

Supplement of

Impact of a strong volcanic eruption on the summer middle atmosphere in UA-ICON simulations

Sandra Wallis et al.

Correspondence to: Sandra Wallis (sandra.wallis@uni-greifswald.de)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1. Time series of the (a) altitude and (b) temperature anomaly of the mesospheric cold point. Gray shading indicates 1 standard deviation of the 10 ensemble member anomalies (Vol1 - Ref1). The date of the eruption as well as of the first and second post-eruption Novembers are marked with dash lines.

Figure S2. Time series of temperature anomaly (Vol1 - Ref1) for a) 15-25°N and 85.4 km altitude, b) 44.77°N and 77.64 km altitude, c) 44.77°N and 66.30 km altitude and d) 41.12°N and 99.94 km altitude. The gray areas in b)-d) indicate the 1- σ standard deviation. The gray areas in a) show the mean of the ensemble mean temperature anomaly standard deviations for all latitudes averaged between 15-25°N.

Figure S3. Difference of the reference runs (Ref2 - Ref1) for the first December after the simulated eruption. The reference runs differ in the sub-grid scale orographic parameterization. The summer mesopause region between 85 - 100 km altitude shows a negative anomaly that is significant between $80 - 40^{\circ}$ S. The polar winter stratosphere between 20 - 50 km shows a positive anomaly with a negative anomaly above up to 90 km altitude. Hatched areas are not significant at a 95% confidence interval using a Student's t-test.