Articles | Volume 23, issue 12
https://doi.org/10.5194/acp-23-7001-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-7001-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of a strong volcanic eruption on the summer middle atmosphere in UA-ICON simulations
Sandra Wallis
CORRESPONDING AUTHOR
Institute of Physics, University of Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald, Germany
Hauke Schmidt
Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany
Christian von Savigny
Institute of Physics, University of Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald, Germany
Related authors
Sandra Wallis, Matthew DeLand, and Christian von Savigny
EGUsphere, https://doi.org/10.5194/egusphere-2024-2165, https://doi.org/10.5194/egusphere-2024-2165, 2024
Short summary
Short summary
The 2022 Hunga eruption emitted about 150 Tg H2O that partly reached the upper polar SH mesosphere in the beginning of 2024. Noctilucent clouds (NLC) did not show a clear perturbation in their occurrence frequency, but the slight increase from mid-January to February could potentially be caused by the additional H2O. It needs 2 years to reach the summer polar mesopause region, analogous to the 1883 Krakatau eruption that is argued to have caused the first sightings of NCLs.
Felix Wrana, Ulrike Niemeier, Larry W. Thomason, Sandra Wallis, and Christian von Savigny
Atmos. Chem. Phys., 23, 9725–9743, https://doi.org/10.5194/acp-23-9725-2023, https://doi.org/10.5194/acp-23-9725-2023, 2023
Short summary
Short summary
The stratospheric aerosol layer is a naturally occurring and permanent layer of aerosol, in this case very small droplets of mostly sulfuric acid and water, that has a cooling effect on our climate. To quantify this effect and for our general understanding of stratospheric microphysical processes, knowledge of the size of those aerosol particles is needed. Using satellite measurements and atmospheric models we show that some volcanic eruptions can lead to on average smaller aerosol sizes.
Sandra Wallis, Christoph Gregor Hoffmann, and Christian von Savigny
Ann. Geophys., 40, 421–431, https://doi.org/10.5194/angeo-40-421-2022, https://doi.org/10.5194/angeo-40-421-2022, 2022
Short summary
Short summary
Although the 1991 eruption of Mt Pinatubo had a severe impact on Earth's climate, the effect of this event on the mesosphere is not well understood. We investigated satellite-borne temperature measurements from the HALOE instrument and found indications that a positive temperature anomaly is present in the tropical upper mesosphere at the beginning of the HALOE time series, which may be related to the eruption of Mt. Pinatubo.
Elizaveta Malinina, Alexei Rozanov, Ulrike Niemeier, Sandra Wallis, Carlo Arosio, Felix Wrana, Claudia Timmreck, Christian von Savigny, and John P. Burrows
Atmos. Chem. Phys., 21, 14871–14891, https://doi.org/10.5194/acp-21-14871-2021, https://doi.org/10.5194/acp-21-14871-2021, 2021
Short summary
Short summary
In the paper, changes in the stratospheric aerosol loading after the 2018 Ambae eruption were analyzed using OMPS-LP observations. The eruption was also simulated with the MAECHAM5-HAM global climate model. Generally, the model and observations agree very well. We attribute the good consistency of the results to a precisely determined altitude and mass of the volcanic injection, as well as nudging of the meteorological data. The radiative forcing from the eruption was estimated to be −0.13 W m−2.
Lukas O. Muser, Gholam Ali Hoshyaripour, Julia Bruckert, Ákos Horváth, Elizaveta Malinina, Sandra Wallis, Fred J. Prata, Alexei Rozanov, Christian von Savigny, Heike Vogel, and Bernhard Vogel
Atmos. Chem. Phys., 20, 15015–15036, https://doi.org/10.5194/acp-20-15015-2020, https://doi.org/10.5194/acp-20-15015-2020, 2020
Short summary
Short summary
Volcanic aerosols endanger aircraft and thus disrupt air travel globally. For aviation safety, it is vital to know the location and lifetime of such aerosols in the atmosphere. Here we show that the interaction of volcanic particles with each other eventually reduces their atmospheric lifetime. Moreover, we demonstrate that sunlight heats these particles, which lifts them several kilometers in the atmosphere. These findings support a more reliable forecast of volcanic aerosol dispersion.
Markus Kunze, Christoph Zülicke, Tarique Adnan Siddiqui, Claudia Christine Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-191, https://doi.org/10.5194/gmd-2024-191, 2024
Preprint under review for GMD
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with upper atmosphere extension with the physics package for numerical weather prediction (UA-ICON(NWP)). The parameters for the gravity wave parameterizations were optimized, and realistic modelling of the thermal and dynamic state of the mesopause regions was achieved. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
Sandra Wallis, Matthew DeLand, and Christian von Savigny
EGUsphere, https://doi.org/10.5194/egusphere-2024-2165, https://doi.org/10.5194/egusphere-2024-2165, 2024
Short summary
Short summary
The 2022 Hunga eruption emitted about 150 Tg H2O that partly reached the upper polar SH mesosphere in the beginning of 2024. Noctilucent clouds (NLC) did not show a clear perturbation in their occurrence frequency, but the slight increase from mid-January to February could potentially be caused by the additional H2O. It needs 2 years to reach the summer polar mesopause region, analogous to the 1883 Krakatau eruption that is argued to have caused the first sightings of NCLs.
Felix Wrana, Terry Deshler, Christian Löns, Larry W. Thomason, and Christian von Savigny
EGUsphere, https://doi.org/10.5194/egusphere-2024-2942, https://doi.org/10.5194/egusphere-2024-2942, 2024
Short summary
Short summary
There is a natural and globally occurring layer of small droplets (aerosols) in roughly 20 km altitude in the atmosphere. In this work, the size of these aerosols is calculated from satellite measurements for the years 2002 to 2005, which is important for the aerosols cooling effect on Earth's climate. These years are interesting, because there were no large volcanic eruptions that would change the background state of the aerosols. The results are compared to reliable balloon-borne measurements.
Abisha Mary Gnanaraj, Jiawei Bao, and Hauke Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2473, https://doi.org/10.5194/egusphere-2024-2473, 2024
Short summary
Short summary
We study how the Coriolis force, caused by a planet's rotation, affects the planet's energy budget and habitability. Using an atmospheric general circulation model in a simplified water-covered planet setup, we look at how different rotation rates change the amount of water vapor and clouds in the atmosphere, impacting the planet's climate. Our results show that slower rotations than Earth make the planet colder, while faster rotations make it warmer, reducing its habitability.
Ravikiran Hegde, Moritz Günther, Hauke Schmidt, and Clarissa Kroll
EGUsphere, https://doi.org/10.5194/egusphere-2024-2221, https://doi.org/10.5194/egusphere-2024-2221, 2024
Short summary
Short summary
Using a one-dimensional RCE model, we show that stratospheric aerosol forcing weakens with increasing surface temperature while CO2 forcing varies much less. This effect arises because sulfate aerosol, unlike CO2, absorbs mainly in spectral regions where the atmosphere is optically thin. It thereby masks the surface emission, which increases with warming. This spectral masking also results in weaker radiative feedback when aerosol is present.
Christine Pohl, Felix Wrana, Alexei Rozanov, Terry Deshler, Elizaveta Malinina, Christian von Savigny, Landon A. Rieger, Adam E. Bourassa, and John P. Burrows
Atmos. Meas. Tech., 17, 4153–4181, https://doi.org/10.5194/amt-17-4153-2024, https://doi.org/10.5194/amt-17-4153-2024, 2024
Short summary
Short summary
Knowledge of stratospheric aerosol characteristics is important for understanding chemical and climate aerosol feedbacks. Two particle size distribution parameters, the aerosol extinction coefficient and the effective radius, are obtained from SCIAMACHY limb observations. The aerosol characteristics show good agreement with independent data sets from balloon-borne and satellite observations. This data set expands the limited knowledge of stratospheric aerosol characteristics.
Moritz Günther, Hauke Schmidt, Claudia Timmreck, and Matthew Toohey
Atmos. Chem. Phys., 24, 7203–7225, https://doi.org/10.5194/acp-24-7203-2024, https://doi.org/10.5194/acp-24-7203-2024, 2024
Short summary
Short summary
Stratospheric aerosol has been shown to cause pronounced cooling in the tropical Indian and western Pacific oceans. Using a climate model, we show that this arises from enhanced meridional energy export via the stratosphere. The aerosol causes stratospheric heating and thus an acceleration of the Brewer–Dobson circulation that accomplishes this transport. Our findings highlight the importance of circulation adjustments and surface perspectives on forcing for understanding temperature responses.
Christian von Savigny, Anna Lange, Christoph G. Hoffmann, and Alexei Rozanov
Atmos. Chem. Phys., 24, 2415–2422, https://doi.org/10.5194/acp-24-2415-2024, https://doi.org/10.5194/acp-24-2415-2024, 2024
Short summary
Short summary
It is well known that volcanic eruptions strongly affect the colours of the twilight sky. Typically, volcanic eruptions lead to enhanced reddish and violet twilight colours. In rare cases, however, volcanic eruptions can also lead to green sunsets. This study provides an explanation for the occurrence of these unusual green sunsets based on simulations with a radiative transfer model. Green volcanic sunsets require a sufficient stratospheric aerosol optical depth and specific aerosol sizes.
Hauke Schmidt, Sebastian Rast, Jiawei Bao, Amrit Cassim, Shih-Wei Fang, Diego Jimenez-de la Cuesta, Paul Keil, Lukas Kluft, Clarissa Kroll, Theresa Lang, Ulrike Niemeier, Andrea Schneidereit, Andrew I. L. Williams, and Bjorn Stevens
Geosci. Model Dev., 17, 1563–1584, https://doi.org/10.5194/gmd-17-1563-2024, https://doi.org/10.5194/gmd-17-1563-2024, 2024
Short summary
Short summary
A recent development in numerical simulations of the global atmosphere is the increase in horizontal resolution to grid spacings of a few kilometers. However, the vertical grid spacing of these models has not been reduced at the same rate as the horizontal grid spacing. Here, we assess the effects of much finer vertical grid spacings, in particular the impacts on cloud quantities and the atmospheric energy balance.
Anna Lange, Alexei Rozanov, and Christian von Savigny
Atmos. Chem. Phys., 23, 14829–14839, https://doi.org/10.5194/acp-23-14829-2023, https://doi.org/10.5194/acp-23-14829-2023, 2023
Short summary
Short summary
We were able to demonstrate quantitatively that the blue colour of the sky cannot be solely attributed to Rayleigh scattering. The influence of ozone on the blue colour of the sky is calculated for different viewing geometries, total ozone columns and an enhanced stratospheric aerosol scenario. Furthermore, the effects of polarisation, surface albedo and observer height are investigated.
John M. C. Plane, Jörg Gumbel, Konstantinos S. Kalogerakis, Daniel R. Marsh, and Christian von Savigny
Atmos. Chem. Phys., 23, 13255–13282, https://doi.org/10.5194/acp-23-13255-2023, https://doi.org/10.5194/acp-23-13255-2023, 2023
Short summary
Short summary
The mesosphere or lower thermosphere region of the atmosphere borders the edge of space. It is subject to extreme ultraviolet photons and charged particles from the Sun and atmospheric gravity waves from below, which tend to break in this region. The pressure is very low, which facilitates chemistry involving species in excited states, and this is also the region where cosmic dust ablates and injects various metals. The result is a unique and exotic chemistry.
Christoph G. Hoffmann, Lena G. Buth, and Christian von Savigny
Atmos. Chem. Phys., 23, 12781–12799, https://doi.org/10.5194/acp-23-12781-2023, https://doi.org/10.5194/acp-23-12781-2023, 2023
Short summary
Short summary
The Madden–Julian oscillation is an important feature of weather in the tropics. Although it is mainly active in the troposphere, we show that it systematically influences the air temperature in the layers above, up to about 100 km altitude and from pole to pole. We have linked this to another known far-reaching process, interhemispheric coupling. This is basic research on atmospheric couplings and variability but might also be of interest for intraseasonal weather forecasting models.
Felix Wrana, Ulrike Niemeier, Larry W. Thomason, Sandra Wallis, and Christian von Savigny
Atmos. Chem. Phys., 23, 9725–9743, https://doi.org/10.5194/acp-23-9725-2023, https://doi.org/10.5194/acp-23-9725-2023, 2023
Short summary
Short summary
The stratospheric aerosol layer is a naturally occurring and permanent layer of aerosol, in this case very small droplets of mostly sulfuric acid and water, that has a cooling effect on our climate. To quantify this effect and for our general understanding of stratospheric microphysical processes, knowledge of the size of those aerosol particles is needed. Using satellite measurements and atmospheric models we show that some volcanic eruptions can lead to on average smaller aerosol sizes.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Shih-Wei Fang, Claudia Timmreck, Johann Jungclaus, Kirstin Krüger, and Hauke Schmidt
Earth Syst. Dynam., 13, 1535–1555, https://doi.org/10.5194/esd-13-1535-2022, https://doi.org/10.5194/esd-13-1535-2022, 2022
Short summary
Short summary
The early 19th century was the coldest period over the past 500 years, when strong tropical volcanic events and a solar minimum coincided. This study quantifies potential surface cooling from the solar and volcanic forcing in the early 19th century with large ensemble simulations, and identifies the regions that their impacts cannot be simply additive. The cooling perspective of Arctic amplification exists in both solar and post-volcano period with the albedo feedback as the main contribution.
Christian von Savigny, Anna Lange, Anne Hemkendreis, Christoph G. Hoffmann, and Alexei Rozanov
Clim. Past, 18, 2345–2356, https://doi.org/10.5194/cp-18-2345-2022, https://doi.org/10.5194/cp-18-2345-2022, 2022
Short summary
Short summary
This study investigates the possibility of inferring information on aerosol optical depth from photographs of historic paintings. The idea – which has been applied in previous studies – is very interesting because it would provide an archive of the atmospheric aerosol loading covering many centuries. We show that twilight colours depend not only on the aerosol optical thickness, but also on several other parameters, making a quantitative estimate of aerosol optical depth very difficult.
Sandra Wallis, Christoph Gregor Hoffmann, and Christian von Savigny
Ann. Geophys., 40, 421–431, https://doi.org/10.5194/angeo-40-421-2022, https://doi.org/10.5194/angeo-40-421-2022, 2022
Short summary
Short summary
Although the 1991 eruption of Mt Pinatubo had a severe impact on Earth's climate, the effect of this event on the mesosphere is not well understood. We investigated satellite-borne temperature measurements from the HALOE instrument and found indications that a positive temperature anomaly is present in the tropical upper mesosphere at the beginning of the HALOE time series, which may be related to the eruption of Mt. Pinatubo.
Anna Lange, Gerd Baumgarten, Alexei Rozanov, and Christian von Savigny
Ann. Geophys., 40, 407–419, https://doi.org/10.5194/angeo-40-407-2022, https://doi.org/10.5194/angeo-40-407-2022, 2022
Short summary
Short summary
We investigate the influence of different parameters on the colour of noctilucent clouds (highest clouds in the atmosphere), using radiative transfer calculations. We determined the effect of the particle size, optical depth, single scattering/multiple scattering and ozone. For sufficiently large optical depth and for specific viewing geometries, ozone plays only a minor role in the blueish colour of noctilucent clouds (new result).
Mireia Papke Chica, Valerian Hahn, Tiziana Braeuer, Elena de la Torre Castro, Florian Ewald, Mathias Gergely, Simon Kirschler, Luca Bugliaro Goggia, Stefanie Knobloch, Martina Kraemer, Johannes Lucke, Johanna Mayer, Raphael Maerkl, Manuel Moser, Laura Tomsche, Tina Jurkat-Witschas, Martin Zoeger, Christian von Savigny, and Christiane Voigt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-255, https://doi.org/10.5194/acp-2022-255, 2022
Preprint withdrawn
Short summary
Short summary
The mixed-phase temperature regime in convective clouds challenges our understanding of microphysical and radiative cloud properties. We provide a rare and unique dataset of aircraft in situ measurements in a strong mid-latitude convective system. We find that mechanisms initiating ice nucleation and growth strongly depend on temperature, relative humidity, and vertical velocity and variate within the measured system, resulting in altitude dependent changes of the cloud liquid and ice fraction.
Julia Koch, Adam Bourassa, Nick Lloyd, Chris Roth, and Christian von Savigny
Atmos. Chem. Phys., 22, 3191–3202, https://doi.org/10.5194/acp-22-3191-2022, https://doi.org/10.5194/acp-22-3191-2022, 2022
Short summary
Short summary
The mesopause, the region of the earth's atmosphere between 85 and 100 km, is hard to access by direct measurements. Therefore we look for parameters that can be measured using satellite or ground-based measurements. In this study we researched sodium airglow, a phenomenon that occurs when sodium atoms are excited by chemical reactions. We compared satellite measurements of the airglow and resulting sodium concentration profiles to gain a better understanding of the sodium in that region.
Mohammad M. Khabbazan, Marius Stankoweit, Elnaz Roshan, Hauke Schmidt, and Hermann Held
Earth Syst. Dynam., 12, 1529–1542, https://doi.org/10.5194/esd-12-1529-2021, https://doi.org/10.5194/esd-12-1529-2021, 2021
Short summary
Short summary
We ask for an optimal amount of solar radiation management (SRM) in conjunction with mitigation if global warming is limited to 2 °C and regional precipitation anomalies are confined to an amount ethically compatible with the 2 °C target. Then, compared to a scenario without regional targets, most of the SRM usage is eliminated from the portfolio even if transgressing regional targets are tolerated in terms of 1/10 of the standard deviation of natural variability.
Elizaveta Malinina, Alexei Rozanov, Ulrike Niemeier, Sandra Wallis, Carlo Arosio, Felix Wrana, Claudia Timmreck, Christian von Savigny, and John P. Burrows
Atmos. Chem. Phys., 21, 14871–14891, https://doi.org/10.5194/acp-21-14871-2021, https://doi.org/10.5194/acp-21-14871-2021, 2021
Short summary
Short summary
In the paper, changes in the stratospheric aerosol loading after the 2018 Ambae eruption were analyzed using OMPS-LP observations. The eruption was also simulated with the MAECHAM5-HAM global climate model. Generally, the model and observations agree very well. We attribute the good consistency of the results to a precisely determined altitude and mass of the volcanic injection, as well as nudging of the meteorological data. The radiative forcing from the eruption was estimated to be −0.13 W m−2.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Clarissa Alicia Kroll, Sally Dacie, Alon Azoulay, Hauke Schmidt, and Claudia Timmreck
Atmos. Chem. Phys., 21, 6565–6591, https://doi.org/10.5194/acp-21-6565-2021, https://doi.org/10.5194/acp-21-6565-2021, 2021
Short summary
Short summary
Volcanic forcing is counteracted by stratospheric water vapor (SWV) entering the stratosphere as a consequence of aerosol-induced cold-point warming. We find that depending on the emission strength, aerosol profile height and season of the eruption, up to 4 % of the tropical aerosol forcing can be counterbalanced. A power function relationship between cold-point warming/SWV forcing and AOD in the yearly average is found, allowing us to estimate the SWV forcing for comparable eruptions.
Nellie Wullenweber, Anna Lange, Alexei Rozanov, and Christian von Savigny
Clim. Past, 17, 969–983, https://doi.org/10.5194/cp-17-969-2021, https://doi.org/10.5194/cp-17-969-2021, 2021
Short summary
Short summary
This study investigates the physical processes leading to the rare phenomenon of the sun appearing blue or green. The phenomenon is caused by anomalous scattering by, e.g., volcanic or forest fire aerosols. Unlike most other studies, our study includes a full treatment of the effect of Rayleigh scattering on the colour of the sun. We investigate different factors and revisit a historic example, i.e. the Canadian forest fires in 1950, that led to blue sun events in different European countries.
Felix Wrana, Christian von Savigny, Jacob Zalach, and Larry W. Thomason
Atmos. Meas. Tech., 14, 2345–2357, https://doi.org/10.5194/amt-14-2345-2021, https://doi.org/10.5194/amt-14-2345-2021, 2021
Short summary
Short summary
In this paper, we describe a new method for calculating the size of naturally occurring droplets (aerosols) made mostly of sulfuric acid and water that can be found roughly at 20 km altitude in the atmosphere. We use data from the instrument SAGE III/ISS that is mounted on the International Space Station. We show that our method works well, and that the size parameters we calculate are reasonable and can be a valuable addition for a better understanding of aerosols and their effect on climate.
Larry W. Thomason, Mahesh Kovilakam, Anja Schmidt, Christian von Savigny, Travis Knepp, and Landon Rieger
Atmos. Chem. Phys., 21, 1143–1158, https://doi.org/10.5194/acp-21-1143-2021, https://doi.org/10.5194/acp-21-1143-2021, 2021
Short summary
Short summary
Measurements of the impact of volcanic eruptions on stratospheric aerosol loading by space-based instruments show show a fairly well-behaved relationship between the magnitude and the apparent changes to aerosol size over several orders of magnitude. This directly measured relationship provides a unique opportunity to verify the performance of interactive aerosol models used in climate models.
Cathy W. Y. Li, Guy P. Brasseur, Hauke Schmidt, and Juan Pedro Mellado
Atmos. Chem. Phys., 21, 483–503, https://doi.org/10.5194/acp-21-483-2021, https://doi.org/10.5194/acp-21-483-2021, 2021
Short summary
Short summary
Intense and localised emissions of pollutants are common in urban environments, in which turbulence cannot mix these segregated pollutants efficiently in the atmosphere. Despite their relatively high resolution, regional models cannot resolve such segregation and assume instantaneous mixing of these pollutants in their model grids, which potentially induces significant error in the subsequent chemical calculation, based on our calculation with a model that explicitly resolves turbulent motions.
Lukas O. Muser, Gholam Ali Hoshyaripour, Julia Bruckert, Ákos Horváth, Elizaveta Malinina, Sandra Wallis, Fred J. Prata, Alexei Rozanov, Christian von Savigny, Heike Vogel, and Bernhard Vogel
Atmos. Chem. Phys., 20, 15015–15036, https://doi.org/10.5194/acp-20-15015-2020, https://doi.org/10.5194/acp-20-15015-2020, 2020
Short summary
Short summary
Volcanic aerosols endanger aircraft and thus disrupt air travel globally. For aviation safety, it is vital to know the location and lifetime of such aerosols in the atmosphere. Here we show that the interaction of volcanic particles with each other eventually reduces their atmospheric lifetime. Moreover, we demonstrate that sunlight heats these particles, which lifts them several kilometers in the atmosphere. These findings support a more reliable forecast of volcanic aerosol dispersion.
Thomas von Clarmann, Douglas A. Degenstein, Nathaniel J. Livesey, Stefan Bender, Amy Braverman, André Butz, Steven Compernolle, Robert Damadeo, Seth Dueck, Patrick Eriksson, Bernd Funke, Margaret C. Johnson, Yasuko Kasai, Arno Keppens, Anne Kleinert, Natalya A. Kramarova, Alexandra Laeng, Bavo Langerock, Vivienne H. Payne, Alexei Rozanov, Tomohiro O. Sato, Matthias Schneider, Patrick Sheese, Viktoria Sofieva, Gabriele P. Stiller, Christian von Savigny, and Daniel Zawada
Atmos. Meas. Tech., 13, 4393–4436, https://doi.org/10.5194/amt-13-4393-2020, https://doi.org/10.5194/amt-13-4393-2020, 2020
Short summary
Short summary
Remote sensing of atmospheric state variables typically relies on the inverse solution of the radiative transfer equation. An adequately characterized retrieval provides information on the uncertainties of the estimated state variables as well as on how any constraint or a priori assumption affects the estimate. This paper summarizes related techniques and provides recommendations for unified error reporting.
Katja Matthes, Arne Biastoch, Sebastian Wahl, Jan Harlaß, Torge Martin, Tim Brücher, Annika Drews, Dana Ehlert, Klaus Getzlaff, Fritz Krüger, Willi Rath, Markus Scheinert, Franziska U. Schwarzkopf, Tobias Bayr, Hauke Schmidt, and Wonsun Park
Geosci. Model Dev., 13, 2533–2568, https://doi.org/10.5194/gmd-13-2533-2020, https://doi.org/10.5194/gmd-13-2533-2020, 2020
Short summary
Short summary
A new Earth system model, the Flexible Ocean and Climate Infrastructure (FOCI), is introduced, consisting of a high-top atmosphere, an ocean model, sea-ice and land surface model components. A unique feature of FOCI is the ability to explicitly resolve small-scale oceanic features, for example, the Agulhas Current and the Gulf Stream. It allows to study the evolution of the climate system on regional and seasonal to (multi)decadal scales and bridges the gap to coarse-resolution climate models.
Christian von Savigny and Christoph G. Hoffmann
Atmos. Meas. Tech., 13, 1909–1920, https://doi.org/10.5194/amt-13-1909-2020, https://doi.org/10.5194/amt-13-1909-2020, 2020
Short summary
Short summary
Stratospheric sulfate aerosols increase the Earth's planetary albedo and can lead to significant surface cooling, for example in the aftermath of volcanic eruptions. Their particle size distribution, important for physical and chemical effects of these aerosols, is still not fully understood. The present paper proposes an explanation for systematic differences in aerosol particle size retrieved from measurements made in different measurement geometries and reported in earlier studies.
Olexandr Lednyts'kyy and Christian von Savigny
Atmos. Chem. Phys., 20, 2221–2261, https://doi.org/10.5194/acp-20-2221-2020, https://doi.org/10.5194/acp-20-2221-2020, 2020
Short summary
Short summary
Atomic oxygen is a chemically active trace gas and a critical component of the energy balance of the mesosphere and lower thermosphere (MLT). By sequentially applying continuity equations of low degree, a new model representing the airglow and photochemistry of oxygen in the MLT is implemented, enabling comparisons with airglow observations at each step. The most effective data sets required to derive the abundance of atomic oxygen are the O2 atmospheric band emission, temperature, N2 and O2.
Piao Rong, Christian von Savigny, Chunmin Zhang, Christoph G. Hoffmann, and Michael J. Schwartz
Atmos. Chem. Phys., 20, 1737–1755, https://doi.org/10.5194/acp-20-1737-2020, https://doi.org/10.5194/acp-20-1737-2020, 2020
Short summary
Short summary
We study the presence and characteristics of 27 d solar signatures in middle atmospheric temperature observed by the microwave limb sounder on NASA's Aura spacecraft. This is a highly interesting and significant subject because the physical and chemical mechanisms leading to these 27 d solar-driven signatures are, in many cases, not well understood. The analysis shows that highly significant 27 d solar signatures in middle atmospheric temperature are present at many altitudes and latitudes.
Sebastian Borchert, Guidi Zhou, Michael Baldauf, Hauke Schmidt, Günther Zängl, and Daniel Reinert
Geosci. Model Dev., 12, 3541–3569, https://doi.org/10.5194/gmd-12-3541-2019, https://doi.org/10.5194/gmd-12-3541-2019, 2019
Short summary
Short summary
We present an upper-atmosphere extension of the ICOsahedral Non-hydrostatic (ICON) model.
This includes an extension of the model dynamics from a shallow to a deep atmosphere
and the implementation of upper-atmosphere physics parameterizations.
Idealized test cases and climate simulations are performed in order to evaluate this new configuration, named UA-ICON.
Jacob Zalach, Christian von Savigny, Arvid Langenbach, Gerd Baumgarten, Franz-Josef Lübken, and Adam Bourassa
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-267, https://doi.org/10.5194/amt-2019-267, 2019
Revised manuscript not accepted
Arvid Langenbach, Gerd Baumgarten, Jens Fiedler, Franz-Josef Lübken, Christian von Savigny, and Jacob Zalach
Atmos. Meas. Tech., 12, 4065–4076, https://doi.org/10.5194/amt-12-4065-2019, https://doi.org/10.5194/amt-12-4065-2019, 2019
Short summary
Short summary
Stratospheric aerosol backscatter ratios in the Arctic using Rayleigh, Mie and Raman backscattered signals were calculated. A backscatter ratio calculation during daytime was performed for the first time. Sharp aerosol layers thinner than 1 km over several days were observed. The seasonal cycle of stratospheric background aerosol in high latitudes including the summer months was calculated for the first time. Top altitude of the aerosol layer was found to reach up to 34 km, especially in summer.
Ina Tegen, David Neubauer, Sylvaine Ferrachat, Colombe Siegenthaler-Le Drian, Isabelle Bey, Nick Schutgens, Philip Stier, Duncan Watson-Parris, Tanja Stanelle, Hauke Schmidt, Sebastian Rast, Harri Kokkola, Martin Schultz, Sabine Schroeder, Nikos Daskalakis, Stefan Barthel, Bernd Heinold, and Ulrike Lohmann
Geosci. Model Dev., 12, 1643–1677, https://doi.org/10.5194/gmd-12-1643-2019, https://doi.org/10.5194/gmd-12-1643-2019, 2019
Short summary
Short summary
We describe a new version of the aerosol–climate model ECHAM–HAM and show tests of the model performance by comparing different aspects of the aerosol distribution with different datasets. The updated version of HAM contains improved descriptions of aerosol processes, including updated emission fields and cloud processes. While there are regional deviations between the model and observations, the model performs well overall.
Christoph G. Hoffmann and Christian von Savigny
Atmos. Chem. Phys., 19, 4235–4256, https://doi.org/10.5194/acp-19-4235-2019, https://doi.org/10.5194/acp-19-4235-2019, 2019
Short summary
Short summary
We examine a possible statistical linkage between atmospheric variability in the tropical troposphere on the intraseasonal timescale, which is known as Madden–Julian oscillation, and known variability of the solar radiation with a period of 27 days. This helps to understand tropospheric variability in more detail, which is generally of interest, e.g., for weather forecasting. We find indications for such a linkage; however, more research has to be conducted for an unambiguous attribution.
Christian von Savigny, Dieter H. W. Peters, and Günter Entzian
Atmos. Chem. Phys., 19, 2079–2093, https://doi.org/10.5194/acp-19-2079-2019, https://doi.org/10.5194/acp-19-2079-2019, 2019
Short summary
Short summary
This study investigates solar effects in radio reflection height observations in the ionospheric D region at an altitude of about 80 km at northern midlatitudes. The analyzed time series covers almost six solar cycles. Statistically significant solar 27-day and 11-year signatures are identified. However, the driving mechanisms are not fully understood. We also provide evidence for dynamical effects on the radio reflection heights with periods close to the solar rotational cycle.
Tilo Fytterer, Christian von Savigny, Martin Mlynczak, and Miriam Sinnhuber
Atmos. Chem. Phys., 19, 1835–1851, https://doi.org/10.5194/acp-19-1835-2019, https://doi.org/10.5194/acp-19-1835-2019, 2019
Short summary
Short summary
A model was developed to derive night-time atomic oxygen (O(3P)) and atomic hydrogen (H) from satellite observations in the altitude region between 75 km and 100 km. Comparisons between the
best-fit modeland the measurements suggest that chemical reactions involving O2 and O(3P) might occur differently than is usually assumed in literature. This considerably affects the derived abundances of O(3P) and H, which in turn might influence air temperature and winds of the whole atmosphere.
Uwe Mikolajewicz, Florian Ziemen, Guido Cioni, Martin Claussen, Klaus Fraedrich, Marvin Heidkamp, Cathy Hohenegger, Diego Jimenez de la Cuesta, Marie-Luise Kapsch, Alexander Lemburg, Thorsten Mauritsen, Katharina Meraner, Niklas Röber, Hauke Schmidt, Katharina D. Six, Irene Stemmler, Talia Tamarin-Brodsky, Alexander Winkler, Xiuhua Zhu, and Bjorn Stevens
Earth Syst. Dynam., 9, 1191–1215, https://doi.org/10.5194/esd-9-1191-2018, https://doi.org/10.5194/esd-9-1191-2018, 2018
Short summary
Short summary
Model experiments show that changing the sense of Earth's rotation has relatively little impact on the globally and zonally averaged energy budgets but leads to large shifts in continental climates and patterns of precipitation. The retrograde world is greener as the desert area shrinks. Deep water formation shifts from the North Atlantic to the North Pacific with subsequent changes in ocean overturning. Over large areas of the Indian Ocean, cyanobacteria dominate over bulk phytoplankton.
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Hideharu Akiyoshi, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, David Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida
Atmos. Chem. Phys., 18, 11323–11343, https://doi.org/10.5194/acp-18-11323-2018, https://doi.org/10.5194/acp-18-11323-2018, 2018
Short summary
Short summary
The 11-year solar cycle is an important driver of climate variability. Changes in incoming solar ultraviolet radiation affect atmospheric ozone, which in turn influences atmospheric temperatures. Constraining the impact of the solar cycle on ozone is therefore important for understanding climate variability. This study examines the representation of the solar influence on ozone in numerical models used to simulate past and future climate. We highlight important differences among model datasets.
J. Federico Conte, Jorge L. Chau, Fazlul I. Laskar, Gunter Stober, Hauke Schmidt, and Peter Brown
Ann. Geophys., 36, 999–1008, https://doi.org/10.5194/angeo-36-999-2018, https://doi.org/10.5194/angeo-36-999-2018, 2018
Short summary
Short summary
Based on comparisons of meteor radar measurements with HAMMONIA model simulations, we show that the differences exhibited by the semidiurnal solar tide (S2) observed at middle and high latitudes of the Northern Hemisphere between equinox times are mainly due to distinct behaviors of the migrating semidiurnal (SW2) and the non-migrating westward-propagating wave number 1 semidiurnal (SW1) tidal components.
Martin G. Schultz, Scarlet Stadtler, Sabine Schröder, Domenico Taraborrelli, Bruno Franco, Jonathan Krefting, Alexandra Henrot, Sylvaine Ferrachat, Ulrike Lohmann, David Neubauer, Colombe Siegenthaler-Le Drian, Sebastian Wahl, Harri Kokkola, Thomas Kühn, Sebastian Rast, Hauke Schmidt, Philip Stier, Doug Kinnison, Geoffrey S. Tyndall, John J. Orlando, and Catherine Wespes
Geosci. Model Dev., 11, 1695–1723, https://doi.org/10.5194/gmd-11-1695-2018, https://doi.org/10.5194/gmd-11-1695-2018, 2018
Short summary
Short summary
The chemistry–climate model ECHAM-HAMMOZ contains a detailed representation of tropospheric and stratospheric reactive chemistry and state-of-the-art parameterizations of aerosols. It thus allows for detailed investigations of chemical processes in the climate system. Evaluation of the model with various observational data yields good results, but the model has a tendency to produce too much OH in the tropics. This highlights the important interplay between atmospheric chemistry and dynamics.
Katharina Meraner and Hauke Schmidt
Atmos. Chem. Phys., 18, 1079–1089, https://doi.org/10.5194/acp-18-1079-2018, https://doi.org/10.5194/acp-18-1079-2018, 2018
Short summary
Short summary
Using a coupled Earth system model and radiative transfer modeling we show that the radiative forcing of a winter polar mesospheric ozone loss due to energetic particle precipitation is negligible. A climate impact of a mesospheric ozone loss as suggested by Andersson et al. (2014, Nature Communications) seems unlikely. A winter polar stratospheric ozone loss due to energetic particle precipitation leads to a small warming of the stratosphere, but only a few statistically significant changes.
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018, https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Short summary
Marine cloud brightening (MCB) has been proposed to help limit global warming. We present here the first multi-model assessment of idealized MCB simulations from the Geoengineering Model Intercomparison Project. While all models predict a global cooling as intended, there is considerable spread between the models both in terms of radiative forcing and the climate response, largely linked to the substantial differences in the models' representation of clouds.
Ulrike Niemeier and Hauke Schmidt
Atmos. Chem. Phys., 17, 14871–14886, https://doi.org/10.5194/acp-17-14871-2017, https://doi.org/10.5194/acp-17-14871-2017, 2017
Short summary
Short summary
An artificial stratospheric sulfur layer heats the lower stratosphere which impacts stratospheric dynamics and transport. The quasi-biennial oscillation shuts down due to the heated sulfur layer which impacts the meridional transport of the sulfate aerosols. The tropical confinement of the sulfate is stronger and the radiative forcing efficiency of the aerosol layer decreases compared to previous studies, as does the forcing when increasing the injection height.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Martin P. Langowski, Christian von Savigny, John P. Burrows, Didier Fussen, Erin C. M. Dawkins, Wuhu Feng, John M. C. Plane, and Daniel R. Marsh
Atmos. Meas. Tech., 10, 2989–3006, https://doi.org/10.5194/amt-10-2989-2017, https://doi.org/10.5194/amt-10-2989-2017, 2017
Short summary
Short summary
Meteoric metals form metal layers in the upper atmosphere anandplay a role in the formation of middle-atmospheric clouds and aerosols. However, the total metal influx rate is not well known. Global Na datasets from measurements and a model are available, which had not been compared yet on a global scale until this paper. Overall the agreement is good, and many differences between measurements are also found in the model simulations. However, the modeled layer altitude is too low.
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Kai-Uwe Eichmann, Luca Lelli, Christian von Savigny, Harjinder Sembhi, and John P. Burrows
Atmos. Meas. Tech., 9, 793–815, https://doi.org/10.5194/amt-9-793-2016, https://doi.org/10.5194/amt-9-793-2016, 2016
Short summary
Short summary
Height-resolved limb radiance spectra of the satellite instrument SCIAMACHY are used to retrieve cloud top heights with a colour index method. Clouds are detectable from the lower to the uppermost troposphere. These cloud heights help to improve the trace gas retrieval for the upper troposphere and lower stratosphere. Comparisons with other data sets have shown good agreement. As clouds and aerosols are not distinguishable, lower stratospheric volcanic aerosol clouds are detected in some years.
M. P. Langowski, C. von Savigny, J. P. Burrows, V. V. Rozanov, T. Dunker, U.-P. Hoppe, M. Sinnhuber, and A. C. Aikin
Atmos. Meas. Tech., 9, 295–311, https://doi.org/10.5194/amt-9-295-2016, https://doi.org/10.5194/amt-9-295-2016, 2016
Short summary
Short summary
An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY limb measurements of the Na resonance fluorescence (multiannual means 2008–2012). The Na layer peaks at 90 to 93 km altitude and has a FWHM of 5 to 15 km. A summer minimum in peak density and width is observed at high latitudes. At low latitudes, a semiannual oscillation is found. The results are compared with other measurements and models and agree well with these.
F. Ebojie, J. P. Burrows, C. Gebhardt, A. Ladstätter-Weißenmayer, C. von Savigny, A. Rozanov, M. Weber, and H. Bovensmann
Atmos. Chem. Phys., 16, 417–436, https://doi.org/10.5194/acp-16-417-2016, https://doi.org/10.5194/acp-16-417-2016, 2016
Short summary
Short summary
The goal of this study is to determine the global and zonal changes in the tropospheric ozone data product derived from SCIAMACHY limb-nadir-matching (LNM) observations during the period 2003–2011.
Tropospheric O3 shows statistically significant increases over some regions of South Asia, the South American continent, Alaska, around Congo in Africa and over some continental outflows. Significant decrease in TOC is observed over some continents and oceans.
C. von Savigny, F. Ernst, A. Rozanov, R. Hommel, K.-U. Eichmann, V. Rozanov, J. P. Burrows, and L. W. Thomason
Atmos. Meas. Tech., 8, 5223–5235, https://doi.org/10.5194/amt-8-5223-2015, https://doi.org/10.5194/amt-8-5223-2015, 2015
Short summary
Short summary
This article presents validation results for stratospheric aerosol extinction profiles retrieved from limb-scatter measurements with the SCIAMACHY instrument on the Envisat satellite. The SCIAMACHY retrievals are compared to co-located measurements with the SAGE II instrument. Very good agreement to within about 15% is found in a global average sense at altitudes above 15 km. The article also presents sample results on the global morphology of the stratospheric aerosol layer from 2003 to 2011.
O. Lednyts'kyy, C. von Savigny, K.-U. Eichmann, and M. G. Mlynczak
Atmos. Meas. Tech., 8, 1021–1041, https://doi.org/10.5194/amt-8-1021-2015, https://doi.org/10.5194/amt-8-1021-2015, 2015
Short summary
Short summary
This paper deals with the retrieval of atomic oxygen concentration profiles in the Earth's upper mesosphere/lower thermosphere region from SCIAMACHY observations of oxygen green line airglow emissions. Atomic oxygen is one of the most important chemical constituents of this atmospheric region, and long-term satellite data sets are rare. The paper includes a detailed description of the retrieval algorithm, an error budget, validation results and some first scientific analyses.
S. Tilmes, M. J. Mills, U. Niemeier, H. Schmidt, A. Robock, B. Kravitz, J.-F. Lamarque, G. Pitari, and J. M. English
Geosci. Model Dev., 8, 43–49, https://doi.org/10.5194/gmd-8-43-2015, https://doi.org/10.5194/gmd-8-43-2015, 2015
Short summary
Short summary
A new Geoengineering Model Intercomparison Project (GeoMIP) experiment “G4 specified stratospheric aerosols” (G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO2) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments.
M. P. Langowski, C. von Savigny, J. P. Burrows, W. Feng, J. M. C. Plane, D. R. Marsh, D. Janches, M. Sinnhuber, A. C. Aikin, and P. Liebing
Atmos. Chem. Phys., 15, 273–295, https://doi.org/10.5194/acp-15-273-2015, https://doi.org/10.5194/acp-15-273-2015, 2015
Short summary
Short summary
Global concentration fields of Mg and Mg+ in the Earth's upper mesosphere and lower thermosphere (70-150km) are presented. These are retrieved from SCIAMACHY/Envisat satellite grating spectrometer measurements in limb viewing geometry between 2008 and 2012.
These were compared with WACCM-Mg model results and a large fraction of the available measurement results for these species, and an interpretation of the results is done. The variation of these species during NLC presence is discussed.
S. Kowalewski, C. von Savigny, M. Palm, I. C. McDade, and J. Notholt
Atmos. Chem. Phys., 14, 10193–10210, https://doi.org/10.5194/acp-14-10193-2014, https://doi.org/10.5194/acp-14-10193-2014, 2014
F. Ebojie, C. von Savigny, A. Ladstätter-Weißenmayer, A. Rozanov, M. Weber, K.-U. Eichmann, S. Bötel, N. Rahpoe, H. Bovensmann, and J. P. Burrows
Atmos. Meas. Tech., 7, 2073–2096, https://doi.org/10.5194/amt-7-2073-2014, https://doi.org/10.5194/amt-7-2073-2014, 2014
S. Studer, K. Hocke, A. Schanz, H. Schmidt, and N. Kämpfer
Atmos. Chem. Phys., 14, 5905–5919, https://doi.org/10.5194/acp-14-5905-2014, https://doi.org/10.5194/acp-14-5905-2014, 2014
B. Hassler, I. Petropavlovskikh, J. Staehelin, T. August, P. K. Bhartia, C. Clerbaux, D. Degenstein, M. De Mazière, B. M. Dinelli, A. Dudhia, G. Dufour, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, J. Granville, N. R. P. Harris, K. Hoppel, D. Hubert, Y. Kasai, M. J. Kurylo, E. Kyrölä, J.-C. Lambert, P. F. Levelt, C. T. McElroy, R. D. McPeters, R. Munro, H. Nakajima, A. Parrish, P. Raspollini, E. E. Remsberg, K. H. Rosenlof, A. Rozanov, T. Sano, Y. Sasano, M. Shiotani, H. G. J. Smit, G. Stiller, J. Tamminen, D. W. Tarasick, J. Urban, R. J. van der A, J. P. Veefkind, C. Vigouroux, T. von Clarmann, C. von Savigny, K. A. Walker, M. Weber, J. Wild, and J. M. Zawodny
Atmos. Meas. Tech., 7, 1395–1427, https://doi.org/10.5194/amt-7-1395-2014, https://doi.org/10.5194/amt-7-1395-2014, 2014
R. Hommel, K.-U. Eichmann, J. Aschmann, K. Bramstedt, M. Weber, C. von Savigny, A. Richter, A. Rozanov, F. Wittrock, F. Khosrawi, R. Bauer, and J. P. Burrows
Atmos. Chem. Phys., 14, 3247–3276, https://doi.org/10.5194/acp-14-3247-2014, https://doi.org/10.5194/acp-14-3247-2014, 2014
M. Langowski, M. Sinnhuber, A. C. Aikin, C. von Savigny, and J. P. Burrows
Atmos. Meas. Tech., 7, 29–48, https://doi.org/10.5194/amt-7-29-2014, https://doi.org/10.5194/amt-7-29-2014, 2014
N. Rahpoe, C. von Savigny, M. Weber, A.V. Rozanov, H. Bovensmann, and J. P. Burrows
Atmos. Meas. Tech., 6, 2825–2837, https://doi.org/10.5194/amt-6-2825-2013, https://doi.org/10.5194/amt-6-2825-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Effects of nonmigrating diurnal tides on the Na layer in the mesosphere and lower thermosphere
Observation and simulation of neutral air density in the middle atmosphere during the 2021 sudden stratospheric warming event
Studies on the propagation dynamics and source mechanism of quasi-monochromatic gravity waves observed over São Martinho da Serra (29° S, 53° W), Brazil
Quasi-10 d wave activity in the southern high-latitude mesosphere and lower thermosphere (MLT) region and its relation to large-scale instability and gravity wave drag
Simulated long-term evolution of the thermosphere during the Holocene – Part 2: Circulation and solar tides
Simulated long-term evolution of the thermosphere during the Holocene – Part 1: Neutral density and temperature
Numerical modelling of relative contribution of planetary waves to the atmospheric circulation
Decay times of atmospheric acoustic–gravity waves after deactivation of wave forcing
Suppressed migrating diurnal tides in the mesosphere and lower thermosphere region during El Niño in northern winter and its possible mechanism
Intercomparison of middle atmospheric meteorological analyses for the Northern Hemisphere winter 2009–2010
Self-consistent global transport of metallic ions with WACCM-X
Does the coupling of the semiannual oscillation with the quasi-biennial oscillation provide predictability of Antarctic sudden stratospheric warmings?
The sporadic sodium layer: a possible tracer for the conjunction between the upper and lower atmospheres
Modelled effects of temperature gradients and waves on the hydroxyl rotational distribution in ground-based airglow measurements
A study of the dynamical characteristics of inertia–gravity waves in the Antarctic mesosphere combining the PANSY radar and a non-hydrostatic general circulation model
Forcing mechanisms of the terdiurnal tide
Local time dependence of polar mesospheric clouds: a model study
The role of the winter residual circulation in the summer mesopause regions in WACCM
Influence of the sudden stratospheric warming on quasi-2-day waves
On the impact of the temporal variability of the collisional quenching process on the mesospheric OH emission layer: a study based on SD-WACCM4 and SABER
Environmental influences on the intensity changes of tropical cyclones over the western North Pacific
Modeling of very low frequency (VLF) radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry
The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS08) field experiment – Part 2: Observations of the convective environment
CO at 40–80 km above Kiruna observed by the ground-based microwave radiometer KIMRA and simulated by the Whole Atmosphere Community Climate Model
Jianfei Wu, Wuhu Feng, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 24, 12133–12141, https://doi.org/10.5194/acp-24-12133-2024, https://doi.org/10.5194/acp-24-12133-2024, 2024
Short summary
Short summary
Metal layers occur in the mesosphere and lower thermosphere region 80–120 km from the ablation of cosmic dust. Nonmigrating diurnal tides are persistent global oscillations. We investigate nonmigrating diurnal tidal variations in metal layers using satellite observations and global climate model simulations; these have not been studied previously due to the limitations of measurements. The nonmigrating diurnal tides in temperature are strongly linked to the corresponding change in metal layers.
Junfeng Yang, Jianmei Wang, Dan Liu, Wenjie Guo, and Yiming Zhang
Atmos. Chem. Phys., 24, 10113–10127, https://doi.org/10.5194/acp-24-10113-2024, https://doi.org/10.5194/acp-24-10113-2024, 2024
Short summary
Short summary
Atmospheric drag may vary dramatically under the influence of atmospheric density over aircraft flights at 20–100 km. This indicates that the natural density evolution needs to be analyzed. However, the middle-atmospheric density response to sudden stratospheric warming (SSW) events has rarely been reported. In this study, the density distribution and mass transport process are illustrated based on observation data and global numerical model simulations during the 2021 major SSW event.
Cristiano M. Wrasse, Prosper K. Nyassor, Ligia A. da Silva, Cosme A. O. B. Figueiredo, José V. Bageston, Kleber P. Naccarato, Diego Barros, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 24, 5405–5431, https://doi.org/10.5194/acp-24-5405-2024, https://doi.org/10.5194/acp-24-5405-2024, 2024
Short summary
Short summary
This present work investigates the propagation dynamics and the sources–source mechanisms of quasi-monochromatic gravity waves (QMGWs) observed between April 2017 and April 2022 at São Martinho da Serra. The QMGW parameters were estimated using a 2D spectral analysis, and their source locations were identified using a backward ray-tracing model. Furthermore, the propagation conditions, sources, and source mechanisms of the QMGWs were extensively studied.
Wonseok Lee, In-Sun Song, Byeong-Gwon Song, and Yong Ha Kim
Atmos. Chem. Phys., 24, 3559–3575, https://doi.org/10.5194/acp-24-3559-2024, https://doi.org/10.5194/acp-24-3559-2024, 2024
Short summary
Short summary
We investigate the seasonal variation of westward-propagating quasi-10 d wave (Q10DW) activity in the southern high-latitude mesosphere. The observed Q10DW is amplified around equinoxes. The model experiments indicate that the Q10DW can be enhanced in the high-latitude mesosphere due to large-scale instability. However, an excessively strong instability in the summer mesosphere spuriously generates the Q10DW in the model, potentially leading to inaccurate model dynamics.
Xu Zhou, Xinan Yue, Yihui Cai, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 6383–6393, https://doi.org/10.5194/acp-23-6383-2023, https://doi.org/10.5194/acp-23-6383-2023, 2023
Short summary
Short summary
Secular variations in CO2 concentration and geomagnetic field can affect the dynamics of the upper atmosphere. We examine how these two factors influence the dynamics of the upper atmosphere during the Holocene, using two sets of ~ 12 000-year control runs by the coupled thermosphere–ionosphere model. The main results show that (a) increased CO2 enhances the thermospheric circulation, but non-linearly; and (b) geomagnetic variation induced a significant hemispheric asymmetrical effect.
Yihui Cai, Xinan Yue, Xu Zhou, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 5009–5021, https://doi.org/10.5194/acp-23-5009-2023, https://doi.org/10.5194/acp-23-5009-2023, 2023
Short summary
Short summary
On timescales longer than the solar cycle, secular changes in CO2 concentration and geomagnetic field play a key role in influencing the thermosphere. We performed four sets of ~12000-year control runs with the coupled thermosphere–ionosphere model to examine the effects of the geomagnetic field, CO2, and solar activity on thermospheric density and temperature, deepening our understanding of long-term changes in the thermosphere and making projections for future thermospheric changes.
Andrey V. Koval, Olga N. Toptunova, Maxim A. Motsakov, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, and Eugene V. Rozanov
Atmos. Chem. Phys., 23, 4105–4114, https://doi.org/10.5194/acp-23-4105-2023, https://doi.org/10.5194/acp-23-4105-2023, 2023
Short summary
Short summary
Periodic changes in all hydrodynamic parameters are constantly observed in the atmosphere. The amplitude of these fluctuations increases with height due to a decrease in the atmospheric density. In the upper layers of the atmosphere, waves are the dominant form of motion. We use a model of the general circulation of the atmosphere to study the contribution to the formation of the dynamic and temperature regimes of the middle and upper atmosphere made by different global-scale atmospheric waves.
Nikolai M. Gavrilov, Sergey P. Kshevetskii, and Andrey V. Koval
Atmos. Chem. Phys., 22, 13713–13724, https://doi.org/10.5194/acp-22-13713-2022, https://doi.org/10.5194/acp-22-13713-2022, 2022
Short summary
Short summary
We make high-resolution simulations of poorly understood decays of nonlinear atmospheric acoustic–gravity waves (AGWs) after deactivations of the wave forcing. The standard deviations of AGW perturbations, after fast dispersions of traveling modes, experience slower exponential decreases. AGW decay times are estimated for the first time and are 20–100 h in the stratosphere and mesosphere. This requires slow, quasi-standing and secondary modes in parameterizations of AGW impacts to be considered.
Yetao Cen, Chengyun Yang, Tao Li, James M. Russell III, and Xiankang Dou
Atmos. Chem. Phys., 22, 7861–7874, https://doi.org/10.5194/acp-22-7861-2022, https://doi.org/10.5194/acp-22-7861-2022, 2022
Short summary
Short summary
The MLT DW1 amplitude is suppressed during El Niño winters in both satellite observation and SD-WACCM simulations. The suppressed Hough mode (1, 1) in the tropopause region propagates vertically to the MLT region, leading to decreased DW1 amplitude. The latitudinal zonal wind shear anomalies during El Niño winters would narrow the waveguide and prevent the vertical propagation of DW1. The gravity wave drag excited by ENSO-induced anomalous convection could also modulate the MLT DW1 amplitude.
John P. McCormack, V. Lynn Harvey, Cora E. Randall, Nicholas Pedatella, Dai Koshin, Kaoru Sato, Lawrence Coy, Shingo Watanabe, Fabrizio Sassi, and Laura A. Holt
Atmos. Chem. Phys., 21, 17577–17605, https://doi.org/10.5194/acp-21-17577-2021, https://doi.org/10.5194/acp-21-17577-2021, 2021
Short summary
Short summary
In order to have confidence in atmospheric predictions, it is important to know how well different numerical model simulations of the Earth’s atmosphere agree with one another. This work compares four different data assimilation models that extend to or beyond the mesosphere. Results shown here demonstrate that while the models are in close agreement below ~50 km, large differences arise at higher altitudes in the mesosphere and lower thermosphere that will need to be reconciled in the future.
Jianfei Wu, Wuhu Feng, Han-Li Liu, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 21, 15619–15630, https://doi.org/10.5194/acp-21-15619-2021, https://doi.org/10.5194/acp-21-15619-2021, 2021
Short summary
Short summary
Metal layers occur in the MLT region (80–120 km) from the ablation of cosmic dust. The latest lidar observations show these metals can reach a height approaching 200 km, which is challenging to explain. We have developed the first global simulation incorporating the full life cycle of metal atoms and ions. The model results compare well with lidar and satellite observations of the seasonal and diurnal variation of the metals and demonstrate the importance of ion mass and ion-neutral coupling.
Viktoria J. Nordström and Annika Seppälä
Atmos. Chem. Phys., 21, 12835–12853, https://doi.org/10.5194/acp-21-12835-2021, https://doi.org/10.5194/acp-21-12835-2021, 2021
Short summary
Short summary
The winter winds over Antarctica form a stable vortex. However, in 2019 the vortex was disrupted and the temperature in the polar stratosphere rose by 50°C. This event, called a sudden stratospheric warming, is a rare event in the Southern Hemisphere, with the only known major event having taken place in 2002. The 2019 event helps us unravel its causes, which are largely unknown. We have discovered a unique behaviour of the equatorial winds in 2002 and 2019 that may signal an impending SH SSW.
Shican Qiu, Ning Wang, Willie Soon, Gaopeng Lu, Mingjiao Jia, Xingjin Wang, Xianghui Xue, Tao Li, and Xiankang Dou
Atmos. Chem. Phys., 21, 11927–11940, https://doi.org/10.5194/acp-21-11927-2021, https://doi.org/10.5194/acp-21-11927-2021, 2021
Short summary
Short summary
Our results suggest that lightning strokes would probably influence the ionosphere and thus give rise to the occurrence of a sporadic sodium layer (NaS), with the overturning of the electric field playing an important role. Model simulation results show that the calculated first-order rate coefficient could explain the efficient recombination of Na+→Na in this NaS case study. A conjunction between the lower and upper atmospheres could be established by these inter-connected phenomena.
Christoph Franzen, Patrick Joseph Espy, and Robert Edward Hibbins
Atmos. Chem. Phys., 20, 333–343, https://doi.org/10.5194/acp-20-333-2020, https://doi.org/10.5194/acp-20-333-2020, 2020
Short summary
Short summary
Ground-based observations of the hydroxyl (OH) airglow have indicated that the rotational energy levels may not be in thermal equilibrium with the surrounding gas. Here we use simulations of the OH airglow to show that temperature changes across the extended airglow layer, either climatological or those temporarily caused by atmospheric waves, can mimic this effect for thermalized OH. Thus, these must be considered in order to quantify the non-thermal nature of the OH airglow.
Ryosuke Shibuya and Kaoru Sato
Atmos. Chem. Phys., 19, 3395–3415, https://doi.org/10.5194/acp-19-3395-2019, https://doi.org/10.5194/acp-19-3395-2019, 2019
Short summary
Short summary
The first long-term simulation using the high-top non-hydrostatic general circulation model (NICAM) was executed to analyze mesospheric gravity waves. A new finding in this paper is that the spectrum of the vertical fluxes of the zonal momentum has an isolated peak at frequencies slightly lower than f at latitudes from 30 to 75° S at a height of 70 km. This study discusses the physical mechanism for an explanation of the existence of the isolated spectrum peak in the mesosphere.
Friederike Lilienthal, Christoph Jacobi, and Christoph Geißler
Atmos. Chem. Phys., 18, 15725–15742, https://doi.org/10.5194/acp-18-15725-2018, https://doi.org/10.5194/acp-18-15725-2018, 2018
Short summary
Short summary
The terdiurnal solar tide is an atmospheric wave, owing to the daily variation of solar heating with a period of 8 h. Here, we present model simulations of this tide and investigate the relative importance of possible forcing mechanisms because they are still under debate. These are, besides direct solar heating, nonlinear interactions between other tides and gravity wave–tide interactions. As a result, solar heating is most important and nonlinear effects partly counteract this forcing.
Francie Schmidt, Gerd Baumgarten, Uwe Berger, Jens Fiedler, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 8893–8908, https://doi.org/10.5194/acp-18-8893-2018, https://doi.org/10.5194/acp-18-8893-2018, 2018
Short summary
Short summary
Local time variations of polar mesospheric clouds (PMCs) in the Northern Hemisphere are studied using a combination of a global circulation model and a microphysical model. We investigate the brightness, altitude, and occurrence of the clouds and find a good agreement between model and observations. The variations are caused by tidal structures in background parameters. The temperature varies by about 2 K and water vapor by about 3 ppmv at the altitude of ice particle sublimation near 81.5 km.
Maartje Sanne Kuilman and Bodil Karlsson
Atmos. Chem. Phys., 18, 4217–4228, https://doi.org/10.5194/acp-18-4217-2018, https://doi.org/10.5194/acp-18-4217-2018, 2018
Short summary
Short summary
In this study, we investigate the role of the winter residual circulation in the summer mesopause region using the Whole Atmosphere Community Climate Model. In addition, we study the role of the summer stratosphere in shaping the conditions of the summer polar mesosphere. We strengthen the evidence that the variability in the summer mesopause region is mainly driven by changes in the summer mesosphere rather than in the summer stratosphere.
Sheng-Yang Gu, Han-Li Liu, Xiankang Dou, and Tao Li
Atmos. Chem. Phys., 16, 4885–4896, https://doi.org/10.5194/acp-16-4885-2016, https://doi.org/10.5194/acp-16-4885-2016, 2016
Short summary
Short summary
The influences of sudden stratospheric warming in the Northern Hemisphere on quasi-2-day waves are studied with both observations and simulations. We found the energy of W3 is transferred to W2 through the nonlinear interaction with SPW1 and the instability at winter mesopause could provide additional amplification for W3. The summer easterly is enhanced during SSW, which is more favorable for the propagation of quasi-2-day waves.
S. Kowalewski, C. von Savigny, M. Palm, I. C. McDade, and J. Notholt
Atmos. Chem. Phys., 14, 10193–10210, https://doi.org/10.5194/acp-14-10193-2014, https://doi.org/10.5194/acp-14-10193-2014, 2014
Shoujuan Shu, Fuqing Zhang, Jie Ming, and Yuan Wang
Atmos. Chem. Phys., 14, 6329–6342, https://doi.org/10.5194/acp-14-6329-2014, https://doi.org/10.5194/acp-14-6329-2014, 2014
S. Palit, T. Basak, S. K. Mondal, S. Pal, and S. K. Chakrabarti
Atmos. Chem. Phys., 13, 9159–9168, https://doi.org/10.5194/acp-13-9159-2013, https://doi.org/10.5194/acp-13-9159-2013, 2013
M. T. Montgomery and R. K. Smith
Atmos. Chem. Phys., 12, 4001–4009, https://doi.org/10.5194/acp-12-4001-2012, https://doi.org/10.5194/acp-12-4001-2012, 2012
C. G. Hoffmann, D. E. Kinnison, R. R. Garcia, M. Palm, J. Notholt, U. Raffalski, and G. Hochschild
Atmos. Chem. Phys., 12, 3261–3271, https://doi.org/10.5194/acp-12-3261-2012, https://doi.org/10.5194/acp-12-3261-2012, 2012
Cited articles
Andrews, D. G.: On the interpretation of the eliassen-palm flux divergence,
Q. J. Roy. Meteor. Soc., 113, 323–338,
https://doi.org/10.1002/qj.49711347518, 1987. a
Aquila, V., Oman, L. D., Stolarski, R., Douglass, A. R., and Newman, P. A.: The
Response of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo at
Southern and Northern Midlatitudes, J. Atmos. Sci., 70,
894–900, https://doi.org/10.1175/JAS-D-12-0143.1, 2013. a
Arfeuille, F., Luo, B. P., Heckendorn, P., Weisenstein, D., Sheng, J. X., Rozanov, E., Schraner, M., Brönnimann, S., Thomason, L. W., and Peter, T.: Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions, Atmos. Chem. Phys., 13, 11221–11234, https://doi.org/10.5194/acp-13-11221-2013, 2013. a
Azoulay, A., Schmidt, H., and Timmreck, C.: The Arctic Polar Vortex Response to
Volcanic Forcing of Different Strengths, J. Geophys. Res.-Atmos., 126, e2020JD034450,
https://doi.org/10.1029/2020JD034450, 2021. a, b
Bates, D. R. and Massey, H. S. W.: Some problems concerning the terrestrial
atmosphere above about the 100 km level, P. Roy. Soc.
Lond. A Mat., 253, 451–462,
https://doi.org/10.1098/rspa.1959.0207, 1959. a
Baumgarten, G., Fiedler, J., and Rapp, M.: On microphysical processes of noctilucent clouds (NLC): observations and modeling of mean and width of the particle size-distribution, Atmos. Chem. Phys., 10, 6661–6668, https://doi.org/10.5194/acp-10-6661-2010, 2010. a
Becker, E. and Fritts, D. C.: Enhanced gravity-wave activity and interhemispheric coupling during the MaCWAVE/MIDAS northern summer program 2002, Ann. Geophys., 24, 1175–1188, https://doi.org/10.5194/angeo-24-1175-2006, 2006. a
Becker, E. and von Savigny, C.: Dynamical heating of the polar summer mesopause
induced by solar proton events, J. Geophys. Res.-Atmos.,
115, D00I18. https://doi.org/10.1029/2009JD012561, 2010. a, b
Bittner, M., Timmreck, C., Schmidt, H., Toohey, M., and Krüger, K.: The impact
of wave-mean flow interaction on the Northern Hemisphere polar vortex after
tropical volcanic eruptions, J. Geophys. Res.-Atmos.,
121, 5281–5297, https://doi.org/10.1002/2015JD024603, 2016. a, b, c
Borchert, S., Zhou, G., Baldauf, M., Schmidt, H., Zängl, G., and Reinert, D.: The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0), Geosci. Model Dev., 12, 3541–3569, https://doi.org/10.5194/gmd-12-3541-2019, 2019. a, b, c, d
Cole-Dai, J.: Volcanoes and climate, WIREs Climate Change, 1, 824–839,
https://doi.org/10.1002/wcc.76, 2010. a
Craig, R. L., Vincent, R. A., Fraser, G. J., and Smith, M. J.: The quasi 2-day
wave in the Southern Hemisphere mesosphere, Nature, 287, 319–320, 1980. a
Fleming, E. L., Chandra, S., Schoeberl, M. R., and Barnett, J. J.: Monthly mean
global climatology of temperature, wind, geopotential height and pressure for
0–120 km, Tech. Rep. NASA-TM-100697, https://ntrs.nasa.gov/api/citations/19880013119/downloads/19880013119.pdf (last access: 21 June 2023), 1988. a
Fomichev, V. and Blanchet, J.: Development of the new CCC/GCM longwave
radiation model for extension into the middle atmosphere, Atmos.-Ocean,
33, 513–529, https://doi.org/10.1080/07055900.1995.9649543, 1995. a
Fomichev, V., Blanchet, J.-P., and Turner, D.: Matrix parameterization of the
15 µm CO2 band cooling in the middle and upper atmosphere for variable CO2
concentration, J. Geophys. Res., 1031, 11505–11528,
https://doi.org/10.1029/98JD00799, 1998. a
Gumbel, J. and Karlsson, B.: Intra- and inter-hemispheric coupling effects on
the polar summer mesosphere, Geophys. Res. Lett., 38, L14804,
https://doi.org/10.1029/2011GL047968, 2011. a
Guo, S., Bluth, G. J. S., Rose, W. I., Watson, I. M., and Prata, A. J.:
Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using
ultraviolet and infrared satellite sensors, Geochem. Geophys.
Geosy., 5, Q04001, https://doi.org/10.1029/2003GC000654, 2004. a
Hardiman, S. C., Andrews, D. G., White, A. A., Butchart, N., and Edmond, I.:
Using Different Formulations of the Transformed Eulerian Mean Equations and
Eliassen–Palm Diagnostics in General Circulation Models, J.
Atmos. Sci., 67, 1983–1995, https://doi.org/10.1175/2010JAS3355.1, 2010. a
Hedin, A. E.: A Revised thermospheric model based on mass spectrometer and
incoherent scatter data: MSIS-83, J. Geophys. Res.-Space, 88, 10170–10188, https://doi.org/10.1029/JA088iA12p10170,
1983. a
Hines, C. O.: Doppler-spread parameterization of gravity-wave momentum
deposition in the middle atmosphere. Part 1: Basic formulation, J.
Atmos. Sol.-Terr. Phys., 59, 371–386,
https://doi.org/10.1016/S1364-6826(96)00079-X, 1997. a
Kalicinsky, C., Knieling, P., Koppmann, R., Offermann, D., Steinbrecht, W., and Wintel, J.: Long-term dynamics of OH* temperatures over central Europe: trends and solar correlations, Atmos. Chem. Phys., 16, 15033–15047, https://doi.org/10.5194/acp-16-15033-2016, 2016. a
Karlsson, B. and Becker, E.: How Does Interhemispheric Coupling Contribute to
Cool Down the Summer Polar Mesosphere?, J. Climate, 29, 8807–8821,
https://doi.org/10.1175/JCLI-D-16-0231.1, 2016. a, b
Karlsson, B., Körnich, H., and Gumbel, J.: Evidence for interhemispheric
stratosphere-mesosphere coupling derived from noctilucent cloud properties,
Geophys. Res. Lett., 34, L16806, https://doi.org/10.1029/2007GL030282,
2007. a
Keckhut, P., Hauchecorne, A., and Chanin, M. L.: Midlatitude long-term
variability of the middle atmosphere: Trends and cyclic and episodic changes,
J. Geophys. Res.-Atmos., 100, 18887–18897,
https://doi.org/10.1029/95JD01387, 1995. a, b
Kilian, M., Brinkop, S., and Jöckel, P.: Impact of the eruption of Mt Pinatubo on the chemical composition of the stratosphere, Atmos. Chem. Phys., 20, 11697–11715, https://doi.org/10.5194/acp-20-11697-2020, 2020. a
Kockarts, G.: Nitric oxide cooling in the terrestrial thermosphere, Geophys.
Res. Lett., 7, 137–140, https://doi.org/10.1029/GL007i002p00137,
1980. a
Körnich, H. and Becker, E.: A simple model for the interhemispheric coupling
of the middle atmosphere circulation, Adv. Space Res., 45,
661–668, https://doi.org/10.1016/j.asr.2009.11.001, 2010. a, b, c, d
Lott, F.: Alleviation of Stationary Biases in a GCM through a Mountain Drag
Parameterization Scheme and a Simple Representation of Mountain Lift Forces,
Mon. Weather Rev., 127, 788–801,
https://doi.org/10.1175/1520-0493(1999)127<0788:AOSBIA>2.0.CO;2, 1999. a, b, c
Lübken, F.-J., Höffner, J., Viehl, T. P., Becker, E., Latteck, R., Kaifler,
B., Murphy, D. J., and Morris, R. J.: Winter/summer transition in the
Antarctic mesopause region, J. Geophys. Res.-Atmos.,
120, 12394–12409, https://doi.org/10.1002/2015JD023928, 2015. a
Marshall, L. R., Maters, E. C., Schmidt, A., Timmreck, C., Robock, A., and
Toohey, M.: Volcanic effects on climate: recent advances and future avenues,
B. Volcanol., 84, 54,
https://doi.org/10.1007/s00445-022-01559-3, 2022. a
Offermann, D., Hoffmann, P., Knieling, P., Koppmann, R., Oberheide, J., and
Steinbrecht, W.: Long-term trends and solar cycle variations of mesospheric
temperature and dynamics, J. Geophys. Res.-Atmos., 115, D18127,
https://doi.org/10.1029/2009JD013363, 2010. a, b
Offermann, D., Hoffmann, P., Knieling, P., Koppmann, R., Oberheide, J., Riggin,
D. M., Tunbridge, V. M., and Steinbrecht, W.: Quasi 2 day waves in the summer
mesosphere: Triple structure of amplitudes and long-term development, J. Geophys. Res.-Atmos., 116, D00P02,
https://doi.org/10.1029/2010JD015051, 2011. a
Ogibalov, V. and Fomichev, V.: Parameterization of solar heating by the near IR
CO2 bands in the mesosphere, Adv. Space Res., 32, 759–764,
https://doi.org/10.1016/S0273-1177(03)80069-8, 2003. a
Pendlebury, D.: A simulation of the quasi-two-day wave and its effect on
variability of summertime mesopause temperatures, J. Atmos.
Sol.-Terr. Phys., 80, 138–151,
https://doi.org/10.1016/j.jastp.2012.01.006, 2012. a
Pertsev, N., Dalin, P., Perminov, V., Romejko, V., Dubietis, A.,
Balčiunas, R., Černis, K., and Zalcik, M.: Noctilucent clouds
observed from the ground: sensitivity to mesospheric parameters and long-term
time series, Earth Planet. Space, 66, 1880–5981,
https://doi.org/10.1186/1880-5981-66-98, 2014. a
Pincus, R. and Stevens, B.: Paths to accuracy for radiation parameterizations
in atmospheric models, J. Adv. Model. Earth Sy., 5,
225–233, https://doi.org/10.1002/jame.20027, 2013. a
Pitari, G., Cionni, I., Di Genova, G., Visioni, D., Gandolfi, I., and Mancini,
E.: Impact of Stratospheric Volcanic Aerosols on Age-of-Air and Transport of
Long-Lived Species, Atmosphere, 7, 149, https://doi.org/10.3390/atmos7110149, 2016. a
Poppoff, I. G. and Whitten, R. C.: The mesosphere, Geophys. Surv., 2, 399–429,
https://doi.org/10.1007/BF01454193, 1976. a
Ramesh, K., Smith, A. K., Garcia, R. R., Marsh, D. R., Sridharan, S., and
Kishore Kumar, K.: Long-Term Variability and Tendencies in Middle Atmosphere
Temperature and Zonal Wind From WACCM6 Simulations During 1850–2014,
J. Geophys. Res.-Atmos., 125, e2020JD033579,
https://doi.org/10.1029/2020JD033579, 2020. a
Richards, P. G., Fennelly, J. A., and Torr, D. G.: EUVAC: A solar EUV Flux
Model for aeronomic calculations, J. Geophys. Res.-Space, 99, 8981–8992, https://doi.org/10.1029/94JA00518, 1994. a
Rind, D., Balachandran, N. K., and Suozzo, R.: Climate Change and the Middle
Atmosphere. Part II: The Impact of Volcanic Aerosols, J. Climate, 5,
189–208, http://www.jstor.org/stable/26197091 (last access: 14 June 2023), 1992. a
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38,
191–219, https://doi.org/10.1029/1998RG000054, 2000. a
Robock, A. and Mao, J.: Winter warming from large volcanic eruptions,
Geophys. Res. Lett., 19, 2405–2408,
https://doi.org/10.1029/92GL02627, 1992. a
Rozanov, E. V., Schlesinger, M. E., Andronova, N. G., Yang, F., Malyshev,
S. L., Zubov, V. A., Egorova, T. A., and Li, B.: Climate/chemistry effects of
the Pinatubo volcanic eruption simulated by the UIUC stratosphere/troposphere
GCM with interactive photochemistry, J. Geophys. Res.-Atmos., 107, ACL 12–1–ACL 12–14,
https://doi.org/10.1029/2001JD000974, 2002. a, b
She, C. Y. and von Zahn, U.: Concept of a two-level mesopause: Support through
new lidar observations, J. Geophys. Res.-Atmos., 103,
5855–5863, https://doi.org/10.1029/97JD03450, 1998. a
She, C. Y., Thiel, S. W., and Krueger, D. A.: Observed episodic warming at 86
and 100 km between 1990 and 1997: Effects of Mount Pinatubo Eruption,
Geophys. Res. Lett., 25, 497–500, https://doi.org/10.1029/98GL00178, 1998. a, b
Smith, A. K., Pedatella, N. M., and Mullen, Z. K.: Interhemispheric Coupling
Mechanisms in the Middle Atmosphere of WACCM6, J. Atmos.
Sci., 77, 1101–1118, https://doi.org/10.1175/JAS-D-19-0253.1, 2020. a
Solomon, S.: Stratospheric ozone depletion: A review of concepts and history,
Rev. Geophys., 37, 275–316,
https://doi.org/10.1029/1999RG900008, 1999. a
Stenchikov, G., Robock, A., Ramaswamy, V., Schwarzkopf, M. D., Hamilton, K.,
and Ramachandran, S.: Arctic Oscillation response to the 1991 Mount Pinatubo
eruption: Effects of volcanic aerosols and ozone depletion, J.
Geophys. Res.-Atmos., 107, ACL 28–1–ACL 28–16,
https://doi.org/10.1029/2002JD002090, 2002. a
Strobel, D. F.: Parameterization of the atmospheric heating rate from 15 to 120 km due to O2 and O3 absorption of solar radiation, J. Geophys.
Res.-Oceans, 83, 6225–6230,
https://doi.org/10.1029/JC083iC12p06225, 1978. a
Thomas, M. A., Giorgetta, M. A., Timmreck, C., Graf, H.-F., and Stenchikov, G.: Simulation of the climate impact of Mt. Pinatubo eruption using ECHAM5 – Part 2: Sensitivity to the phase of the QBO and ENSO, Atmos. Chem. Phys., 9, 3001–3009, https://doi.org/10.5194/acp-9-3001-2009, 2009. a
Thulasiraman, S. and Nee, J. B.: Further evidence of a two-level mesopause and
its variations from UARS high-resolution Doppler imager temperature data,
J. Geophys. Res.-Atmos., 107, ACL 6–1–ACL 6–10,
https://doi.org/10.1029/2000JD000118, 2002. a, b
Timmreck, C.: Modeling the climatic effects of large explosive volcanic
eruptions, WIREs Clim. Change, 3, 545–564,
https://doi.org/10.1002/wcc.192, 2012. a
Toohey, M., Krüger, K., Bittner, M., Timmreck, C., and Schmidt, H.: The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure, Atmos. Chem. Phys., 14, 13063–13079, https://doi.org/10.5194/acp-14-13063-2014, 2014. a
Toohey, M., Stevens, B., Schmidt, H., and Timmreck, C.: Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations, Geosci. Model Dev., 9, 4049–4070, https://doi.org/10.5194/gmd-9-4049-2016, 2016. a
von Savigny, C., Robert, C., Bovensmann, H., Burrows, J. P., and Schwartz, M.:
Satellite observations of the quasi 5-day wave in noctilucent clouds and
mesopause temperatures, Geophys. Res. Lett., 34, L24808,
https://doi.org/10.1029/2007GL030987, 2007. a
von Savigny, C., Baumgarten, G., and Lübken, F.-J.: Noctilucent Clouds:
General Properties and Remote Sensing, Springer International
Publishing, Cham, 469–503, https://doi.org/10.1007/978-3-030-33566-3_8, 2020a. a
von Savigny, C., Timmreck, C., Buehler, S. A., Burrows, J. P., Giorgetta, M.,
Hegerl, G., Horvath, A., Hoshyaripour, G., Hoose, C., Quaas, J., Malinina,
E., Rozanov, A., Schmidt, H., Thomason, L., Toohey, M., and Vogel, B.: The
Research Unit VolImpact: Revisiting the volcanic impact on atmosphere and
climate – preparations for the next big volcanic eruption, Meteorol.
Z., 29, 3–18, https://doi.org/10.1127/metz/2019/0999, 2020b. a
von Zahn, U., Höffner, J., Eska, V., and Alpers, M.: The mesopause altitude:
Only two distinctive levels worldwide?, Geophys. Res. Lett., 23,
3231–3234, https://doi.org/10.1029/96GL03041, 1996. a
Wallis, S., Hoffmann, C. G., and von Savigny, C.: Estimating the impact of the 1991 Pinatubo eruption on mesospheric temperature by analyzing HALOE (UARS) temperature data, Ann. Geophys., 40, 421–431, https://doi.org/10.5194/angeo-40-421-2022, 2022. a, b, c
Yang, C., Li, T., Lai, D., Wang, X., Xue, X., and Dou, X.: The Delayed Response
of the Troposphere-Stratosphere-Mesosphere Coupling to the 2019 Southern SSW,
Geophys. Res. Lett., 49, e2022GL101759,
https://doi.org/10.1029/2022GL101759, 2022. a
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral
Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the
non-hydrostatic dynamical core, Q. J. Roy. Meteo.
Soc., 141, 563–579, https://doi.org/10.1002/qj.2378, 2015. a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(11154 KB) - Full-text XML
- Corrigendum
-
Supplement
(3484 KB) - BibTeX
- EndNote
Executive editor
Large volcanic eruptions can have significant effects on the atmosphere and on climate. Comparing the observed effects against model predictions is also a very valuable test of our scientific understanding of how the atmosphere works. This paper describes a model investigation of a hypothetical eruption, about twice the size of that of Pinatubo in 1991, and is unusual that it focuses on the response in the mesosphere -- the part of the atmosphere in the 50-80km altitude range. The eruption deposits aerosol in the tropics in the 20-25km altitude range, in the lower stratosphere and well below the mesosphere. The effect is felt in the mesosphere through dynamical coupling communicated through small-scale gravity waves, which transport momentum and as a result can drive changes in winds and temperatures. The predictions made in the paper will be helpful in future in interpreting changes in the mesosphere observed following volcanic eruptions.
Large volcanic eruptions can have significant effects on the atmosphere and on climate....
Short summary
Strong volcanic eruptions are able to alter the temperature and the circulation of the middle atmosphere. This study simulates the atmospheric response to an idealized strong tropical eruption and focuses on the impact on the mesosphere. The simulations show a warming of the polar summer mesopause in the first November after the eruption. Our study indicates that this is mainly due to dynamical coupling in the summer hemisphere with a potential contribution from interhemispheric coupling.
Strong volcanic eruptions are able to alter the temperature and the circulation of the middle...
Altmetrics
Final-revised paper
Preprint