Articles | Volume 23, issue 12
https://doi.org/10.5194/acp-23-6743-2023
https://doi.org/10.5194/acp-23-6743-2023
Research article
 | 
20 Jun 2023
Research article |  | 20 Jun 2023

Change from aerosol-driven to cloud-feedback-driven trend in short-wave radiative flux over the North Atlantic

Daniel P. Grosvenor and Kenneth S. Carslaw

Related authors

The influence of Amazonian anthropogenic emissions on new particle formation, aerosol, cloud and surface rain
Xuemei Wang, Kenneth S. Carslaw, Daniel P. Grosvenor, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2025-132,https://doi.org/10.5194/egusphere-2025-132, 2025
Short summary
Biosphere-atmosphere related processes influence trace-gas and aerosol satellite-model biases
Emma Sands, Ruth M. Doherty, Fiona M. O'Connor, Richard J. Pope, James Weber, and Daniel P. Grosvenor
EGUsphere, https://doi.org/10.5194/egusphere-2024-4014,https://doi.org/10.5194/egusphere-2024-4014, 2025
Short summary
Different responses of cold-air outbreak clouds to aerosol and ice production depending on cloud temperature
Xinyi Huang, Paul R. Field, Benjamin J. Murray, Daniel P. Grosvenor, Floortje van den Heuvel, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-4070,https://doi.org/10.5194/egusphere-2024-4070, 2025
Short summary
Gaps in our understanding of ice-nucleating particle sources exposed by global simulation of the UK Earth System Model
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
Atmos. Chem. Phys., 25, 291–325, https://doi.org/10.5194/acp-25-291-2025,https://doi.org/10.5194/acp-25-291-2025, 2025
Short summary
Warming effects of reduced sulfur emissions from shipping
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024,https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
An investigation of the impact of Canadian wildfires on US air quality using model, satellite, and ground measurements
Zhixin Xue, Nair Udaysankar, and Sundar A. Christopher
Atmos. Chem. Phys., 25, 5497–5517, https://doi.org/10.5194/acp-25-5497-2025,https://doi.org/10.5194/acp-25-5497-2025, 2025
Short summary
How to trace the origins of short-lived atmospheric species: an Arctic example
Anderson Da Silva, Louis Marelle, Jean-Christophe Raut, Yvette Gramlich, Karolina Siegel, Sophie L. Haslett, Claudia Mohr, and Jennie L. Thomas
Atmos. Chem. Phys., 25, 5331–5354, https://doi.org/10.5194/acp-25-5331-2025,https://doi.org/10.5194/acp-25-5331-2025, 2025
Short summary
Dust-producing weather patterns of the North American Great Plains
Stuart Evans
Atmos. Chem. Phys., 25, 4833–4845, https://doi.org/10.5194/acp-25-4833-2025,https://doi.org/10.5194/acp-25-4833-2025, 2025
Short summary
High-resolution air quality maps for Bucharest using a mixed-effects modeling framework
Camelia Talianu, Jeni Vasilescu, Doina Nicolae, Alexandru Ilie, Andrei Dandocsi, Anca Nemuc, and Livio Belegante
Atmos. Chem. Phys., 25, 4639–4654, https://doi.org/10.5194/acp-25-4639-2025,https://doi.org/10.5194/acp-25-4639-2025, 2025
Short summary
Construction and application of a pollen emissions model based on phenology and random forests
Jiangtao Li, Xingqin An, Zhaobin Sun, Caihua Ye, Qing Hou, Yuxin Zhao, and Zhe Liu
Atmos. Chem. Phys., 25, 3583–3602, https://doi.org/10.5194/acp-25-3583-2025,https://doi.org/10.5194/acp-25-3583-2025, 2025
Short summary

Cited articles

Ackerley, D., Booth, B. B. B., Knight, S. H. E., Highwood, E. J., Frame, D. J., Allen, M. R., and Rowell, D. P.: Sensitivity of Twentieth-Century Sahel Rainfall to Sulfate Aerosol and {CO}2Forcing, J. Climate, 24, 4999–5014, https://doi.org/10.1175/jcli-d-11-00019.1, 2011. a
Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, https://doi.org/10.1038/nature03174, 2004. a
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 80, 1227–1230, 1989. a
Allan, R. P., Liu, C., Loeb, N. G., Palmer, M. D., Roberts, M., Smith, D., and Vidale, P. L.: Changes in global net radiative imbalance 1985–2012, Geophys. Res. Lett., 41, 5588–5597, https://doi.org/10.1002/2014GL060962, 2014a. a, b
Allan, R. P., Liu, C., Loeb, N. G., Palmer, M. D., Roberts, M., Smith, D., and Vidale, P. L.: Changes in global net radiative imbalance 1985-2012, Geophys. Res. Lett., 41, 5588–5597, https://doi.org/10.1002/2014GL060962, 2014b. a
Download
Short summary
We determine what causes long-term trends in short-wave (SW) radiative fluxes in two climate models. A positive trend occurs between 1850 and 1970 (increasing SW reflection) and a negative trend between 1970 and 2014; the pre-1970 positive trend is mainly driven by an increase in cloud droplet number concentrations due to increases in aerosol, and the 1970–2014 trend is driven by a decrease in cloud fraction, which we attribute to changes in clouds caused by greenhouse gas-induced warming.
Share
Altmetrics
Final-revised paper
Preprint