Articles | Volume 23, issue 18
https://doi.org/10.5194/acp-23-10809-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-10809-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contrasting impacts of humidity on the ozonolysis of monoterpenes: insights into the multi-generation chemical mechanism
Shan Zhang
Environment Research Institute, Shandong University, Qingdao 266237, China
Environment Research Institute, Shandong University, Qingdao 266237, China
Zhaomin Yang
Environment Research Institute, Shandong University, Qingdao 266237, China
Narcisse Tsona Tchinda
Environment Research Institute, Shandong University, Qingdao 266237, China
Jianlong Li
Environment Research Institute, Shandong University, Qingdao 266237, China
Environment Research Institute, Shandong University, Qingdao 266237, China
Related authors
Xiaowen Chen, Lin Du, Zhaomin Yang, Shan Zhang, Narcisse Tsona Tchinda, Jianlong Li, and Kun Li
EGUsphere, https://doi.org/10.5194/egusphere-2023-2960, https://doi.org/10.5194/egusphere-2023-2960, 2024
Preprint archived
Short summary
Short summary
In this study, the interactions between α-pinene and marine emission dimethyl sulfide (DMS) are investigated. It is found that the yield of secondary organic aerosol initially increases and then decreases with the increasing DMS/α-pinene ratio. This trend can be explained by OH regeneration, acid-catalyzed reactions, and the change in OH reactivity, etc. These findings can improve our understanding of atmospheric processes in coastal areas.
Haibiao Chen, Caiqing Yan, Liubin Huang, Lin Du, Yang Yue, Xinfeng Wang, Qingcai Chen, Mingjie Xie, Junwen Liu, Fengwen Wang, Shuhong Fang, Qiaoyun Yang, Hongya Niu, Mei Zheng, Yan Wu, and Likun Xue
EGUsphere, https://doi.org/10.5194/egusphere-2024-2416, https://doi.org/10.5194/egusphere-2024-2416, 2024
Short summary
Short summary
A comprehensive understanding of the optical properties of brown carbon (BrC) is essential to accurately assess its climatic effects. Based on multi-site spectroscopic measurements, this study demonstrated the significant spatial heterogeneity in the optical and structural properties of water-soluble BrC (WS-BrC) in different regions of China, and revealed factors affecting WS-BrC light absorption and the relationship between fluorophores and light absorption of WS-BrC.
Jian Wang, Lei Xue, Qianyao Ma, Feng Xu, Gaobin Xu, Shibo Yan, Jiawei Zhang, Jianlong Li, Honghai Zhang, Guiling Zhang, and Zhaohui Chen
Atmos. Chem. Phys., 24, 8721–8736, https://doi.org/10.5194/acp-24-8721-2024, https://doi.org/10.5194/acp-24-8721-2024, 2024
Short summary
Short summary
This study investigated the distribution and sources of non-methane hydrocarbons (NMHCs) in the lower atmosphere over the marginal seas of China. NMHCs, a subset of volatile organic compounds (VOCs), play a crucial role in atmospheric chemistry. Derived from systematic atmospheric sampling in coastal cities and marginal sea regions, this study offers valuable insights into the interaction between land and sea in shaping offshore atmospheric NMHCs.
Yaru Song, Jianlong Li, Narcisse Tsona Tchinda, Kun Li, and Lin Du
Atmos. Chem. Phys., 24, 5847–5862, https://doi.org/10.5194/acp-24-5847-2024, https://doi.org/10.5194/acp-24-5847-2024, 2024
Short summary
Short summary
Aromatic acids can be transferred from seawater to the atmosphere through bubble bursting. The air–sea transfer efficiency of aromatic acids was evaluated by simulating SSA generation with a plunging jet. As a whole, the transfer capacity of aromatic acids may depend on their functional groups and on the bridging effect of cations, as well as their concentration in seawater, as these factors influence the global emission flux of aromatic acids via SSA.
Tiantian Wang, Jun Zhang, Houssni Lamkaddam, Kun Li, Ka Yuen Cheung, Lisa Kattner, Erlend Gammelsæter, Michael Bauer, Zachary C. J. Decker, Deepika Bhattu, Rujin Huang, Rob L. Modini, Jay G. Slowik, Imad El Haddad, Andre S. H. Prevot, and David M. Bell
EGUsphere, https://doi.org/10.5194/egusphere-2024-1161, https://doi.org/10.5194/egusphere-2024-1161, 2024
Short summary
Short summary
Our study analyzes real-time emissions of primary organic gases from solid fuel combustion, including residential and open burning. Using Vocus-PTR-TOF, we tested various fuels, finding higher emissions from wood burning. Statistical tests identified unique characteristic compounds. IVOCs are key precursors to SOA formation, particularly in open burning. Our insights benefit air quality, climate, and health, advancing atmospheric chemistry and aiding accurate emission assessments.
Xiaowen Chen, Lin Du, Zhaomin Yang, Shan Zhang, Narcisse Tsona Tchinda, Jianlong Li, and Kun Li
EGUsphere, https://doi.org/10.5194/egusphere-2023-2960, https://doi.org/10.5194/egusphere-2023-2960, 2024
Preprint archived
Short summary
Short summary
In this study, the interactions between α-pinene and marine emission dimethyl sulfide (DMS) are investigated. It is found that the yield of secondary organic aerosol initially increases and then decreases with the increasing DMS/α-pinene ratio. This trend can be explained by OH regeneration, acid-catalyzed reactions, and the change in OH reactivity, etc. These findings can improve our understanding of atmospheric processes in coastal areas.
Lin Du, Xiaofan Lv, Makroni Lily, Kun Li, and Narcisse Tsona Tchinda
Atmos. Chem. Phys., 24, 1841–1853, https://doi.org/10.5194/acp-24-1841-2024, https://doi.org/10.5194/acp-24-1841-2024, 2024
Short summary
Short summary
This study explores the pH effect on the reaction of dissolved SO2 with selected organic peroxides. Results show that the formation of organic and/or inorganic sulfate from these peroxides strongly depends on their electronic structures, and these processes are likely to alter the chemical composition of dissolved organic matter in different ways. The rate constants of these reactions exhibit positive pH and temperature dependencies within pH 1–10 and 240–340 K ranges.
Jun Zhang, Kun Li, Tiantian Wang, Erlend Gammelsæter, Rico K. Y. Cheung, Mihnea Surdu, Sophie Bogler, Deepika Bhattu, Dongyu S. Wang, Tianqu Cui, Lu Qi, Houssni Lamkaddam, Imad El Haddad, Jay G. Slowik, Andre S. H. Prevot, and David M. Bell
Atmos. Chem. Phys., 23, 14561–14576, https://doi.org/10.5194/acp-23-14561-2023, https://doi.org/10.5194/acp-23-14561-2023, 2023
Short summary
Short summary
We conducted burning experiments to simulate various types of solid fuel combustion, including residential burning, wildfires, agricultural burning, cow dung, and plastic bag burning. The chemical composition of the particles was characterized using mass spectrometers, and new potential markers for different fuels were identified using statistical analysis. This work improves our understanding of emissions from solid fuel burning and offers support for refined source apportionment.
Minglan Xu, Narcisse Tsona Tchinda, Jianlong Li, and Lin Du
Atmos. Chem. Phys., 23, 2235–2249, https://doi.org/10.5194/acp-23-2235-2023, https://doi.org/10.5194/acp-23-2235-2023, 2023
Short summary
Short summary
The promotion of soluble saccharides on sea spray aerosol (SSA) generation and the changes in particle morphology were observed. On the contrary, the coexistence of surface insoluble fatty acid film and soluble saccharides significantly inhibited the production of SSA. This is the first demonstration that hydrogen bonding mediated by surface-insoluble fatty acids contributes to saccharide transfer in seawater, providing a new mechanism for saccharide enrichment in SSA.
Zhaomin Yang, Kun Li, Narcisse T. Tsona, Xin Luo, and Lin Du
Atmos. Chem. Phys., 23, 417–430, https://doi.org/10.5194/acp-23-417-2023, https://doi.org/10.5194/acp-23-417-2023, 2023
Short summary
Short summary
SO2 significantly promotes particle formation during cyclooctene ozonolysis. Carboxylic acids and their dimers were major products in particles formed in the absence of SO2. SO2 can induce production of organosulfates with stronger particle formation ability than their precursors, leading to the enhancement in particle formation. Formation mechanisms and structures of organosulfates were proposed, which is helpful for better understanding how SO2 perturbs the formation and fate of particles.
Chong Han, Hongxing Yang, Kun Li, Patrick Lee, John Liggio, Amy Leithead, and Shao-Meng Li
Atmos. Chem. Phys., 22, 10827–10839, https://doi.org/10.5194/acp-22-10827-2022, https://doi.org/10.5194/acp-22-10827-2022, 2022
Short summary
Short summary
We presented yields and compositions of Si-containing SOAs generated from the reaction of cVMSs (D3–D6) with OH radicals. NOx played a negative role in cVMS SOA formation, while ammonium sulfate seeds enhanced D3–D5 SOA yields at short photochemical ages under high-NOx conditions. The aerosol mass spectra confirmed that the components of cVMS SOAs significantly relied on OH exposure. A global cVMS-derived SOA source strength was estimated in order to understand SOA formation potentials of cVMSs.
Junling Li, Kun Li, Hao Zhang, Xin Zhang, Yuanyuan Ji, Wanghui Chu, Yuxue Kong, Yangxi Chu, Yanqin Ren, Yujie Zhang, Haijie Zhang, Rui Gao, Zhenhai Wu, Fang Bi, Xuan Chen, Xuezhong Wang, Weigang Wang, Hong Li, and Maofa Ge
Atmos. Chem. Phys., 22, 10489–10504, https://doi.org/10.5194/acp-22-10489-2022, https://doi.org/10.5194/acp-22-10489-2022, 2022
Short summary
Short summary
Ozone formation is enhanced by higher OH concentration and higher temperature but is influenced little by SO2. SO2 can largely enhance the particle formation. Organo-sulfates and organo-nitrates are detected in the formed particles, and the presence of SO2 can promote the formation of organo-sulfates. The results provide a scientific basis for systematically evaluating the effects of SO2, OH concentration, and temperature on the oxidation of mixed organic gases in the atmosphere.
Narcisse Tsona Tchinda, Lin Du, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 22, 1951–1963, https://doi.org/10.5194/acp-22-1951-2022, https://doi.org/10.5194/acp-22-1951-2022, 2022
Short summary
Short summary
This study explores the effect of pyruvic acid (PA) both in the SO3 hydrolysis and in sulfuric-acid-based aerosol formation. Results show that in dry and polluted areas, PA-catalyzed SO3 hydrolysis is about 2 orders of magnitude more efficient at forming sulfuric acid than the water-catalyzed reaction. Moreover, PA can effectively enhance the ternary SA-PA-NH3 particle formation rate by up to 4.7×102 relative to the binary SA-NH3 particle formation rate at cold temperatures.
Zhaomin Yang, Li Xu, Narcisse T. Tsona, Jianlong Li, Xin Luo, and Lin Du
Atmos. Chem. Phys., 21, 7963–7981, https://doi.org/10.5194/acp-21-7963-2021, https://doi.org/10.5194/acp-21-7963-2021, 2021
Short summary
Short summary
The promotion effects of SO2 and NH3 on particle and organosulfur compound formation from 1,2,4-trimethylbenzene (TMB) photooxidation were observed for the first time. The enhanced organosulfur compounds included hitherto unidentified aromatic sulfonates and organosulfates (OSs). OSs were produced via acid-driven heterogeneous chemistry of hydroperoxides. The production of organosulfur compounds might provide a new pathway for the fate of TMB in regions with considerable SO2 emissions.
Junling Li, Hong Li, Kun Li, Yan Chen, Hao Zhang, Xin Zhang, Zhenhai Wu, Yongchun Liu, Xuezhong Wang, Weigang Wang, and Maofa Ge
Atmos. Chem. Phys., 21, 7773–7789, https://doi.org/10.5194/acp-21-7773-2021, https://doi.org/10.5194/acp-21-7773-2021, 2021
Short summary
Short summary
SOA formation from the mixed anthropogenic volatile organic compounds was enhanced compared to the predicted SOA mass concentration based on the SOA yield of single species; interaction occurred between intermediate products from the two precursors. Interactions between the intermediate products from the mixtures and the effect on SOA formation give us a further understanding of the SOA formed in the atmosphere.
Junling Li, Weigang Wang, Kun Li, Wenyu Zhang, Chao Peng, Li Zhou, Bo Shi, Yan Chen, Mingyuan Liu, Hong Li, and Maofa Ge
Atmos. Chem. Phys., 20, 8123–8137, https://doi.org/10.5194/acp-20-8123-2020, https://doi.org/10.5194/acp-20-8123-2020, 2020
Short summary
Short summary
Long-chain alkanes (a large fraction of diesel fuel and its exhaust) are important potential contributors of SOA. Through the analysis of the components of formed SOA, we found that low-temperature conditions promote the oligomerization of n-dodecane, and the degree of oligomerization can reach tetramerization. The presence of the oligomers enhances the light extinction of the particles. UV-scattering particles in the boundary layer can accelerate photochemical reactions and haze production.
Wenyu Zhang, Weigang Wang, Junling Li, Chao Peng, Kun Li, Li Zhou, Bo Shi, Yan Chen, Mingyuan Liu, and Maofa Ge
Atmos. Chem. Phys., 20, 4477–4492, https://doi.org/10.5194/acp-20-4477-2020, https://doi.org/10.5194/acp-20-4477-2020, 2020
Short summary
Short summary
We investigated the effect of SO2 under different humidities on optical properties of toluene-derived SOA under four conditions with CRDs and PAX at 532 and 375 nm, respectively. Our results showed that SO2 under different humidities can change the refractive complex index of toluene SOA by influencing the multiphase processes and altering the aerosol chemical compositions. Different atmospheric conditions could affect the properties of toluene SOA, as well as the global radiative balance.
Qingcai Chen, Zhen Mu, Li Xu, Mamin Wang, Jin Wang, Ming Shan, Xudong Yang, Xingjun Fan, Jianzhong Song, Yuqin Wang, Pengchuan Lin, Lixin Zhang, Zhenxing Shen, and Lin Du
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1032, https://doi.org/10.5194/acp-2019-1032, 2020
Preprint withdrawn
Short summary
Short summary
It is important to study the formation characteristics and mechanism of triplet state in aerosols to quantify the effect of chromophore substances on the global climate and atmospheric environmental quality. The result of this study reveals that chromophore substances contributes significantly to aerosol photochemistry and plays an important role in aerosol aging. The global models may need to include those potential effects in the future.
Xiaotong Jiang, Narcisse T. Tsona, Long Jia, Shijie Liu, Hailiang Zhang, Yongfu Xu, and Lin Du
Atmos. Chem. Phys., 19, 13591–13609, https://doi.org/10.5194/acp-19-13591-2019, https://doi.org/10.5194/acp-19-13591-2019, 2019
Short summary
Short summary
Atmospheric furan is a primary and secondary pollutant in the atmosphere, and its emission contributes to the formation of ultrafine particles and ground-level ozone. The present study demonstrates the effect of NOx and humidity on secondary organic aerosol (SOA) formation during the furan–NOx–NaCl photooxidation. Furthermore, the results illustrate the importance of studying SOA formation over a comprehensive range of environmental conditions.
Alex K. Y. Lee, Max G. Adam, John Liggio, Shao-Meng Li, Kun Li, Megan D. Willis, Jonathan P. D. Abbatt, Travis W. Tokarek, Charles A. Odame-Ankrah, Hans D. Osthoff, Kevin Strawbridge, and Jeffery R. Brook
Atmos. Chem. Phys., 19, 12209–12219, https://doi.org/10.5194/acp-19-12209-2019, https://doi.org/10.5194/acp-19-12209-2019, 2019
Short summary
Short summary
This work provides the first direct field evidence that anthropogenic organo-nitrate contributed up to half of secondary organic aerosol (SOA) mass that was freshly produced within the emission plumes of oil sands facilities in Alberta, Canada. The findings illustrate the central role of organo-nitrate in SOA production from the oil and gas industry, with relevance for other urban and industrial regions with significant intermediate-volatility organic compounds (IVOCs) and NOx emissions.
Jun Zhang, Xinfeng Wang, Rui Li, Shuwei Dong, Yingnan Zhang, Penggang Zheng, Min Li, Tianshu Chen, Yuhong Liu, Likun Xue, Wei Nie, Aijun Ding, Mingjin Tang, Xuehua Zhou, Lin Du, Qingzhu Zhang, and Wenxing Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-757, https://doi.org/10.5194/acp-2019-757, 2019
Preprint withdrawn
Short summary
Short summary
This study presents the concentrations, variation characteristics, and key influencing factors of particulate organic nitrates at four urban and rural sites in eastern China. The effects of anthropogenic activities (i.e. biomass burning and coal combustion) and meteorological conditions (in particular the humidity) on the secondary formation of organic nitrates have been investigated. The results highlight the greater role of SO2 in organic nitrate chemistry than previously assumed.
Siyang Li, Xiaotong Jiang, Marie Roveretto, Christian George, Ling Liu, Wei Jiang, Qingzhu Zhang, Wenxing Wang, Maofa Ge, and Lin Du
Atmos. Chem. Phys., 19, 9887–9902, https://doi.org/10.5194/acp-19-9887-2019, https://doi.org/10.5194/acp-19-9887-2019, 2019
Short summary
Short summary
We stimulated the photochemical aging of organic film coated on aqueous aerosol in the presence of imidazole-2-carboxaldehyde, humic acid, an atmospheric PM2.5 sample, and a secondary organic aerosol sample from the lab. The unsaturated lipid mixed with photosensitizer under UV irradiation produced hydroperoxides, leading to surface area increase in organic film. Our results reveal the modification of organic film on aqueous aerosol has potential influence on the hygroscopic growth of droplets.
Kun Li, John Liggio, Patrick Lee, Chong Han, Qifan Liu, and Shao-Meng Li
Atmos. Chem. Phys., 19, 9715–9731, https://doi.org/10.5194/acp-19-9715-2019, https://doi.org/10.5194/acp-19-9715-2019, 2019
Short summary
Short summary
A new oxidation flow reactor was developed and applied to study the secondary organic aerosol (SOA) formation from precursors associated with oil-sands (OS) operations. The results reveal that the SOA yields from OS precursors are related to the volatilities of precursors and that open-pit mining is the main source of SOA formed from oil sands. In addition, cyclic alkanes are found to play an important role in SOA formation from oil-sands precursors.
Kun Li, Junling Li, Shengrui Tong, Weigang Wang, Ru-Jin Huang, and Maofa Ge
Atmos. Chem. Phys., 19, 8021–8036, https://doi.org/10.5194/acp-19-8021-2019, https://doi.org/10.5194/acp-19-8021-2019, 2019
Short summary
Short summary
Wintertime volatile organic compounds (VOCs) in suburban and urban Beijing were measured. Urban VOC concentrations were much higher than suburban ones, but the emission features were similar. The photochemical processes were more active in the urban site, resulting in the high daytime formation of oxygenated VOCs. In addition, human activities during holidays can largely influence the VOC levels. These results are helpful in better understanding the atmospheric chemistry of VOCs in Beijing.
Narcisse Tchinda Tsona and Lin Du
Atmos. Chem. Phys., 19, 649–661, https://doi.org/10.5194/acp-19-649-2019, https://doi.org/10.5194/acp-19-649-2019, 2019
Short summary
Short summary
We used ab initio calculations to explore a new path for ion-induced SO2 oxidation by ozone in the gas phase. We find that, initiated by the superoxide ion, SO2 can readily oxidize to SO−3. The reaction is facilitated by the presence of water, being ~ 4 orders of magnitude faster than the reaction in the absence of water. Depending on the altitude and temperature, it is estimated that this reaction may contribute to 0.1–2.0 % of the total atmospheric sulfate.
Xiaotong Jiang, Narcisse T. Tsona, Long Jia, Shijie Liu, Yongfu Xu, and Lin Du
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-477, https://doi.org/10.5194/acp-2018-477, 2018
Revised manuscript not accepted
Short summary
Short summary
The roles of NOx level and RH on the formation of SOA from the photooxidation of furan in the presence of NaCl seed particles were elucidated. The aerosol liquid water (ALW) effects on SOA mass concentration and yield were also evaluated. The chemical composition of furan SOA was investigated by ESI-Exactive-Orbitrap MS, with focus on the formation of organic nitrates. Strong evidences indicate that both the RH and different NOx levels have a significant effect on SOA formation.
Shijie Liu, Long Jia, Yongfu Xu, Narcisse T. Tsona, Shuangshuang Ge, and Lin Du
Atmos. Chem. Phys., 17, 13329–13343, https://doi.org/10.5194/acp-17-13329-2017, https://doi.org/10.5194/acp-17-13329-2017, 2017
Short summary
Short summary
Secondary organic aerosol (SOA) formation from cyclohexene/NOx system with various SO2 concentrations under UV light was investigated to study the effects of cyclic alkenes on the atmospheric environment in polluted urban areas. The composition of organic compounds in SOA was measured using several complementary techniques. We present new evidence that organosulfates were produced from the photooxidation of cyclohexene in the presence of SO2.
Related subject area
Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Particulate emissions from cooking: emission factors, emission dynamics, and mass spectrometric analysis for different cooking methods
Nocturnal atmospheric synergistic oxidation reduces the formation of low-volatility organic compounds from biogenic emissions
The interplay between aqueous replacement reaction and the phase state of internally mixed organic/ammonium aerosols
Measurement report: The Fifth International Workshop on Ice Nucleation phase 1 (FIN-01): intercomparison of single-particle mass spectrometers
Enhanced Sulfate Formation in Mixed Biomass Burning and Sea-salt Particles Mediated by Photosensitization: Effects of Chloride and Nitrogen-containing Compounds
Characterization of the particle size distribution, mineralogy, and Fe mode of occurrence of dust-emitting sediments from the Mojave Desert, California, USA
Heterogeneous formation and light absorption of secondary organic aerosols from acetone photooxidation: Remarkably enhancing effects of seeds and ammonia
Atmospheric oxidation of 1,3-butadiene: influence of acidity and relative humidity on SOA composition and air toxic compounds
Measurement report: Effects of transition metal ions on the optical properties of humic-like substances (HULIS) reveal a structural preference – a case study of PM2.5 in Beijing, China
Probing Iceland's dust-emitting sediments: particle size distribution, mineralogy, cohesion, Fe mode of occurrence, and reflectance spectra signatures
Photoenhanced sulfate formation by the heterogeneous uptake of SO2 on non-photoactive mineral dust
Comparison of water-soluble and water-insoluble organic compositions attributing to different light absorption efficiency between residential coal and biomass burning emissions
Technical note: High-resolution analyses of concentrations and sizes of black carbon particles deposited on northwest Greenland over the past 350 years – Part 1. Continuous flow analysis of the SIGMA-D ice core using a Wide-Range Single-Particle Soot Photometer and a high-efficiency nebulizer
Suppressed atmospheric chemical aging of cooking organic aerosol particles in wintertime conditions
Formation and loss of light absorbance by phenolic aqueous SOA by ●OH and an organic triplet excited state
Technical Note: A technique to convert NO2 to NO2− with S(IV) and its application to measuring nitrate photolysis
The impact of nanostructure on hygroscopicity and reactivity of fatty acid atmospheric aerosol proxies
Distribution, chemical, and molecular composition of high and low molecular weight humic-like substances in ambient aerosols
Desorption lifetimes and activation energies influencing gas–surface interactions and multiphase chemical kinetics
Molecular analysis of secondary organic aerosol and brown carbon from the oxidation of indole
Secondary organic aerosol formed by Euro 5 gasoline vehicle emissions: chemical composition and gas-to-particle phase partitioning
Assessment of the contribution of residential waste burning to ambient PM10 concentrations in Hungary and Romania
Source differences in the components and cytotoxicity of PM2.5 from automobile exhaust, coal combustion, and biomass burning contributing to urban aerosol toxicity
Chamber studies of OH + dimethyl sulfoxide and dimethyl disulfide: insights into the dimethyl sulfide oxidation mechanism
Low-temperature ice nucleation of sea spray and secondary marine aerosols under cirrus cloud conditions
Temperature-dependent aqueous OH kinetics of C2–C10 linear and terpenoid alcohols and diols: new rate coefficients, structure–activity relationship, and atmospheric lifetimes
A possible unaccounted source of nitrogen-containing compound formation in aerosols: amines reacting with secondary ozonides
Seasonal variations in photooxidant formation and light absorption in aqueous extracts of ambient particles
Variability in sediment particle size, mineralogy, and Fe mode of occurrence across dust-source inland drainage basins: the case of the lower Drâa Valley, Morocco
Gas–particle partitioning of toluene oxidation products: an experimental and modeling study
Chemically speciated air pollutant emissions from open burning of household solid waste from South Africa
Bulk and molecular-level composition of primary organic aerosol from wood, straw, cow dung, and plastic burning
Volatile oxidation products and secondary organosiloxane aerosol from D5 + OH at varying OH exposures
Molecular fingerprints and health risks of smoke from home-use incense burning
High enrichment of heavy metals in fine particulate matter through dust aerosol generation
Production of ice-nucleating particles (INPs) by fast-growing phytoplankton
Technical note: In situ measurements and modelling of the oxidation kinetics in films of a cooking aerosol proxy using a quartz crystal microbalance with dissipation monitoring (QCM-D)
Quantifying the seasonal variations in and regional transport of PM2.5 in the Yangtze River Delta region, China: characteristics, sources, and health risks
Opinion: Atmospheric multiphase chemistry – past, present, and future
Distinct photochemistry in glycine particles mixed with different atmospheric nitrate salts
Effects of storage conditions on the molecular-level composition of organic aerosol particles
Characterization of gas and particle emissions from open burning of household solid waste from South Africa
Chemically distinct particle-phase emissions from highly controlled pyrolysis of three wood types
Predicting photooxidant concentrations in aerosol liquid water based on laboratory extracts of ambient particles
Physicochemical characterization of free troposphere and marine boundary layer ice-nucleating particles collected by aircraft in the eastern North Atlantic
Large differences of highly oxygenated organic molecules (HOMs) and low-volatile species in secondary organic aerosols (SOAs) formed from ozonolysis of β-pinene and limonene
Impact of fossil and non-fossil fuel sources on the molecular compositions of water-soluble humic-like substances in PM2.5 at a suburban site of Yangtze River Delta, China
Technical note: Improved synthetic routes to cis- and trans-(2-methyloxirane-2,3-diyl)dimethanol (cis- and trans-β-isoprene epoxydiol)
Technical note: Intercomparison study of the elemental carbon radiocarbon analysis methods using synthetic known samples
Chemical evolution of primary and secondary biomass burning aerosols during daytime and nighttime
Julia Pikmann, Frank Drewnick, Friederike Fachinger, and Stephan Borrmann
Atmos. Chem. Phys., 24, 12295–12321, https://doi.org/10.5194/acp-24-12295-2024, https://doi.org/10.5194/acp-24-12295-2024, 2024
Short summary
Short summary
Cooking activities can contribute substantially to indoor and ambient aerosol. We performed a comprehensive study with laboratory measurements cooking 19 different dishes and ambient measurements at two Christmas markets measuring various particle properties and trace gases of emissions in real time. Similar emission characteristics were observed for dishes with the same preparation method, mainly due to similar cooking temperature and use of oil, with barbecuing as an especially strong source.
Han Zang, Zekun Luo, Chenxi Li, Ziyue Li, Dandan Huang, and Yue Zhao
Atmos. Chem. Phys., 24, 11701–11716, https://doi.org/10.5194/acp-24-11701-2024, https://doi.org/10.5194/acp-24-11701-2024, 2024
Short summary
Short summary
Atmospheric organics are subject to synergistic oxidation by different oxidants, yet the mechanisms of such processes are poorly understood. Here, using direct measurements and kinetic modeling, we probe the nocturnal synergistic-oxidation mechanism of α-pinene by O3 and NO3 radicals and in particular the fate of peroxy radical intermediates of different origins, which will deepen our understanding of the monoterpene oxidation chemistry and its contribution to atmospheric particle formation.
Hui Yang, Fengfeng Dong, Li Xia, Qishen Huang, Shufeng Pang, and Yunhong Zhang
Atmos. Chem. Phys., 24, 11619–11635, https://doi.org/10.5194/acp-24-11619-2024, https://doi.org/10.5194/acp-24-11619-2024, 2024
Short summary
Short summary
Atmospheric secondary aerosols, composed of organic and inorganic components, undergo complex reactions that impact their phase state. Using molecular spectroscopy, we showed that ammonium-promoted aqueous replacement reaction, unique to these aerosols, is closely linked to phase behavior. The interplay between reactions and aerosol phase state can cause atypical phase transition and irreversible changes in aerosol composition during hygroscopic cycles, further impacting atmospheric processes.
Xiaoli Shen, David M. Bell, Hugh Coe, Naruki Hiranuma, Fabian Mahrt, Nicholas A. Marsden, Claudia Mohr, Daniel M. Murphy, Harald Saathoff, Johannes Schneider, Jacqueline Wilson, Maria A. Zawadowicz, Alla Zelenyuk, Paul J. DeMott, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Chem. Phys., 24, 10869–10891, https://doi.org/10.5194/acp-24-10869-2024, https://doi.org/10.5194/acp-24-10869-2024, 2024
Short summary
Short summary
Single-particle mass spectrometry (SPMS) is commonly used to measure the chemical composition and mixing state of aerosol particles. Intercomparison of SPMS instruments was conducted. All instruments reported similar size ranges and common spectral features. The instrument-specific detection efficiency was found to be more dependent on particle size than type. All differentiated secondary organic aerosol, soot, and soil dust but had difficulties differentiating among minerals and dusts.
Rongzhi Tang, Jialiang Ma, Ruifeng Zhang, Weizhen Cui, Yuanyuan Qin, Yangxi Chu, Yiming Qin, Alexander L. Vogel, and Chak K. Chan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2633, https://doi.org/10.5194/egusphere-2024-2633, 2024
Short summary
Short summary
This study provided laboratory evidence that the photosensitizers in biomass burning extracts can enhance the sulfate formation in NaCl particles, primarily by triggering the formation of secondary oxidants under light and air, with less contribution of direct photosensitization via triplets.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Melani Hernández-Chiriboga, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert Green, Paul Ginoux, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 9155–9176, https://doi.org/10.5194/acp-24-9155-2024, https://doi.org/10.5194/acp-24-9155-2024, 2024
Short summary
Short summary
In this research, we studied the dust-emitting properties of crusts and aeolian ripples from the Mojave Desert. These properties are key to understanding the effect of dust upon climate. We found two different playa lakes according to the groundwater regime, which implies differences in crusts' cohesion state and mineralogy, which can affect the dust emission potential and properties. We also compare them with Moroccan Sahara crusts and Icelandic top sediments.
Si Zhang, Xinbei Xu, Luyao Chen, Can Wu, Zheng Li, Rongjie Li, Binyu Xiao, Xiaodi Liu, Rui Li, Fan Zhang, and Gehui Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2119, https://doi.org/10.5194/egusphere-2024-2119, 2024
Short summary
Short summary
SOA from acetone photooxidation can be formed more readily on neutral aerosols than on acidic aerosols, while heterogeneous reaction of carbonyl with ammonium is only active on acidic aerosols in the presence of NH3, which produces light-absorbing N-containing compounds. Our work suggested that the heterogeneous oxidation of highly volatile VOC, for example acetone, is an importance source of SOA in the atmosphere, which should be accounted for in the future model studies.
Mohammed Jaoui, Klara Nestorowicz, Krzysztof Rudzinski, Michael Lewandowski, Tadeusz Kleindienst, Julio Torres, Ewa Bulska, Witold Danikiewicz, and Rafal Szmigielski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2032, https://doi.org/10.5194/egusphere-2024-2032, 2024
Short summary
Short summary
Recent research has established the contribution of 1,3-butadiene (13BD) to organic aerosol formation with negative implications to urban air quality. Health effects studies have focused on whole particulate matter but compounds responsible for adverse health effects remain uncertain. This study provides the effect of relative humidity and acidity on the chemical composition of aerosol formed from 13BD photooxidation.
Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, and Xinming Wang
Atmos. Chem. Phys., 24, 7575–7589, https://doi.org/10.5194/acp-24-7575-2024, https://doi.org/10.5194/acp-24-7575-2024, 2024
Short summary
Short summary
The present research unveiled that acidity dominates while transition metal ions harmonize with the light absorption properties of humic-like substances (HULIS). Cu2+ has quenching effects on HULIS by complexation, hydrogen substitution, or electrostatic adsorption, with aromatic structures of HULIS. Such effects are less pronounced if from Mn2+, Ni2+, Zn2+, and Cu2+. Oxidized HULIS might contain electron-donating groups, whereas N-containing compounds might contain electron-withdrawing groups.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert O. Green, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 6883–6910, https://doi.org/10.5194/acp-24-6883-2024, https://doi.org/10.5194/acp-24-6883-2024, 2024
Short summary
Short summary
The knowledge of properties from dust emitted in high latitudes such as in Iceland is scarce. This study focuses on the particle size, mineralogy, cohesion, and iron mode of occurrence and reflectance spectra of dust-emitting sediments. Icelandic top sediments have lower cohesion state, coarser particle size, distinctive mineralogy, and 3-fold bulk Fe content, with a large presence of magnetite compared to Saharan crusts.
Wangjin Yang, Jiawei Ma, Hongxing Yang, Fu Li, and Chong Han
Atmos. Chem. Phys., 24, 6757–6768, https://doi.org/10.5194/acp-24-6757-2024, https://doi.org/10.5194/acp-24-6757-2024, 2024
Short summary
Short summary
We provide evidence that light enhances the conversion of SO2 to sulfates on non-photoactive mineral dust, where triplet states of SO2 (3SO2) can act as a pivotal trigger to generate sulfates. Photochemical sulfate formation depends on H2O, O2, and basicity of mineral dust. The SO2 photochemistry on non-photoactive mineral dust contributes to sulfates, highlighting previously unknown pathways to better explain the missing sources of atmospheric sulfates.
Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao
Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024, https://doi.org/10.5194/acp-24-6323-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is related to radiative forcing and climate change. The BrC fraction from residential coal and biomass burning emissions, which were the major source of BrC, was characterized at the molecular level. The CHOS aromatic compounds explained higher light absorption efficiencies of biomass burning emissions compared to coal. The unique formulas of coal combustion aerosols were characterized by higher unsaturated compounds, and such information could be used for source appointment.
Kumiko Goto-Azuma, Remi Dallmayr, Yoshimi Ogawa-Tsukagawa, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Motohiro Hirabayashi, Jun Ogata, Kyotaro Kitamura, Kenji Kawamura, Koji Fujita, Sumito Matoba, Naoko Nagatsuka, Akane Tsushima, Kaori Fukuda, and Teruo Aoki
EGUsphere, https://doi.org/10.5194/egusphere-2024-1496, https://doi.org/10.5194/egusphere-2024-1496, 2024
Short summary
Short summary
We developed a continuous flow analysis system to analyse an ice core from northwest Greenland, and coupled it with an improved BC measurement technique. This coupling allowed accurate high-resolution analyses of BC particles' size distributions and concentrations with diameters between 70 nm and 4 μm for the past 350 years. Our results provide crucial insights into BC's climatic effects. We also found that previous ice core studies substantially underestimated the BC mass concentrations.
Wenli Liu, Longkun He, Yingjun Liu, Keren Liao, Qi Chen, and Mikinori Kuwata
Atmos. Chem. Phys., 24, 5625–5636, https://doi.org/10.5194/acp-24-5625-2024, https://doi.org/10.5194/acp-24-5625-2024, 2024
Short summary
Short summary
Cooking is a major source of particles in urban areas. Previous studies demonstrated that the chemical lifetimes of cooking organic aerosols (COAs) were much shorter (~minutes) than the values reported by field observations (~hours). We conducted laboratory experiments to resolve the discrepancy by considering suppressed reactivity under low temperature. The parameterized k2–T relationships and observed surface temperature data were used to estimate the chemical lifetimes of COA particles.
Stephanie Arciva, Lan Ma, Camille Mavis, Chrystal Guzman, and Cort Anastasio
Atmos. Chem. Phys., 24, 4473–4485, https://doi.org/10.5194/acp-24-4473-2024, https://doi.org/10.5194/acp-24-4473-2024, 2024
Short summary
Short summary
We measured changes in light absorption during the aqueous oxidation of six phenols with hydroxyl radical (●OH) or an organic triplet excited state (3C*). All the phenols formed light-absorbing secondary brown carbon (BrC), which then decayed with continued oxidation. Extrapolation to ambient conditions suggest ●OH is the dominant sink of secondary phenolic BrC in fog/cloud drops, while 3C* controls the lifetime of this light absorption in particle water.
Aaron Lieberman, Julietta Picco, Murat Onder, and Cort Anastasio
Atmos. Chem. Phys., 24, 4411–4419, https://doi.org/10.5194/acp-24-4411-2024, https://doi.org/10.5194/acp-24-4411-2024, 2024
Short summary
Short summary
We developed a method that uses aqueous S(IV) to quantitatively convert NO2 to NO2−, which allows both species to be quantified using the Griess method. As an example of the utility of the method, we quantified both photolysis channels of nitrate, with and without a scavenger for hydroxyl radical (·OH). The results show that without a scavenger, ·OH reacts with nitrite to form nitrogen dioxide, suppressing the apparent quantum yield of NO2− and enhancing that of NO2.
Adam Milsom, Adam M. Squires, Ben Laurence, Ben Wōden, Andrew J. Smith, Andrew D. Ward, and Christian Pfrang
EGUsphere, https://doi.org/10.5194/egusphere-2024-905, https://doi.org/10.5194/egusphere-2024-905, 2024
Short summary
Short summary
We followed nano-structural changes in mixtures found in urban organic aerosol emissions (oleic acid, sodium oleate & fructose) during humidity change & ozone exposure. We demonstrate that self-assembly of fatty acid nanostructures can impact on water uptake & chemical reactivity affecting atmospheric lifetimes, urban air quality (protecting harmful emissions from degradation and enabling their long-range transport) & climate (affecting cloud formation) with implications for human health.
Xingjun Fan, Ao Cheng, Xufang Yu, Tao Cao, Dan Chen, Wenchao Ji, Yongbing Cai, Fande Meng, Jianzhong Song, and Ping'an Peng
Atmos. Chem. Phys., 24, 3769–3783, https://doi.org/10.5194/acp-24-3769-2024, https://doi.org/10.5194/acp-24-3769-2024, 2024
Short summary
Short summary
Molecular-level characteristics of high molecular weight (HMW) and low MW (LMW) humic-like substances (HULIS) were comprehensively investigated, where HMW HULIS had larger chromophores and larger molecular size than LMW HULIS and exhibited higher aromaticity and humification. Electrospray ionization high-resolution mass spectrometry revealed more aromatic molecules in HMW HULIS. HMW HULIS had more CHON compounds, while LMW HULIS had more CHO compounds.
Daniel A. Knopf, Markus Ammann, Thomas Berkemeier, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 3445–3528, https://doi.org/10.5194/acp-24-3445-2024, https://doi.org/10.5194/acp-24-3445-2024, 2024
Short summary
Short summary
The initial step of interfacial and multiphase chemical processes involves adsorption and desorption of gas species. This study demonstrates the role of desorption energy governing the residence time of the gas species at the environmental interface. A parameterization is formulated that enables the prediction of desorption energy based on the molecular weight, polarizability, and oxygen-to-carbon ratio of the desorbing chemical species. Its application to gas–particle interactions is discussed.
Feng Jiang, Kyla Siemens, Claudia Linke, Yanxia Li, Yiwei Gong, Thomas Leisner, Alexander Laskin, and Harald Saathoff
Atmos. Chem. Phys., 24, 2639–2649, https://doi.org/10.5194/acp-24-2639-2024, https://doi.org/10.5194/acp-24-2639-2024, 2024
Short summary
Short summary
We investigated the optical properties, chemical composition, and formation mechanisms of secondary organic aerosol (SOA) and brown carbon (BrC) from the oxidation of indole with and without NO2 in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) simulation chamber. This work is one of the very few to link the optical properties and chemical composition of indole SOA with and without NO2 by simulation chamber experiments.
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D'Anna
Atmos. Chem. Phys., 24, 2705–2729, https://doi.org/10.5194/acp-24-2705-2024, https://doi.org/10.5194/acp-24-2705-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) from gasoline vehicles can be a significant source of particulate matter in urban areas. Here the chemical composition of secondary volatile organic compounds and SOA produced by photo-oxidation of Euro 5 gasoline vehicle emissions was studied. The volatility of the SOA formed was calculated. Except for the temperature and the concentration of the aerosol, additional parameters may play a role in the gas-to-particle partitioning.
András Hoffer, Aida Meiramova, Ádám Tóth, Beatrix Jancsek-Turóczi, Gyula Kiss, Ágnes Rostási, Erika Andrea Levei, Luminita Marmureanu, Attila Machon, and András Gelencsér
Atmos. Chem. Phys., 24, 1659–1671, https://doi.org/10.5194/acp-24-1659-2024, https://doi.org/10.5194/acp-24-1659-2024, 2024
Short summary
Short summary
Specific tracer compounds identified previously in controlled test burnings of different waste types in the laboratory were detected and quantified in ambient PM10 samples collected in five Hungarian and four Romanian settlements. Back-of-the-envelope calculations based on the relative emission factors of individual tracers suggested that the contribution of solid waste burning particulate emissions to ambient PM10 mass concentrations may be as high as a few percent.
Xiao-San Luo, Weijie Huang, Guofeng Shen, Yuting Pang, Mingwei Tang, Weijun Li, Zhen Zhao, Hanhan Li, Yaqian Wei, Longjiao Xie, and Tariq Mehmood
Atmos. Chem. Phys., 24, 1345–1360, https://doi.org/10.5194/acp-24-1345-2024, https://doi.org/10.5194/acp-24-1345-2024, 2024
Short summary
Short summary
PM2.5 are air pollutants threatening health globally, but they are a mixture of chemical compositions from many sources and result in unequal toxicity. Which composition from which source of PM2.5 as the most hazardous object is a question hindering effective pollution control policy-making. With chemical and toxicity experiments, we found automobile exhaust and coal combustion to be priority emissions with higher toxic compositions for precise air pollution control, ensuring public health.
Matthew B. Goss and Jesse H. Kroll
Atmos. Chem. Phys., 24, 1299–1314, https://doi.org/10.5194/acp-24-1299-2024, https://doi.org/10.5194/acp-24-1299-2024, 2024
Short summary
Short summary
The chemistry driving dimethyl sulfide (DMS) oxidation and subsequent sulfate particle formation in the atmosphere is poorly constrained. We oxidized two related compounds (dimethyl sulfoxide and dimethyl disulfide) in the laboratory under varied NOx conditions and measured the gas- and particle-phase products. These results demonstrate that both the OH addition and OH abstraction pathways for DMS oxidation contribute to particle formation via mechanisms that do not involve the SO2 intermediate.
Ryan J. Patnaude, Kathryn A. Moore, Russell J. Perkins, Thomas C. J. Hill, Paul J. DeMott, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 24, 911–928, https://doi.org/10.5194/acp-24-911-2024, https://doi.org/10.5194/acp-24-911-2024, 2024
Short summary
Short summary
In this study we examined the effect of atmospheric aging on sea spray aerosols (SSAs) to form ice and how newly formed secondary marine aerosols (SMAs) may freeze at cirrus temperatures (< −38 °C). Results show that SSAs freeze at different relative humidities (RHs) depending on the temperature and that the ice-nucleating ability of SSA was not hindered by atmospheric aging. SMAs are shown to freeze at high RHs and are likely inefficient at forming ice at cirrus temperatures.
Bartłomiej Witkowski, Priyanka Jain, Beata Wileńska, and Tomasz Gierczak
Atmos. Chem. Phys., 24, 663–688, https://doi.org/10.5194/acp-24-663-2024, https://doi.org/10.5194/acp-24-663-2024, 2024
Short summary
Short summary
This article reports the results of the kinetic measurements for the aqueous oxidation of the 29 aliphatic alcohols by hydroxyl radical (OH) at different temperatures. The data acquired and the literature data were used to optimize a model for predicting the aqueous OH reactivity of alcohols and carboxylic acids and to estimate the atmospheric lifetimes of five terpenoic alcohols. The kinetic data provided new insights into the mechanism of aqueous oxidation of aliphatic molecules by the OH.
Junting Qiu, Xinlin Shen, Jiangyao Chen, Guiying Li, and Taicheng An
Atmos. Chem. Phys., 24, 155–166, https://doi.org/10.5194/acp-24-155-2024, https://doi.org/10.5194/acp-24-155-2024, 2024
Short summary
Short summary
We studied reactions of secondary ozonides (SOZs) with amines. SOZs formed from ozonolysis of β-caryophyllene and α-humulene are found to be reactive to ethylamine and methylamine. Products from SOZs with various conformations reacting with the same amine had different functional groups. Our findings indicate that interaction of SOZs with amines in the atmosphere is very complicated, which is potentially a hitherto unrecognized source of N-containing compound formation.
Lan Ma, Reed Worland, Laura Heinlein, Chrystal Guzman, Wenqing Jiang, Christopher Niedek, Keith J. Bein, Qi Zhang, and Cort Anastasio
Atmos. Chem. Phys., 24, 1–21, https://doi.org/10.5194/acp-24-1-2024, https://doi.org/10.5194/acp-24-1-2024, 2024
Short summary
Short summary
We measured concentrations of three photooxidants – the hydroxyl radical, triplet excited states of organic carbon, and singlet molecular oxygen – in fine particles collected over a year. Concentrations are highest in extracts of fresh biomass burning particles, largely because they have the highest particle concentrations and highest light absorption. When normalized by light absorption, rates of formation for each oxidant are generally similar for the four particle types we observed.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Cristina Reche, Patricia Córdoba, Natalia Moreno, Andres Alastuey, Konrad Kandler, Martina Klose, Clarissa Baldo, Roger N. Clark, Zongbo Shi, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 15815–15834, https://doi.org/10.5194/acp-23-15815-2023, https://doi.org/10.5194/acp-23-15815-2023, 2023
Short summary
Short summary
The effect of dust emitted from desertic surfaces upon climate and ecosystems depends on size and mineralogy, but data from soil mineral atlases of desert soils are scarce. We performed particle-size distribution, mineralogy, and Fe speciation in southern Morocco. Results show coarser particles with high quartz proportion are near the elevated areas, while in depressed areas, sizes are finer, and proportions of clays and nano-Fe oxides are higher. This difference is important for dust modelling.
Victor Lannuque, Barbara D'Anna, Evangelia Kostenidou, Florian Couvidat, Alvaro Martinez-Valiente, Philipp Eichler, Armin Wisthaler, Markus Müller, Brice Temime-Roussel, Richard Valorso, and Karine Sartelet
Atmos. Chem. Phys., 23, 15537–15560, https://doi.org/10.5194/acp-23-15537-2023, https://doi.org/10.5194/acp-23-15537-2023, 2023
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation from toluene oxidation. In this study, speciation measurements in gaseous and particulate phases were carried out, providing partitioning and volatility data on individual toluene SOA components at different temperatures. A new detailed oxidation mechanism was developed to improve modeled speciation, and effects of different processes involved in gas–particle partitioning at the molecular scale are explored.
Xiaoliang Wang, Hatef Firouzkouhi, Judith C. Chow, John G. Watson, Steven Sai Hang Ho, Warren Carter, and Alexandra S. M. De Vos
Atmos. Chem. Phys., 23, 15375–15393, https://doi.org/10.5194/acp-23-15375-2023, https://doi.org/10.5194/acp-23-15375-2023, 2023
Short summary
Short summary
Open burning of municipal solid waste emits chemicals that are harmful to the environment. This paper reports source profiles and emission factors for PM2.5 species and acidic/alkali gases from laboratory combustion of 10 waste categories (including plastics and biomass) that represent open burning in South Africa. Results will be useful for health and climate impact assessments, speciated emission inventories, source-oriented dispersion models, and receptor-based source apportionment.
Jun Zhang, Kun Li, Tiantian Wang, Erlend Gammelsæter, Rico K. Y. Cheung, Mihnea Surdu, Sophie Bogler, Deepika Bhattu, Dongyu S. Wang, Tianqu Cui, Lu Qi, Houssni Lamkaddam, Imad El Haddad, Jay G. Slowik, Andre S. H. Prevot, and David M. Bell
Atmos. Chem. Phys., 23, 14561–14576, https://doi.org/10.5194/acp-23-14561-2023, https://doi.org/10.5194/acp-23-14561-2023, 2023
Short summary
Short summary
We conducted burning experiments to simulate various types of solid fuel combustion, including residential burning, wildfires, agricultural burning, cow dung, and plastic bag burning. The chemical composition of the particles was characterized using mass spectrometers, and new potential markers for different fuels were identified using statistical analysis. This work improves our understanding of emissions from solid fuel burning and offers support for refined source apportionment.
Hyun Gu Kang, Yanfang Chen, Yoojin Park, Thomas Berkemeier, and Hwajin Kim
Atmos. Chem. Phys., 23, 14307–14323, https://doi.org/10.5194/acp-23-14307-2023, https://doi.org/10.5194/acp-23-14307-2023, 2023
Short summary
Short summary
D5 is an emerging anthropogenic pollutant that is ubiquitous in indoor and urban environments, and the OH oxidation of D5 forms secondary organosiloxane aerosol (SOSiA). Application of a kinetic box model that uses a volatility basis set (VBS) showed that consideration of oxidative aging (aging-VBS) predicts SOSiA formation much better than using a standard-VBS model. Ageing-dependent parameterization is needed to accurately model SOSiA to assess the implications of siloxanes for air quality.
Kai Song, Rongzhi Tang, Jingshun Zhang, Zichao Wan, Yuan Zhang, Kun Hu, Yuanzheng Gong, Daqi Lv, Sihua Lu, Yu Tan, Ruifeng Zhang, Ang Li, Shuyuan Yan, Shichao Yan, Baoming Fan, Wenfei Zhu, Chak K. Chan, Maosheng Yao, and Song Guo
Atmos. Chem. Phys., 23, 13585–13595, https://doi.org/10.5194/acp-23-13585-2023, https://doi.org/10.5194/acp-23-13585-2023, 2023
Short summary
Short summary
Incense burning is common in Asia, posing threats to human health and air quality. However, less is known about its emissions and health risks. Full-volatility organic species from incense-burning smoke are detected and quantified. Intermediate-volatility volatile organic compounds (IVOCs) are crucial organics accounting for 19.2 % of the total emission factors (EFs) and 40.0 % of the secondary organic aerosol (SOA) estimation, highlighting the importance of incorporating IVOCs into SOA models.
Qianqian Gao, Shengqiang Zhu, Kaili Zhou, Jinghao Zhai, Shaodong Chen, Qihuang Wang, Shurong Wang, Jin Han, Xiaohui Lu, Hong Chen, Liwu Zhang, Lin Wang, Zimeng Wang, Xin Yang, Qi Ying, Hongliang Zhang, Jianmin Chen, and Xiaofei Wang
Atmos. Chem. Phys., 23, 13049–13060, https://doi.org/10.5194/acp-23-13049-2023, https://doi.org/10.5194/acp-23-13049-2023, 2023
Short summary
Short summary
Dust is a major source of atmospheric aerosols. Its chemical composition is often assumed to be similar to the parent soil. However, this assumption has not been rigorously verified. Dust aerosols are mainly generated by wind erosion, which may have some chemical selectivity. Mn, Cd and Pb were found to be highly enriched in fine-dust (PM2.5) aerosols. In addition, estimation of heavy metal emissions from dust generation by air quality models may have errors without using proper dust profiles.
Daniel C. O. Thornton, Sarah D. Brooks, Elise K. Wilbourn, Jessica Mirrielees, Alyssa N. Alsante, Gerardo Gold-Bouchot, Andrew Whitesell, and Kiana McFadden
Atmos. Chem. Phys., 23, 12707–12729, https://doi.org/10.5194/acp-23-12707-2023, https://doi.org/10.5194/acp-23-12707-2023, 2023
Short summary
Short summary
A major uncertainty in our understanding of clouds and climate is the sources and properties of the aerosol on which clouds grow. We found that aerosol containing organic matter from fast-growing marine phytoplankton was a source of ice-nucleating particles (INPs). INPs facilitate freezing of ice crystals at warmer temperatures than otherwise possible and therefore change cloud formation and properties. Our results show that ecosystem processes and the properties of sea spray aerosol are linked.
Adam Milsom, Shaojun Qi, Ashmi Mishra, Thomas Berkemeier, Zhenyu Zhang, and Christian Pfrang
Atmos. Chem. Phys., 23, 10835–10843, https://doi.org/10.5194/acp-23-10835-2023, https://doi.org/10.5194/acp-23-10835-2023, 2023
Short summary
Short summary
Aerosols and films are found indoors and outdoors. Our study measures and models reactions of a cooking aerosol proxy with the atmospheric oxidant ozone relying on a low-cost but sensitive technique based on mass changes and film rigidity. We found that film morphology changed and film rigidity increased with evidence of surface crust formation during ozone exposure. Our modelling results demonstrate clear potential to take this robust method to the field for reaction monitoring.
Yangzhihao Zhan, Min Xie, Wei Zhao, Tijian Wang, Da Gao, Pulong Chen, Jun Tian, Kuanguang Zhu, Shu Li, Bingliang Zhuang, Mengmeng Li, Yi Luo, and Runqi Zhao
Atmos. Chem. Phys., 23, 9837–9852, https://doi.org/10.5194/acp-23-9837-2023, https://doi.org/10.5194/acp-23-9837-2023, 2023
Short summary
Short summary
Although the main source contribution of pollution is secondary inorganic aerosols in Nanjing, health risks mainly come from industry sources and vehicle emissions. Therefore, the development of megacities should pay more attention to the health burden of vehicle emissions, coal combustion, and industrial processes. This study provides new insight into assessing the relationship between source apportionment and health risks and can provide valuable insight into air pollution strategies.
Jonathan P. D. Abbatt and A. R. Ravishankara
Atmos. Chem. Phys., 23, 9765–9785, https://doi.org/10.5194/acp-23-9765-2023, https://doi.org/10.5194/acp-23-9765-2023, 2023
Short summary
Short summary
With important climate and air quality impacts, atmospheric multiphase chemistry involves gas interactions with aerosol particles and cloud droplets. We summarize the status of the field and discuss potential directions for future growth. We highlight the importance of a molecular-level understanding of the chemistry, along with atmospheric field studies and modeling, and emphasize the necessity for atmospheric multiphase chemists to interact widely with scientists from neighboring disciplines.
Zhancong Liang, Zhihao Cheng, Ruifeng Zhang, Yiming Qin, and Chak K. Chan
Atmos. Chem. Phys., 23, 9585–9595, https://doi.org/10.5194/acp-23-9585-2023, https://doi.org/10.5194/acp-23-9585-2023, 2023
Short summary
Short summary
In this study, we found that the photolysis of sodium nitrate leads to a much quicker decay of free amino acids (FAAs, with glycine as an example) in the particle phase than ammonium nitrate photolysis, which is likely due to the molecular interactions between FAAs and different nitrate salts. Since sodium nitrate likely co-exists with FAAs in the coarse-mode particles, particulate nitrate photolysis can possibly contribute to a rapid decay of FAAs and affect atmospheric nitrogen cycling.
Julian Resch, Kate Wolfer, Alexandre Barth, and Markus Kalberer
Atmos. Chem. Phys., 23, 9161–9171, https://doi.org/10.5194/acp-23-9161-2023, https://doi.org/10.5194/acp-23-9161-2023, 2023
Short summary
Short summary
Detailed chemical analysis of organic aerosols is necessary to better understand their effects on climate and health. Aerosol samples are often stored for days to months before analysis. We examined the effects of storage conditions (i.e., time, temperature, and aerosol storage on filters or as solvent extracts) on composition and found significant changes in the concentration of individual compounds, indicating that sample storage can strongly affect the detailed chemical particle composition.
Xiaoliang Wang, Hatef Firouzkouhi, Judith C. Chow, John G. Watson, Warren Carter, and Alexandra S. M. De Vos
Atmos. Chem. Phys., 23, 8921–8937, https://doi.org/10.5194/acp-23-8921-2023, https://doi.org/10.5194/acp-23-8921-2023, 2023
Short summary
Short summary
Open burning of household and municipal solid waste is a common practice in developing countries and is a significant source of air pollution. However, few studies have measured emissions from open burning of waste. This study determined gas and particulate emissions from open burning of 10 types of household solid-waste materials. These results can improve emission inventories, air quality management, and assessment of the health and climate effects of open burning of household waste.
Anita M. Avery, Mariam Fawaz, Leah R. Williams, Tami Bond, and Timothy B. Onasch
Atmos. Chem. Phys., 23, 8837–8854, https://doi.org/10.5194/acp-23-8837-2023, https://doi.org/10.5194/acp-23-8837-2023, 2023
Short summary
Short summary
Pyrolysis is the thermal decomposition of fuels like wood which occurs during combustion or as an isolated process. During combustion, some pyrolysis products are emitted directly, while others are oxidized in the combustion process. This work describes the chemical composition of particle-phase pyrolysis products in order to investigate both the uncombusted emissions from wildfires and the fuel that participates in combustion.
Lan Ma, Reed Worland, Wenqing Jiang, Christopher Niedek, Chrystal Guzman, Keith J. Bein, Qi Zhang, and Cort Anastasio
Atmos. Chem. Phys., 23, 8805–8821, https://doi.org/10.5194/acp-23-8805-2023, https://doi.org/10.5194/acp-23-8805-2023, 2023
Short summary
Short summary
Although photooxidants are important in airborne particles, little is known of their concentrations. By measuring oxidants in a series of particle dilutions, we predict their concentrations in aerosol liquid water (ALW). We find •OH concentrations in ALW are on the order of 10−15 M, similar to their cloud/fog values, while oxidizing triplet excited states and singlet molecular oxygen have ALW values of ca. 10−13 M and 10−12 M, respectively, roughly 10–100 times higher than in cloud/fog drops.
Daniel A. Knopf, Peiwen Wang, Benny Wong, Jay M. Tomlin, Daniel P. Veghte, Nurun N. Lata, Swarup China, Alexander Laskin, Ryan C. Moffet, Josephine Y. Aller, Matthew A. Marcus, and Jian Wang
Atmos. Chem. Phys., 23, 8659–8681, https://doi.org/10.5194/acp-23-8659-2023, https://doi.org/10.5194/acp-23-8659-2023, 2023
Short summary
Short summary
Ambient particle populations and associated ice-nucleating particles (INPs)
were examined from particle samples collected on board aircraft in the marine
boundary layer and free troposphere in the eastern North Atlantic during
summer and winter. Chemical imaging shows distinct differences in the
particle populations seasonally and with sampling altitudes, which are
reflected in the INP types. Freezing parameterizations are derived for
implementation in cloud-resolving and climate models.
Dandan Liu, Yun Zhang, Shujun Zhong, Shuang Chen, Qiaorong Xie, Donghuan Zhang, Qiang Zhang, Wei Hu, Junjun Deng, Libin Wu, Chao Ma, Haijie Tong, and Pingqing Fu
Atmos. Chem. Phys., 23, 8383–8402, https://doi.org/10.5194/acp-23-8383-2023, https://doi.org/10.5194/acp-23-8383-2023, 2023
Short summary
Short summary
Based on ultra-high-resolution mass spectrometry analysis, we found that β-pinene oxidation-derived highly oxygenated organic molecules (HOMs) exhibit higher yield at high ozone concentration, while limonene oxidation-derived HOMs exhibit higher yield at moderate ozone concentration. The distinct molecular response of HOMs and low-volatile species in different biogenic secondary organic aerosols to ozone concentrations provides a new clue for more accurate air quality prediction and management.
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yihang Hong, Yu-Chi Lin, Mingyuan Yu, Hongxing Jiang, Zhineng Cheng, Rongshuang Xu, and Xiaoying Yang
Atmos. Chem. Phys., 23, 8305–8324, https://doi.org/10.5194/acp-23-8305-2023, https://doi.org/10.5194/acp-23-8305-2023, 2023
Short summary
Short summary
The interaction between the sources and molecular compositions of humic-like substances (HULIS) at Nanjing, China, was explored. Significant fossil fuel source contributions to HULIS were found in the 14C results from biomass burnng and traffic emissions. Increasing biogenic secondary organic aerosol (SOA) products and anthropogenic aromatic compounds were detected in summer and winter, respectively.
Molly Frauenheim, Jason D. Surratt, Zhenfa Zhang, and Avram Gold
Atmos. Chem. Phys., 23, 7859–7866, https://doi.org/10.5194/acp-23-7859-2023, https://doi.org/10.5194/acp-23-7859-2023, 2023
Short summary
Short summary
We report synthesis of the isoprene-derived photochemical oxidation products trans- and cis-β-epoxydiols in high overall yields from inexpensive, readily available starting compounds. Protection/deprotection steps or time-consuming purification is not required, and the reactions can be scaled up to gram quantities. The procedures provide accessibility of these important compounds to atmospheric chemistry laboratories with only basic capabilities in organic synthesis.
Xiangyun Zhang, Jun Li, Sanyuan Zhu, Junwen Liu, Ping Ding, Shutao Gao, Chongguo Tian, Yingjun Chen, Ping'an Peng, and Gan Zhang
Atmos. Chem. Phys., 23, 7495–7502, https://doi.org/10.5194/acp-23-7495-2023, https://doi.org/10.5194/acp-23-7495-2023, 2023
Short summary
Short summary
The results show that 14C elemental carbon (EC) was not only related to the isolation method but also to the types and proportions of the biomass sources in the sample. The hydropyrolysis (Hypy) method, which can be used to isolate a highly stable portion of ECHypy and avoid charring, is a more effective and stable approach for the matrix-independent 14C quantification of EC in aerosols, and the 13C–ECHypy and non-fossil ECHypy values of SRM1649b were –24.9 ‰ and 11 %, respectively.
Amir Yazdani, Satoshi Takahama, John K. Kodros, Marco Paglione, Mauro Masiol, Stefania Squizzato, Kalliopi Florou, Christos Kaltsonoudis, Spiro D. Jorga, Spyros N. Pandis, and Athanasios Nenes
Atmos. Chem. Phys., 23, 7461–7477, https://doi.org/10.5194/acp-23-7461-2023, https://doi.org/10.5194/acp-23-7461-2023, 2023
Short summary
Short summary
Organic aerosols directly emitted from wood and pellet stove combustion are found to chemically transform (approximately 15 %–35 % by mass) under daytime aging conditions simulated in an environmental chamber. A new marker for lignin-like compounds is found to degrade at a different rate than previously identified biomass burning markers and can potentially provide indication of aging time in ambient samples.
Cited articles
Ahmadov, R., McKeen, S. A., Robinson, A. L., Bahreini, R., Middlebrook, A.
M., de Gouw, J. A., Meagher, J., Hsie, E. Y., Edgerton, E., Shaw, S., and
Trainer, M.: A volatility basis set model for summertime secondary organic
aerosols over the eastern United States in 2006, J. Geophys. Res.-Atmos., 117, D6301, https://doi.org/10.1029/2011JD016831, 2012.
Aschmann, S. M., Arey, J., and Atkinson, R.: OH radical formation from the
gas-phase reactions of O3 with a series of terpenes, Atmos. Environ., 36, 4347–4355, https://doi.org/10.1016/S1352-2310(02)00355-2, 2002.
Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with organic compounds, J. Phys. Chem. Ref. Data, 20, 459–507, https://doi.org/10.1063/1.555887, 1991.
Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic
volatile organic compounds: a review, Atmos. Environ., 37, 197–219,
https://doi.org/10.1016/S1352-2310(03)00391-1, 2003.
Bäck, J., Aalto, J., Henriksson, M., Hakola, H., He, Q., and Boy, M.:
Chemodiversity of a Scots pine stand and implications for terpene air
concentrations, Biogeosciences, 9, 689–702, https://doi.org/10.5194/bg-9-689-2012, 2012.
Bateman, A. P., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Time-resolved
molecular characterization of limonene/ozone aerosol using high-resolution
electrospray ionization mass spectrometry, Phys. Chem. Chem. Phys., 11,
7931–7942, https://doi.org/10.1039/b905288g, 2009.
Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D., Wennberg, P. O., Mentel, T. F., Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R., Thornton, J. A.,
Donahue, N., Kjaergaard, H. G., and Ehn, M.: Highly oxygenated organic molecules (HOM) from gas-phase autoxidation involving peroxy radicals: a key
contributor to atmospheric aerosol, Chem. Rev., 119, 3472–3509,
https://doi.org/10.1021/acs.chemrev.8b00395, 2019.
Bonn, B. and Moortgat, G. K.: New particle formation during α- and
β-pinene oxidation by O3, OH and NO3, and the influence of
water vapour: particle size distribution studies, Atmos. Chem. Phys., 2,
183–196, https://doi.org/10.5194/acp-2-183-2002, 2002.
Bonn, B., Schuster, G., and Moortgat, G. K.: Influence of water vapor on the
process of new particle formation during monoterpene ozonolysis, J. Phys.
Chem. A, 106, 2869–2881, https://doi.org/10.1021/jp012713p, 2002.
Chen, H., Ren, Y., Cazaunau, M., Dalele, V., Hu, Y., Chen, J., and Mellouki,
A.: Rate coefficients for the reaction of ozone with 2-and 3-carene, Chem.
Phys. Lett., 621, 71–77, https://doi.org/10.1016/j.cplett.2014.12.056, 2015.
Chen, L., Huang, Y., Xue, Y., Shen, Z., Cao, J., and Wang, W.: Mechanistic
and kinetics investigations of oligomer formation from Criegee intermediate
reactions with hydroxyalkyl hydroperoxides, Atmos. Chem. Phys., 19, 4075–4091, https://doi.org/10.5194/acp-19-4075-2019, 2019.
Chen, L., Wang, W., Wang, W., Liu, Y., Liu, F., Liu, N., and Wang, B.:
Water-catalyzed decomposition of the simplest Criegee intermediate CH2OO, Theor. Chem. Acc., 135, 131, https://doi.org/10.1007/s00214-016-1894-9, 2016.
Chen, X. and Hopke, P. K.: A chamber study of secondary organic aerosol
formation by limonene ozonolysis, Indoor Air, 20, 320–328,
https://doi.org/10.1111/j.1600-0668.2010.00656.x, 2010.
Cholakian, A., Beekmann, M., Coll, I., Ciarelli, G., and Colette, A.: Biogenic secondary organic aerosol sensitivity to organic aerosol simulation
schemes in climate projections, Atmos. Chem. Phys., 19, 13209–13226,
https://doi.org/10.5194/acp-19-13209-2019, 2019.
de Matos, S. P., Teixeira, H. F., de Lima, Á. A. N., Veiga-Junior, V. F., and Koester, L. S.: Essential oils and isolated terpenes in nanosystems designed for topical administration: a review, Biomolecules, 9, 138,
https://doi.org/10.3390/biom9040138, 2019.
Drozd, G. T. and Donahue, N. M.: Pressure dependence of stabilized Criegee
intermediate formation from a sequence of alkenes, J. Phys. Chem. A, 115,
4381–4387, https://doi.org/10.1021/jp2001089, 2011.
Fick, J., Pommer, L., Andersson, B., and Nilsson, C.: A study of the
gas-phase ozonolysis of terpenes: the impact of radicals formed during the
reaction, Atmos. Environ., 36, 3299–3308, https://doi.org/10.1016/s1352-2310(02)00291-1, 2002.
Gong, Y. and Chen, Z.: Quantification of the role of stabilized Criegee
intermediates in the formation of aerosols in limonene ozonolysis, Atmos.
Chem. Phys., 21, 813–829, https://doi.org/10.5194/acp-21-813-2021, 2021.
Gong, Y., Chen, Z., and Li, H.: The oxidation regime and SOA composition in
limonene ozonolysis: roles of different double bonds, radicals, and water,
Atmos. Chem. Phys., 18, 15105–15123, https://doi.org/10.5194/acp-18-15105-2018, 2018.
Grosjean, D., Williams, E. L., and Seinfeld, J. H.: Atmospheric oxidation of
selected terpenes and related carbonyls: gas-phase carbonyl products, Environ. Sci. Technol., 26, 1526–1533, https://doi.org/10.1021/es00032a005, 1992.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T.,
Emmons, L. K., and Wang, X.: The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for
modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492,
https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu,
Z., Shao, M., Zeng, L., Molina, M. J., and Zhang, R.: Elucidating severe
urban haze formation in China, P. Natl. Acad. Sci. USA, 111, 17373–17378, https://doi.org/10.1073/pnas.1419604111, 2014.
Hammes, J., Lutz, A., Mentel, T., Faxon, C., and Hallquist, M.: Carboxylic
acids from limonene oxidation by ozone and hydroxyl radicals: insights into
mechanisms derived using a FIGAERO-CIMS, Atmos. Chem. Phys., 19, 13037–13052, https://doi.org/10.5194/acp-19-13037-2019, 2019.
Hantschke, L., Novelli, A., Bohn, B., Cho, C., Reimer, D., Rohrer, F.,
Tillmann, R., Glowania, M., Hofzumahaus, A., Kiendler-Scharr, A., Wahner, A., and Fuchs, H.: Atmospheric photooxidation and ozonolysis of Δ3-carene and 3-caronaldehyde: rate constants and product yields, Atmos. Chem. Phys., 21, 12665–12685, https://doi.org/10.5194/acp-21-12665-2021, 2021.
Herrmann, F., Winterhalter, R., Moortgat, G. K., and Williams, J.: Hydroxyl
radical (OH) yields from the ozonolysis of both double bonds for five
monoterpenes, Atmos. Environ., 44, 3458–3464, https://doi.org/10.1016/j.atmosenv.2010.05.011, 2010.
Huang, X., Yun, H., Gong, Z., Li, X., He, L., Zhang, Y., and Hu, M.: Source
apportionment and secondary organic aerosol estimation of PM2.5 in an urban atmosphere in China, Sci. China-Earth Sci., 57, 1352–1362,
https://doi.org/10.1007/s11430-013-4686-2, 2014.
Jang, M. S., Carroll, B., Chandramouli, B., and Kamens, R. M.: Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols, Environ. Sci. Technol., 37, 3828–3837, https://doi.org/10.1021/es021005u, 2003.
Jokinen, T., Berndt, T., Makkonen, R., Kerminen, V.-M., Junninen, H., Paasonen, P., Stratmann, F., Herrmann, H., Guenther, A. B., Worsnop, D. R.,
Kulmala, M., Ehn, M., and Sipilä, M.: Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and
atmospheric implications, P. Natl. Acad. Sci. USA, 112, 7123–7128,
https://doi.org/10.1073/pnas.1423977112, 2015.
Jonsson, A. M., Hallquist, M., and Ljungstrom, E.: Impact of humidity on the
ozone initiated oxidation of limonene, Δ3-carene, and α-pinene, Environ. Sci. Technol., 40, 188–194, https://doi.org/10.1021/es051163w, 2006.
Jonsson, A. M., Hallquist, M., and Ljungstrom, E.: Influence of OH scavenger
on the water effect on secondary organic aerosol formation from ozonolysis of limonene, Δ3-carene, and α-pinene, Environ. Sci. Technol., 42, 5938–5944, https://doi.org/10.1021/es702508y, 2008.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J.,
Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J.,
Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123,
https://doi.org/10.5194/acp-5-1053-2005, 2005.
Khamaganov, V. G. and Hites, R. A.: Rate constants for the gas-phase reactions of ozone with isoprene, α- and β-pinene, and limonene as a function of temperature, J. Phys. Chem. A, 105, 815–822,
https://doi.org/10.1021/jp002730z, 2001.
Kristensen, K., Cui, T., Zhang, H., Gold, A., Glasius, M., and Surratt, J. D.: Dimers in α-pinene secondary organic aerosol: effect of hydroxyl
radical, ozone, relative humidity and aerosol acidity, Atmos. Chem. Phys.,
14, 4201–4218, https://doi.org/10.5194/acp-14-4201-2014, 2014.
Kroll, J. H., Ng, N. L., Murphy, S. M., Varutbangkul, V., Flagan, R. C., and
Seinfeld, J. H.: Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds, J. Geophys. Res.-Atmos., 110,
D23207, https://doi.org/10.1029/2005JD006004, 2005.
Kumar, M., Busch, D. H., Subramaniam, B., and Thompson, W. H.: Role of tunable acid catalysis in decomposition of α-Hydroxyalkyl hydroperoxides and mechanistic implications for tropospheric chemistry, J.
Phys. Chem. A, 118, 9701–9711, https://doi.org/10.1021/jp505100x, 2014.
Leungsakul, S., Jaoui, M., and Kamens, R. M.: Kinetic Mechanism for Predicting Secondary Organic Aerosol Formation from the Reaction of d-Limonene with Ozone, Environ. Sci. Technol., 39, 9583–9594,
https://doi.org/10.1021/es0492687, 2005.
Levy II, H., Horowitz, L. W., Schwarzkopf, M. D., Ming, Y., Golaz, J.-C.,
Naik, V., and Ramaswamy, V.: The roles of aerosol direct and indirect
effects in past and future climate change, J. Geophys. Res.-Atmos., 118,
4521–4532, https://doi.org/10.1002/jgrd.50192, 2013.
Li, J. Y., Zhang, H. W., Ying, Q., Wu, Z. J., Zhang, Y. L., Wang, X. M., Li,
X. H., Sun, Y. L., Hu, M., Zhang, Y. H., and Hu, J. L.: Impacts of water
partitioning and polarity of organic compounds on secondary organic aerosol
over eastern China, Atmos. Chem. Phys., 20, 7291–7306,
https://doi.org/10.5194/acp-20-7291-2020, 2020.
Li, K., Liggio, J., Lee, P., Han, C., Liu, Q., and Li, S.-M.: Secondary
organic aerosol formation from α-pinene, alkanes, and oil-sands-related precursors in a new oxidation flow reactor, Atmos. Chem.
Phys., 19, 9715–9731, https://doi.org/10.5194/acp-19-9715-2019, 2019.
Li, X., Chee, S., Hao, J., Abbatt, J. P. D., Jiang, J., and Smith, J. N.:
Relative humidity effect on the formation of highly oxidized molecules and
new particles during monoterpene oxidation, Atmos. Chem. Phys., 19,
1555–1570, https://doi.org/10.5194/acp-19-1555-2019, 2019.
Liu, Q., Liggio, J., Breznan, D., Thomson, E. M., Kumarathasan, P., Vincent,
R., Li, K., and Li, S.-M.: Oxidative and Toxicological Evolution of Engineered Nanoparticles with Atmospherically Relevant Coatings, Environ.
Sci. Technol., 53, 3058–3066, https://doi.org/10.1021/acs.est.8b06879, 2019.
Liu, Y., Liggio, J., Harner, T., Jantunen, L., Shoeib, M., and Li, S.-M.:
Heterogeneous OH Initiated Oxidation: A Possible Explanation for the
Persistence of Organophosphate Flame Retardants in Air, Environ. Sci. Technol., 48, 1041–1048, https://doi.org/10.1021/es404515k, 2014.
Ma, Y., Porter, R. A., Chappell, D., Russell, A. T., and Marston, G.: Mechanisms for the formation of organic acids in the gas-phase ozonolysis of
3-carene, Phys. Chem. Chem. Phys., 11, 4184–4197, https://doi.org/10.1039/b818750a, 2009.
Molteni, U., Bianchi, F., Klein, F., El Haddad, I., Frege, C., Rossi, M. J.,
Dommen, J., and Baltensperger, U.: Formation of highly oxygenated organic
molecules from aromatic compounds, Atmos. Chem. Phys., 18, 1909–1921,
https://doi.org/10.5194/acp-18-1909-2018, 2018.
Mot, M.-D., Gavrilaş, S., Lupitu, A. I., Moisa, C., Chambre, D., Tit, D. M., Bogdan, M. A., Bodescu, A.-M., Copolovici, L., Copolovici, D. M., and
Bungau, S. G.: Salvia officinalis L. essential oil: characterization,
antioxidant properties, and the effects of aromatherapy in adult patients,
Antioxidants, 11, 808, https://doi.org/10.3390/antiox11050808, 2022.
Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and
Seinfeld, J. H.: Secondary organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys., 7, 3909–3922,
https://doi.org/10.5194/acp-7-3909-2007, 2007.
Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.: Gas/particle partitioning and secondary organic aerosol
yields, Environ. Sci. Technol., 30, 2580–2585, https://doi.org/10.1021/es950943+, 1996.
Palm, B. B., Campuzano-Jost, P., Ortega, A. M., Day, D. A., Kaser, L., Jud,
W., Karl, T., Hansel, A., Hunter, J. F., Cross, E. S., Kroll, J. H., Peng, Z., Brune, W. H., and Jimenez, J. L.: In situ secondary organic aerosol
formation from ambient pine forest air using an oxidation flow reactor, Atmos. Chem. Phys., 16, 2943–2970, https://doi.org/10.5194/acp-16-2943-2016, 2016.
Pathak, R. K., Salo, K., Emanuelsson, E. U., Cai, C., Lutz, A., Hallquist,
A. M., and Hallquist, M.: Influence of ozone and radical chemistry on limonene organic aerosol production and thermal characteristics, Environ. Sci. Technol., 46, 11660–11669, https://doi.org/10.1021/es301750r, 2012.
Peng, Z., Lee-Taylor, J., Orlando, J. J., Tyndall, G. S., and Jimenez, J. L.: Organic peroxy radical chemistry in oxidation flow reactors and environmental chambers and their atmospheric relevance, Atmos. Chem. Phys., 19, 813–834, https://doi.org/10.5194/acp-19-813-2019, 2019.
Pye, H. O. T., Ward-Caviness, C. K., Murphy, B. N., Appel, K. W., and Seltzer, K. M.: Secondary organic aerosol association with cardiorespiratory
disease mortality in the United States, Nat. Commun., 12, 7215, https://doi.org/10.1038/s41467-021-27484-1, 2021.
Ravichandran, C., Badgujar, P. C., Gundev, P., and Upadhyay, A.: Review of
toxicological assessment of d-limonene, a food and cosmetics additive, Food
Chem. Toxicol., 120, 668–680, https://doi.org/10.1016/j.fct.2018.07.052, 2018.
Sbai, S. E. and Farida, B.: Photochemical aging and secondary organic aerosols generated from limonene in an oxidation flow reactor, Environ. Sci.
Pollut. Res., 26, 18411-18420, https://doi.org/10.1007/s11356-019-05012-5, 2019.
Seinfeld, J. H., Erdakos, G. B., Asher, W. E., and Pankow, J. F.: Modeling
the formation of secondary organic aerosol (SOA). 2. The predicted effects
of relative humidity on aerosol formation in the α-Pinene-, β-Pinene-, sabinene-, Δ3-Carene-, and cyclohexene-ozone
systems, Environ. Sci. Technol., 35, 1806–1817, https://doi.org/10.1021/es001765+, 2001.
Shaw, J. T., Lidster, R. T., Cryer, D. R., Ramirez, N., Whiting, F. C.,
Boustead, G. A., Whalley, L. K., Ingham, T., Rickard, A. R., Dunmore, R. E.,
Heard, D. E., Lewis, A. C., Carpenter, L. J., Hamilton, J. F., and Dillon, T. J.: A self-consistent, multivariate method for the determination of gas-phase rate coefficients, applied to reactions of atmospheric VOCs and the hydroxyl radical, Atmos. Chem. Phys., 18, 4039–4054, https://doi.org/10.5194/acp-18-4039-2018, 2018.
Shu, Y. G. and Atkinson, R.: Rate Constants for the gas-pahse reactions of
O3 with a series of terpenes and OH radical formation from the O3
reactions with sesquiterpenes at 296±2 K, Int. J. Chem. Kinet., 26,
1193–1205, https://doi.org/10.1002/kin.550261207, 1994.
Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J. F., Kuhn, U., Stefani, P., and Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN model over
the last 30 years, Atmos. Chem. Phys., 14, 9317–9341,
https://doi.org/10.5194/acp-14-9317-2014, 2014.
Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., and Ge, X.: The impact of relative humidity on aerosol composition and evolution processes
during wintertime in Beijing, China, Atmos. Environ., 77, 927–934,
https://doi.org/10.1016/j.atmosenv.2013.06.019, 2013.
Thomsen, D., Elm, J., Rosati, B., Skonager, J. T., Bilde, M., and Glasius, M.: Large discrepancy in the formation of secondary organic aerosols from
structurally similar monoterpenes, ACS Earth Space Chem., 5, 632–644,
https://doi.org/10.1021/acsearthspacechem.0c00332, 2021.
Varutbangkul, V., Brechtel, F. J., Bahreini, R., Ng, N. L., Keywood, M. D.,
Kroll, J. H., Flagan, R. C., Seinfeld, J. H., Lee, A., and Goldstein, A. H.:
Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds, Atmos.
Chem. Phys., 6, 2367–2388, https://doi.org/10.5194/acp-6-2367-2006, 2006.
Wang, L., Liu, Y., and Wang, L.: Ozonolysis of 3-carene in the atmosphere.
Formation mechanism of hydroxyl radical and secondary ozonides, Phys. Chem.
Chem. Phys., 21, 8081–8091, https://doi.org/10.1039/c8cp07195k, 2019.
Wang, L. Y. and Wang, L. M.: The oxidation mechanism of gas-phase ozonolysis
of limonene in the atmosphere, Phys. Chem. Chem. Phys., 23, 9294–9303,
https://doi.org/10.1039/d0cp05803c, 2021.
Watne, A. K., Westerlund, J., Hallquist, A. M., Brune, W. H., and Hallquist,
M.: Ozone and OH-induced oxidation of monoterpenes: Changes in the thermal
properties of secondary organic aerosol (SOA), J. Aerosol Sci., 114, 31–41,
https://doi.org/10.1016/j.jaerosci.2017.08.011, 2017.
Xu, L., Tsona, N. T., and Du, L.: Relative humidity changes the role of SO2 in biogenic secondary organic aerosol formation, J. Phys. Chem. Lett., 12, 7365–7372, https://doi.org/10.1021/acs.jpclett.1c01550, 2021.
Ye, J., Abbatt, J. P. D., and Chan, A. W. H.: Novel pathway of SO2
oxidation in the atmosphere: reactions with monoterpene ozonolysis intermediates and secondary organic aerosol, Atmos. Chem. Phys., 18, 5549–5565, https://doi.org/10.5194/acp-18-5549-2018, 2018.
Yu, K. P., Lin, C. C., Yang, S. C., and Zhao, P.: Enhancement effect of
relative humidity on the formation and regional respiratory deposition of
secondary organic aerosol, J. Hazard. Mater., 191, 94–102,
https://doi.org/10.1016/j.jhazmat.2011.04.042, 2011.
Zhang, H., Wang, S., Hao, J., Wang, X., Wang, S., Chai, F., and Li, M.: Air
pollution and control action in Beijing, J. Clean Prod., 112, 1519–1527,
https://doi.org/10.1016/j.jclepro.2015.04.092, 2016.
Zhang, Y., He, L., Sun, X., Ventura, O. N., and Herrmann, H.: Theoretical
Investigation on the Oligomerization of Methylglyoxal and Glyoxal in Aqueous
Atmospheric Aerosol Particles, ACS Earth Space Chem., 6, 1031–1043,
https://doi.org/10.1021/acsearthspacechem.1c00422, 2022.
Zhao, R. R., Zhang, Q. X., Xu, X. Z., Zhao, W. X., Yu, H., Wang, W. J., Zhang, Y. M., and Zhang, W. J.: Effect of experimental conditions on secondary organic aerosol formation in an oxidation flow reactor, Atmos.
Pollut. Res., 12, 392–400, https://doi.org/10.1016/j.apr.2021.01.011, 2021.
Ziemann, P. J. and Atkinson, R.: Kinetics, products, and mechanisms of
secondary organic aerosol formation, Chem. Soc. Rev., 41, 6582–6605,
https://doi.org/10.1039/c2cs35122f, 2012.
Short summary
In this study, we have investigated the distinct impacts of humidity on the ozonolysis of two structurally different monoterpenes (limonene and Δ3-carene). We found that the molecular structure of precursors can largely influence the SOA formation under high RH by impacting the multi-generation reactions. Our results could advance knowledge on the roles of water content in aerosol formation and inform ongoing research on particle environmental effects and applications in models.
In this study, we have investigated the distinct impacts of humidity on the ozonolysis of two...
Altmetrics
Final-revised paper
Preprint