMMET),
Atmospheric Radiation Measurement (ARM) user facility [data set],
https://doi.org/10.5439/1597382, 2016. a, b
Huang, Y., Siems, S. T., Manton, M. J., Protat, A., and Delanoë, J.: A
study on the low-altitude clouds over the Southern Ocean using the
DARDAR-MASK, J. Geophys. Res.-Atmos., 117, D18204,
https://doi.org/10.1029/2012JD017800, 2012. a
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J. F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: A Framework for
Collaborative Research, B. Am. Meteorol. Soc., 94,
1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a
Illingworth, A. J., Hogan, R. J., O'Connor, E. J., Bouniol, D., Brooks, M. E.,
Delanoë, J., Donovan, D. P., Eastment, J. D., Gaussiat, N., Goddard,
J. W., Haeffelin, M., Klein Baltinik, H., Krasnov, O. A., Pelon, J., Piriou,
J. M., Protat, A., Russchenberg, H. W., Seifert, A., Tompkins, A. M., van
Zadelhoff, G. J., Vinit, F., Willen, U., Wilson, D. R., and Wrench, C. L.:
Cloudnet: Continuous Evaluation of Cloud Profiles in Seven Operational
Models Using Ground-Based Observations, B. Am.
Meteorol. Soc., 88, 883–898, https://doi.org/10.1175/BAMS-88-6-883, 2007. a
Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H.,
Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P.,
Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota,
T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H., Oki,
R., Sato, K., Satoh, M., Shephard, M. W., Velázquez-Blázquez, A.,
Wandinger, U., Wehr, T., and Van Zadelhoff, G. J.: The EarthCARE Satellite:
The Next Step Forward in Global Measurements of Clouds, Aerosols,
Precipitation, and Radiation, B. Am. Meteorol.
Soc., 96, 1311–1332, https://doi.org/10.1175/BAMS-D-12-00227.1, 2015. a
Jing, X., Suzuki, K., Guo, H., Goto, D., Ogura, T., Koshiro, T., and
Mülmenstädt, J.: A Multimodel Study on Warm Precipitation Biases
in Global Models Compared to Satellite Observations, J. Geophys.
Res.-Atmos., 122, 806–811, https://doi.org/10.1002/2017JD027310, 2017. a, b
Kang, L., Marchand, R. T., Wood, R., and McCoy, I. L.: Coalescence Scavenging
Drives Droplet Number Concentration in Southern Ocean Low Clouds,
Geophys. Res. Lett., 49, e2022GL097819,
https://doi.org/10.1029/2022GL097819, 2022. a
Kay, J. E., Bourdages, L., Miller, N. B., Morrison, A., Yettella, V., Chepfer,
H., and Eaton, B.: Evaluating and improving cloud phase in the Community
Atmosphere Model version 5 using spaceborne lidar observations, J.
Geophys. Res.-Atmos., 121, 4162–4176,
https://doi.org/10.1002/2015JD024699, 2016a. a
Kay, J. E., Wall, C., Yettella, V., Medeiros, B., Hannay, C., Caldwell, P., and
Bitz, C.: Global climate impacts of fixing the Southern Ocean shortwave
radiation bias in the Community Earth System Model (CESM), J.
Climate, 29, 4617–4636, https://doi.org/10.1175/JCLI-D-15-0358.1, 2016b. a, b
Kay, J. E., L'Ecuyer, T., Pendergrass, A., Chepfer, H., Guzman, R., and
Yettella, V.: Scale-Aware and Definition-Aware Evaluation of Modeled
Near-Surface Precipitation Frequency Using CloudSat Observations, J.
Geophys. Res.-Atmos., 123, 4294–4309,
https://doi.org/10.1002/2017JD028213, 2018. a, b, c
Kollias, P., Tanelli, S., Battaglia, A., and Tatarevic, A.: Evaluation of
EarthCARE Cloud Profiling Radar Doppler Velocity Measurements in Particle
Sedimentation Regimes, J. Atmos. Ocean. Technol., 31,
366–386, https://doi.org/10.1175/JTECH-D-11-00202.1, 2014. a
Kremser, S., Harvey, M., Kuma, P., Hartery, S., Saint-Macary, A., McGregor, J., Schuddeboom, A., von Hobe, M., Lennartz, S. T., Geddes, A., Querel, R., McDonald, A., Peltola, M., Sellegri, K., Silber, I., Law, C. S., Flynn, C. J., Marriner, A., Hill, T. C. J., DeMott, P. J., Hume, C. C., Plank, G., Graham, G., and Parsons, S.: Southern Ocean cloud and aerosol data: a compilation of measurements from the 2018 Southern Ocean Ross Sea Marine Ecosystems and Environment voyage, Earth Syst. Sci. Data, 13, 3115–3153, https://doi.org/10.5194/essd-13-3115-2021, 2021. a, b
Kuma, P., McDonald, A. J., Morgenstern, O., Alexander, S. P., Cassano, J. J., Garrett, S., Halla, J., Hartery, S., Harvey, M. J., Parsons, S., Plank, G., Varma, V., and Williams, J.: Evaluation of Southern Ocean cloud in the HadGEM3 general circulation model and MERRA-2 reanalysis using ship-based observations, Atmos. Chem. Phys., 20, 6607–6630, https://doi.org/10.5194/acp-20-6607-2020, 2020. a, b, c
Kuma, P., McDonald, A. J., Morgenstern, O., Querel, R., Silber, I., and Flynn, C. J.: Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0), Geosci. Model Dev., 14, 43–72, https://doi.org/10.5194/gmd-14-43-2021, 2021. a, b
Lamer, K., Kollias, P., Battaglia, A., and Preval, S.: Mind the gap – Part 1: Accurately locating warm marine boundary layer clouds and precipitation using spaceborne radars, Atmos. Meas. Tech., 13, 2363–2379, https://doi.org/10.5194/amt-13-2363-2020, 2020a. a
Lang, F., Huang, Y., Siems, S. T., and Manton, M. J.: Characteristics of the
Marine Atmospheric Boundary Layer Over the Southern Ocean in Response to the
Synoptic Forcing, J. Geophys. Res.-Atmos., 123,
7799–7820, https://doi.org/10.1029/2018JD028700, 2018. a
Lang, F., Huang, Y., Siems, S. T., and Manton, M. J.: Evidence of a Diurnal
Cycle in Precipitation over the Southern Ocean as Observed at Macquarie
Island, Atmosphere, 11, p. 181,
https://doi.org/10.3390/ATMOS11020181, 2020. a, b
Liu, D., Liu, Q., Qi, L., and Fu, Y.: Oceanic single‐layer warm clouds
missed by the Cloud Profiling Radar as inferred from MODIS and CALIOP
measurements, J. Geophys. Res.-Atmos., 121, 947–12,
https://doi.org/10.1002/2016JD025485, 2016. a
Lubin, D., Zhang, D., Silber, I., Scott, R. C., Kalogeras, P., Battaglia, A.,
Bromwich, D. H., Cadeddu, M., Eloranta, E., Fridlind, A., Frossard, A.,
Hines, K. M., Kneifel, S., Leaitch, W. R., Lin, W., Nicolas, J., Powers, H.,
Quinn, P. K., Rowe, P., Russell, L. M., Sharma, S., Verlinde, J., and
Vogelmann, A. M.: The atmospheric radiation measurement (ARM) west antarctic
radiation experiment, B. Am. Meteorol. Soc., 101,
E1069–E1091, https://doi.org/10.1175/BAMS-D-18-0278.1, 2020a. a
Lubin, D., Zhang, D., Silber, I., Scott, R. C., Kalogeras, P., Battaglia, A.,
Bromwich, D. H., Cadeddu, M., Eloranta, E., Fridlind, A., Frossard, A.,
Hines, K. M., Kneifel, S., Leaitch, W. R., Lin, W., Nicolas, J., Powers, H.,
Quinn, P. K., Rowe, P., Russell, L. M., Sharma, S., Verlinde, J., and
Vogelmann, A. M.: AWARE: The Atmospheric Radiation Measurement (ARM) West
Antarctic Radiation Experiment, B. Am. Meteorol.
Soc., 101, E1069–E1091, https://doi.org/10.1175/BAMS-D-18-0278.1,
2020b. a
Maahn, M., Burgard, C., Crewell, S., Gorodetskaya, I. V., Kneifel, S.,
Lhermitte, S., Van Tricht, K., and van Lipzig, N. P.: How does the
spaceborne radar blind zone affect derived surface snowfall statistics in
polar regions?, J. Geophys. Res.-Atmos., 119, 604–13,
https://doi.org/10.1002/2014JD022079, 2014. a
Mace, G. G. and Protat, A.: Clouds over the Southern Ocean as Observed from
the R/V Investigator during CAPRICORN. Part II: The Properties of
Nonprecipitating Stratocumulus, J. Appl. Meteorol.
Climatol., 57, 1805–1823, https://doi.org/10.1175/JAMC-D-17-0195.1,
2018b. a, b, c
Mace, G. G., Zhang, Q., Vaughan, M., Marchand, R., Stephens, G., Trepte, C.,
and Winker, D.: A description of hydrometeor layer occurrence statistics
derived from the first year of merged Cloudsat and CALIPSO data, J.
Geophys. Res.-Atmos., 114, D00A26, https://doi.org/10.1029/2007JD009755, 2009. a
Mace, G. G., Protat, A., Humphries, R. S., Alexander, S. P., McRobert, I. M.,
Ward, J., Selleck, P., Keywood, M., and McFarquhar, G. M.: Southern Ocean
Cloud Properties Derived From CAPRICORN and MARCUS Data, J.
Geophys. Res.-Atmos., 126, e2020JD033368, https://doi.org/10.1029/2020JD033368, 2021. a
Mallet, M. D., Humphries, R. S., Fiddes, S. L., Alexander, S. P., Altieri, K.,
Angot, H., Anilkumar, N., Bartels-Rausch, T., Creamean, J., Dall’Osto, M.,
Dommergue, A., Frey, M., Henning, S., Lannuzel, D., Lapere, R., Mace, G. G.,
Mahajan, A. S., McFarquhar, G. M., Meiners, K. M., Miljevic, B., Peeken, I.,
Protat, A., Schmale, J., Steiner, N., Sellegri, K., Simó, R., Thomas,
J. L., Willis, M. D., Winton, V. H. L., and Woodhouse, M. T.: Untangling the
influence of Antarctic and Southern Ocean life on clouds, Elementa: Sci. Anthropoc., 11, 1, https://doi.org/10.1525/ELEMENTA.2022.00130, 2023. a
McCoy, D. T., Field, P., Bodas-Salcedo, A., Elsaesser, G. S., and Zelinka,
M. D.: A regime-oriented approach to observationally constraining
extratropical shortwave cloud Feedbacks, J. Climate, 33, 9967–9983,
https://doi.org/10.1175/JCLI-D-19-0987.1, 2020. a, b
McErlich, C., McDonald, A., Schuddeboom, A., and Silber, I.: Comparing
Satellite- and Ground-Based Observations of Cloud Occurrence Over High
Southern Latitudes, J. Geophys. Res.-Atmos., 126,
e2020JD033607, https://doi.org/10.1029/2020JD033607, 2021. a
McFarquhar, G. M., Bretherton, C. S., Marchand, R., Protat, A., DeMott, P. J.,
Alexander, S. P., Roberts, G. C., Twohy, C. H., Toohey, D., Siems, S., Huang,
Y., Wood, R., Rauber, R. M., Lasher-Trapp, S., Jensen, J., Stith, J. L.,
Mace, J., Um, J., Järvinen, E., Schnaiter, M., Gettelman, A., Sanchez,
K. J., McCluskey, C. S., Russell, L. M., McCoy, I. L., Atlas, R. L., Bardeen,
C. G., Moore, K. A., Hill, T. C., Humphries, R. S., Keywood, M. D.,
Ristovski, Z., Cravigan, L., Schofield, R., Fairall, C., Mallet, M. D.,
Kreidenweis, S. M., Rainwater, B., D'Alessandro, J., Wang, Y., Wu, W.,
Saliba, G., Levin, E. J., Ding, S., Lang, F., Truong, S. C., Wolff, C.,
Haggerty, J., Harvey, M. J., Klekociuk, A. R., and McDonald, A.:
Observations of Clouds, Aerosols, Precipitation, and Surface Radiation over
the Southern Ocean: An Overview of CAPRICORN, MARCUS, MICRE, and SOCRATES,
B. Am. Meteorol. Soc., 102, E894–E928,
https://doi.org/10.1175/BAMS-D-20-0132.1, 2021. a, b, c, d, e, f
Mitchell, J., Senior, C. A., and Ingram, W. J.: CO2 and climate: a missing
feedback?, Nature, 341, 132–134, https://doi.org/10.1038/341132a0,
1989. a, b, c
Morris, V., Zhang, D., and Ermold, B.: Ceilometer (CEIL), Atmospheric
Radiation Measurement (ARM) user facility [data set], https://doi.org/10.5439/1181954, 2016. a, b
Morris, V. R.: Ceilometer Instrument Handbook, ARM-TR-020, Tech. rep., DOE
Office of Science, Office of Biological and Environmental Research, United
States, 26 pp., https://doi.org/10.2172/1036530, 2016. a, b, c
Morrison, A. E., Siems, S. T., and Manton, M. J.: A three-year climatology of
cloud-top phase over the Southern Ocean and North Pacific, J.
Climate, 24, 2405–2418, https://doi.org/10.1175/2010JCLI3842.1, 2011. a
Naud, C. M., Booth, J. F., and Del Genio, A. D.: Evaluation of ERA-Interim and
MERRA cloudiness in the southern ocean, J. Climate, 27, 2109–2124,
https://doi.org/10.1175/JCLI-D-13-00432.1, 2014. a
Naud, C. M., Booth, J. F., Lamer, K., Marchand, R., Protat, A., and McFarquhar,
G. M.: On the Relationship Between the Marine Cold Air Outbreak M Parameter
and Low‐Level Cloud Heights in the Midlatitudes, J. Geophys.
Res.-Atmos., 125, e2020JD032465, https://doi.org/10.1029/2020JD032465,
2020. a
O'Connor, E. J., Illingworth, A. J., and Hogan, R. J.: A Technique for
Autocalibration of Cloud Lidar, J. Atmos. Ocean.
Technol., 21, 777–786,
https://doi.org/10.1175/1520-0426(2004)021<0777:ATFAOC>2.0.CO;2, 2004. a, b
Protat, A., Schulz, E., Rikus, L., Sun, Z., Xiao, Y., and Keywood, M.:
Shipborne observations of the radiative effect of Southern Ocean clouds,
J. Geophys. Res.-Atmos., 122, 318–328,
https://doi.org/10.1002/2016JD026061, 2017. a
Protat, A., Klepp, C., Louf, V., Petersen, W. A., Alexander, S. P., Barros, A.,
Leinonen, J., and Mace, G. G.: The Latitudinal Variability of Oceanic
Rainfall Properties and Its Implication for Satellite Retrievals: 1. Drop
Size Distribution Properties, J. Geophys. Res.-Atmos.,
124, 13291–13311, https://doi.org/10.1029/2019JD031010, 2019. a
Radenz, M., Bühl, J., Seifert, P., Baars, H., Engelmann, R., Barja González, B., Mamouri, R.-E., Zamorano, F., and Ansmann, A.: Hemispheric contrasts in ice formation in stratiform mixed-phase clouds: disentangling the role of aerosol and dynamics with ground-based remote sensing, Atmos. Chem. Phys., 21, 17969–17994, https://doi.org/10.5194/acp-21-17969-2021, 2021. a
Ramelli, F., Henneberger, J., David, R. O., Bühl, J., Radenz, M., Seifert, P., Wieder, J., Lauber, A., Pasquier, J. T., Engelmann, R., Mignani, C., Hervo, M., and Lohmann, U.: Microphysical investigation of the seeder and feeder region of an Alpine mixed-phase cloud, Atmos. Chem. Phys., 21, 6681–6706, https://doi.org/10.5194/acp-21-6681-2021, 2021. a
Rodts, S. M., Duynkerke, P. G., and Jonker, H. J.: Size distributions and
dynamical properties of shallow cumulus clouds from aircraft observations and
satellite data, J. Atmos. Sci., 60, 1895–1912,
https://doi.org/10.1175/1520-0469(2003)060<1895:SDADPO>2.0.CO;2, 2003. a
Schuddeboom, A. J. and McDonald, A. J.: The Southern Ocean Radiative Bias,
Cloud Compensating Errors, and Equilibrium Climate Sensitivity in CMIP6
Models, J. Geophys. Res.-Atmos., 126, e2021JD035310,
https://doi.org/10.1029/2021JD035310, 2021. a, b
Senior, C. and Mitchell, J.: Carbon Dioxide and Climate. The Impact of Cloud
Parameterization, J. Climate, 6, 393–418,
https://doi.org/10.1175/1520-0442(1993)006<0393:CDACTI>2.0.CO;2, 1993. a, b
Silber, I., Verlinde, J., Eloranta, E. W., Flynn, C. J., and Flynn, D. M.:
Polar Liquid Cloud Base Detection Algorithms for High Spectral Resolution or
Micropulse Lidar Data, J. Geophys. Res.-Atmos., 123,
4310–4322, https://doi.org/10.1029/2017JD027840, 2018. a, b, c, d
Silber, I., Fridlind, A. M., Verlinde, J., Russell, L. M., and Ackerman, A. S.:
Nonturbulent Liquid-Bearing Polar Clouds: Observed Frequency of Occurrence
and Simulated Sensitivity to Gravity Waves, Geophys. Res. Lett.,
47, e2020GL087099, https://doi.org/10.1029/2020GL087099, 2020a. a, b
Silber, I., Verlinde, J., Wen, G., and Eloranta, E. W.: Can Embedded Liquid
Cloud Layer Volumes Be Classified in Polar Clouds Using a Single-Frequency
Zenith-Pointing Radar?, IEEE Geosci. Remote Sens. Lett., 17,
222–226, https://doi.org/10.1109/LGRS.2019.2918727, 2020b. a
Silber, I., Jackson, R. C., Fridlind, A. M., Ackerman, A. S., Collis, S., Verlinde, J., and Ding, J.: Silber_et_al_EMC2_gmd-2021-194_code_and_data, Zenodo [code], https://doi.org/10.5281/zenodo.5115252, 2021b a
Silber, I., Jackson, R. C., Fridlind, A. M., Ackerman, A. S., Collis, S., Verlinde, J., and Ding, J.: The Earth Model Column Collaboratory (EMC2) v1.1: an open-source ground-based lidar and radar instrument simulator and subcolumn generator for large-scale models, Geosci. Model Dev., 15, 901–927, https://doi.org/10.5194/gmd-15-901-2022, 2022. a, b, c
Stanford, M. W.: Stanford_et_al_ACP_MICRE_2023-170_code, Zenodo [code], https://doi.org/10.5281/zenodo.8231170, 2023. a
Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., Illingworth, A. J., O'Connor, E. J., Rossow, W. B., Durden, S. L., Miller, S. D., Austin, R. T., Benedetti, A., and Mitrescu, C.: The cloudsat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation, B. Am. Meteorol. Soc., 83,
1771–1790, https://doi.org/10.1175/bams-83-12-1771, 2002. a
Stephens, G. L., L'Ecuyer, T., Forbes, R., Gettlemen, A., Golaz, J. C., Bodas-Salcedo, A., Suzuki, K., Gabriel, P., and Haynes, J.: Dreary state of
precipitation in global models, J. Geophys. Res.-Atmos., 115, 24211, https://doi.org/10.1029/2010JD014532, 2010. a
Suzuki, K., Stephens, G., Bodas-Salcedo, A., Wang, M., Golaz, J. C., Yokohata, T., and Koshiro, T.: Evaluation of the Warm Rain Formation Process in Global Models with Satellite Observations, J. Atmos. Sci., 72,
3996–4014, https://doi.org/10.1175/JAS-D-14-0265.1, 2015. a, b
Swales, D. J., Pincus, R., and Bodas-Salcedo, A.: The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2, Geosci. Model Dev., 11, 77–81, https://doi.org/10.5194/gmd-11-77-2018, 2018. a
Tan, I., Storelvmo, T., and Zelinka, M. D.: Observational constraints on
mixed-phase clouds imply higher climate sensitivity, Science, 352, 224–227, https://doi.org/10.1126/science.aad5300, 2016. a
Tansey, E., Marchand, R., Protat, A., Alexander, S. P., and Ding, S.: Southern
Ocean Precipitation Characteristics Observed From CloudSat and Ground
Instrumentation During the Macquarie Island Cloud & Radiation Experiment
(MICRE): April 2016 to March 2017, J. Geophys. Res-.Atmos., 127, e2021JD035370, https://doi.org/10.1029/2021JD035370, 2022. a, b, c, d, e, f, g, h, i
Tansey, E., Marchand, R., Alexander, S. P., Klekociuk, A. R., and Protat, A. R: Southern Ocean low cloud and precipitation phase observed during the Macquarie Island Cloud and Radiation Experiment (MICRE), ESS Open Archive, https://doi.org/10.22541/essoar.168394768.89694625/v1, 2023. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the
Experiment Design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Tian, L. and Curry, J. A.: Cloud overlap statistics, J. Geophy.
Res.-Atmos., 94, 9925–9935, https://doi.org/10.1029/JD094ID07P09925, 1989. a
Tjernström, M., Shupe, M. D., Brooks, I. M., Achtert, P., Prytherch, J.,
and Sedlar, J.: Arctic Summer Airmass Transformation, Surface Inversions,
and the Surface Energy Budget, J. Climate, 32, 769–789,
https://doi.org/10.1175/JCLI-D-18-0216.1, 2019. a
Trenberth, K. E. and Fasullo, J. T.: Simulation of present-day and
twenty-first-century energy budgets of the southern oceans, J.
Climate, 23, 440–454, https://doi.org/10.1175/2009JCLI3152.1, 2010. a
Tsushima, Y., Emori, A. S., Ogura, A. T., Kimoto, M., Webb, A. M. J., Williams,
A. K. D., Ringer, M. A., Soden, A. B. J., Li, A. B., and Andronova, A. N.:
Importance of the mixed-phase cloud distribution in the control climate for
assessing the response of clouds to carbon dioxide increase: a multi-model
study, Clim. Dynam., 27, 113–126, https://doi.org/10.1007/s00382-006-0127-7,
2006. a, b, c
vanZanten, M. C., Stevens, B., Vali, G., and Lenschow, D. H.: Observations of Drizzle in Nocturnal Marine Stratocumulus, J. Atmos.
Sci., 62, 88–106, https://doi.org/10.1175/JAS-3355.1, 2005. a
Vaughan, M. A., Powell, K. A., Kuehn, R. E., Young, S. A., Winker, D. M.,
Hostetler, C. A., Hunt, W. H., Liu, Z., Mcgill, M. J., and Getzewich, B. J.:
Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar
Measurements, J. Atmos. Ocean. Technol., 26, 2034–2050,
https://doi.org/10.1175/2009JTECHA1228.1, 2009. a
Verlinde, J., Zak, B. D., Shupe, M. D., Ivey, M. D., and Stamnes, K.: The ARM
North Slope of Alaska (NSA) Sites, Meteorol. Monogr., 57, 1–8,
https://doi.org/10.1175/amsmonographs-d-15-0023.1, 2016. a
Wallace, J. M. and Hobbs, P. V.: Atmospheric Science: An Introductory Survey, International Geophysics Series, Elsevier Academic Press, 483 pp., ISBN 978-0-12-732951-2, 2006. a
Wang, Z., Siems, S. T., Belusic, D., Manton, M. J., and Huang, Y.: A
Climatology of the Precipitation over the Southern Ocean as Observed at
Macquarie Island, J. Appl. Meteorol. Climatol., 54,
2321–2337, https://doi.org/10.1175/JAMC-D-14-0211.1, 2015. a, b, c
Warren, G., Hahn, H., London, J., Chervin, M., and Jenne, L.: Global Distribution of Total Cloud Cover and Cloud Type Amounts Over the Ocean, (No. NCAR/TN-317+STR), University Corporation for Atmospheric Research,
https://doi.org/10.5065/D6QC01D1, 1988. a
Widener, K., Bharadwaj, N., and Johnson, K.: Ka-Band ARM Zenith Radar (KAZR)
Instrument Handbook, ARM-TR-106, Tech. rep., DOE Office of Science, Office
of Biological and Environmental Research, United States, 25 pp., https://doi.org/10.2172/1035855, 2012. a
Wood, N. B., L’Ecuyer, T. S., Heymsfield, A. J., Stephen, G. L., Hudak,
D. R., and Rodriguez, P.: Estimating snow microphysical properties using
collocated multisensor observations, J. Geophys. Res.-Atmos., 119, 8941–8961, https://doi.org/10.1002/2013JD021303, 2014. a
Wood, R. and Bretherton, C. S.: On the Relationship between Stratiform Low
Cloud Cover and Lower-Tropospheric Stability, J. Climate, 19,
6425–6432, https://doi.org/10.1175/JCLI3988.1, 2006. a
Yang, F., Luke, E. P., Kollias, P., Kostinski, A. B., and Vogelmann, A. M.:
Scaling of Drizzle Virga Depth With Cloud Thickness for Marine Stratocumulus
Clouds, Geophys. Res. Lett., 45, 3746–3753,
https://doi.org/10.1029/2018GL077145, 2018.
a
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of Higher Climate
Sensitivity in CMIP6 Models, Geophys. Res. Lett., 47,
e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020. a
Zhang, Q., Liu, B., Li, S., and Zhou, T.: Understanding Models' Global Sea
Surface Temperature Bias in Mean State: From CMIP5 to CMIP6, Geophys.
Res. Lett., 50, e2022GL100888, https://doi.org/10.1029/2022GL100888, 2023. a
Zhang, Y. and Klein, S. A.: Factors controlling the vertical extent of
fair-weather shallow cumulus clouds over land: Investigation of diurnal-cycle
observations collected at the ARM southern great plains site, J.
Atmos. Sci., 70, 1297–1315, https://doi.org/10.1175/JAS-D-12-0131.1, 2013. a
Short summary
Clouds play an important role in the Earth’s climate system as they modulate the amount of radiation that either reaches the surface or is reflected back to space. This study demonstrates an approach to robustly evaluate surface-based observations against a large-scale model. We find that the large-scale model precipitates too infrequently relative to observations, contrary to literature documentation suggesting otherwise based on satellite measurements.
Clouds play an important role in the Earth’s climate system as they modulate the amount of...
Altmetrics
Final-revised paper
Preprint