

Supplement of

Contrasting impacts of humidity on the ozonolysis of monoterpenes: insights into the multi-generation chemical mechanism

Shan Zhang et al.

Correspondence to: Lin Du (lindu@sdu.edu.cn) and Kun Li (kun.li@sdu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Section S1. Calculation of equivalent aging days

The equivalent aging days can be calculated by Age (days)= $k \frac{O_{3exp}}{[O_3]} = k \frac{O_{3}]_0 \times RT}{[O_3]}$, where $[O_3]_0$ is the initial ozone concentration in OFR, *RT* is the residence time, *k* is a constant coefficient which is equals to 1.03 and $[O_3]$ is the mean ozone concentration in the atmosphere for 1 day, estimated to be 6.05×10^{16} molec cm⁻³ s (Sbai and Farida, 2019).

Section S2. Materials

Limonene (>99%, TCI), Δ^3 -carene (>97%, Sigma Aldrich), methanol (Optima[®] LC-MS grade, Fisher Scientific), formic acid (Optima[®] LC-MS grade, Fisher Scientific), pressured nitrogen gas (99.999%, DEYI) were directly used for nitrogen-blowing without further purification. Ultrapure water with a resistivity of 18.2 M Ω cm was generated with a water purification system (Millipore, France).

Section S3. Calculation of the pure-compound saturation concentrations

The pure-compound saturation concentrations (C₀) of SOA from limonene and Δ^3 -carene have been predicted using the following nonlinear expression (Li et al., 2016):

$$Log_{10}C_0 = (n_C^0 - n_C)b_C - n_O b_O - 2\frac{n_C n_O}{n_C + n_O}b_{CO}$$

The four free parameters n_{C}^{0} , b_{C} , b_{O} and b_{CO} represent the carbon number of 1 µg m⁻³ alkane, the carbon-carbon interaction term, the oxygen-oxygen interaction term and the carbon-oxygen nonideality respectively. The two independent variates n_{C} and n_{O} are the numbers of carbon and oxygen, respectively. Based on the calculated saturation mass concentration of organic aerosols, they can be classified into five groups (Donahue et al., 2012): extremely low-volatile organic compound (ELVOC; $C_0 < 3 \times 10^{-4} \ \mu g \ m^{-3}$); low-volatile organic compound (LVOC; $3 \times 10^{-4} < C_0 < 0.3 \ \mu g \ m^{-3}$); semi-volatile organic compound (IVOC; $300 < C_0 < 3 \times 10^6 \ \mu g \ m^{-3}$) and volatile organic compounds (VOC; $C_0 > 3 \times 10^6 \ \mu g \ m^{-3}$).

Groups	Monomers	Dimers	Trimers	Tetramers
Number (L) ^a	242	162	122	116
Number (H) ^b	272	187	134	105
Intensity	61.8%	25.7%	9.4%	3 1%
proportion (L) ^a	01.070	23.170	9.470	5.170
Intensity	65 60/	24 49/	7.00/	2.09/
proportion (H) ^b	03.0%	24.470	1.970	2.070

Table S1. The number and intensity proportion of four groups for limonene

^a L means under low RH. ^b H means under high RH.

Table S2. The number and intensity proportion of four groups for Δ^3 -carene

Groups	Monomers	Dimers	Trimers	Tetramers
Number (L) ^a	239	178	76	4
Number (H) ^b	216	151	26	1
Intensity	69.8%	28.6%	1.6%	0.5%
proportion (L) ^a				
Intensity	72 5%	26.9%	2.0%	0.2%
proportion (H) ^b	, 2.3 / 0	20.970	2.070	0.270

^a L means under low RH. ^b H means under high RH.

 Table S3. Intensity and partitioning coefficient for limonene products identified by MS (can be found in the proposed mechanism).

	Molecular	Low	RH	High	RH	Partiti coeffi	oning cient
	formula	Absolute	Relative	Absolute	Relative	Low	High
		intensity	intensity	intensity	intensity	RH	RH
	$C_{10}H_{16}O_2$	9.01×10^{2}	1.72×10 ⁻⁴	1.27×10^{3}	1.42×10 ⁻⁴	0.01	0.02
Monomers	$C_9H_{14}O_3$	1.49×10^4	2.85×10 ⁻³	3.00×10 ⁴	3.33×10 ⁻³	0.02	0.05
	$C_{10}H_{16}O_3$	4.99×10 ⁴	9.54×10 ⁻³	8.58×10^4	9.55×10 ⁻³	0.05	0.10

	$C_9H_{14}O_4$	1.29×10 ⁵	2.46×10 ⁻²	2.46×10 ⁵	2.73×10 ⁻²	0.13	0.25
	$C_{10}H_{18}O_3$	1.21×10^{3}	2.31×10 ⁻⁴	1.64×10 ³	1.82×10 ⁻⁴	0.05	0.10
	$C_9H_{16}O_4$	7.60×10 ³	1.45×10 ⁻³	1.51×10^4	1.68×10 ⁻³	0.13	0.25
	$C_{10}H_{16}O_4$	1.28×10 ⁵	2.45×10 ⁻²	2.24×10 ⁵	2.49×10 ⁻²	0.24	0.41
	C9H14O5	1.28×10 ⁵	2.45×10 ⁻²	2.08×10 ⁵	2.33×10 ⁻²	0.58	0.76
	C9H14O3	1.49×10^4	2.85×10 ⁻³	3.00×10 ⁴	-	0.02	0.05
	$C_8H_{12}O_4$	6.71×10 ⁴	1.28×10 ⁻²	1.35×10 ⁵	-	0.07	0.15
	$C_{10}H_{18}O_2$	2.62×10^2	5.01×10 ⁻⁵	4.60×10 ²	5.12×10 ⁻⁵	0.01	0.02
	C9H16O3	7.20×10 ³	1.38×10 ⁻³	1.48×10 ⁴	1.64×10 ⁻³	0.02	0.05
	$C_{10}H_{14}O_3$	7.34×10 ³	1.40×10 ⁻³	1.34×10 ⁴	1.50×10 ⁻³	0.05	0.10
	$C_9H_{12}O_4$	3.49×10 ⁴	6.66×10 ⁻³	5.94×10 ⁴	6.61×10 ⁻³	0.13	0.25
	$C_{10}H_{14}O_5$	4.00×10 ⁴	7.64×10 ⁻³	5.44×10 ⁴	6.06×10 ⁻³	0.71	0.85
	$C_9H_{12}O_6$	1.25×10^4	2.38×10 ⁻³	2.08×10^4	2.31×10 ⁻³	0.94	0.97
	$C_{10}H_{16}O_{6}$	-	8.32×10 ⁻³	7.12×10 ⁴	7.93×10 ⁻³	0.96	0.98
	$C_{10}H_{18}O_4$	-	1.49×10 ⁻³	1.29×10 ⁵	1.44×10 ⁻³	0.24	0.41
	C ₉ H ₁₆ O ₅	1.40×10 ⁴	2.67×10 ⁻³	2.76×10 ⁴	3.08×10 ⁻³	0.58	0.76
	$C_{10}H_{18}O_6$	-	1.39×10 ⁻³	1.31×10 ⁵	1.46×10 ⁻³	0.96	0.98
	$C_{10}H_{16}O_5$	8.02×10 ³	1.53×10 ⁻²	1.49×10 ⁴	1.65×10 ⁻²	0.72	0.85
	$C_9H_{14}O_6$	-	-	9.40×10 ⁴	1.05×10 ⁻²	0.94	0.97
	$C_{10}H_{18}O_5$	9.05×10 ³	1.73×10 ⁻³	1.65×10 ⁴	1.84×10 ⁻³	0.72	0.85
	$C_9H_{16}O_6$	-	-	1.41×10^4	1.57×10 ⁻³	0.94	0.97
	$C_9H_{14}O_7$	-	4.19×10 ⁻³	4.44×10 ⁴	4.95×10 ⁻³	1.00	1.00
	$C_{10}H_{14}O_7$	8.75×10^3	1.67×10 ⁻³	1.32×10 ⁴	1.47×10 ⁻³	1.00	1.00
	$C_{10}H_{14}O_{11}$	-	-	3.68×10 ²	4.10×10 ⁻⁵	1.00	1.00
HOM	$C_{10}H_{14}O_{13}$	-	-	3.88×10 ²	4.32×10 ⁻⁵	1.00	1.00
HOMS	C9H16O7	7.71×10 ³	1.47×10 ⁻³	1.91×10 ⁴	2.13×10 ⁻³	1.00	1.00
	$C_{10}H_{16}O_7$	1.63×10 ⁴	3.12×10 ⁻³	3.00×10 ⁴	3.35×10 ⁻³	1.00	1.00
	C9H14O8	-	-	4.12×10 ³	4.60×10 ⁻⁴	1.00	1.00
	$C_{10}H_{18}O_7$	4.70×10 ³	8.99×10 ⁻⁴	8.90×10 ³	9.91×10 ⁻⁴	1.00	1.00

	C9H16O8	-	-	2.54×10^{3}	2.82×10 ⁻⁴	1.00	1.00
	$C_{10}H_{16}O_8$	3.63×10 ³	6.94×10 ⁻⁴	7.08×10^{3}	7.67×10 ⁻⁴	1.00	1.00
	$C_{20}H_{34}O_4$	-		4.98×10^{2}	5.55×10-5	1.00	1.00
	$C_{18}H_{30}O_{6}$	-	-	2.74×10 ³	3.04×10 ⁻⁴	1.00	1.00
Dimers	C ₁₈ H ₂₈ O ₇	-	-	1.53×10 ⁴	1.70×10 ⁻³	1.00	1.00
	$C_{20}H_{30}O_8$	3.61×10^2	1.97×10 ⁻⁴	1.25×10^4	1.40×10 ⁻³	1.00	1.00
	C ₁₈ H ₂₆ O ₈	1.29×10 ⁴	2.47×10 ⁻³	2.34×10 ⁴	2.62×10 ⁻³	1.00	1.00

Table S4. Δ^3 -carene-SOA identified under high RH in Fig. S3.

[M–H]-	Theo. Mass	Error (ppm)	DBE	Suggested Formula	Molecular Structure
167.10657	167.107753	7.081	3	C ₁₀ H ₁₆ O ₂	
			C ₁₀ H ₁₆ O ₂	OH OH	
183 101733	183 102668	5 105	3	Culturo	→
103.101733	103.102008	5.105		C101116O3	о он

169.122233	169.123403	6.921	2	C ₁₀ H ₁₈ O ₂	он
199.096239	199.097583	6.747	3	C ₁₀ H ₁₆ O ₄	оон
					он он
181.085655	181.087018	7.526	3	C ₁₀ H ₁₄ O ₃	
351.214938	351.217698	7.858	5	C ₂₀ H ₃₂ O ₅	
365.194982	365.196962	5.421	6	C ₂₀ H ₃₀ O ₆	
185.080938	185.081932	5.374	3	C ₉ H ₁₄ O ₄	ОН ОН

[M–H] ⁻	Theo. Mass	Error (ppm)	DBE	Suggested Formula	Molecular Structure	
169.086288	169.087018	4.319	3	C ₉ H ₁₄ O ₃	OF C O	
						o → →
183.065329	183.066282	5.208	4	C ₉ H ₁₂ O ₄	он он	
167 107210	167 107752	2 102	2	C ₁₀ H ₁₆ O ₂	$-\langle \hat{c} \rangle$	
107.107217	167.107753	3.198	2		OH O	

Table S5. Limonene-SOA under high RH identified in Fig. 3 and Fig. 4.

183.102508	183.102668	0.874	3	C ₁₀ H ₁₆ O ₃	
					ОН ОН
					o → → → → → → → → → → → → →
185.081203	185.081932	3.943	3	C9H14O4	
					он он он
187.060122	187.061197	5.749	3	C ₈ H ₁₂ O5	Он Он Осн

					ООН
199.096857	199.097583	3.644	3	C ₁₀ H ₁₆ O ₄	он он он
					но
185.117126	185.118318	6.441	2	$C_{10}H_{18}O_3$	OF OF
187.096428	187.097583	6.172	2	C9H16O4	OH OOH
201.075661	201 076847	5 806	2	C.H. O.	O O H O O H
201.073001	201.070847	5.670	2	C9II14O5	он о

					но фо о он
181.086015	181.087018	5.536	4	C ₁₀ H ₁₄ O ₃	
337.237472	337.238433	2.851	4	C ₂₀ H ₃₄ O ₄	OH 0-0 HO
341.196189	341.196962	2.266	4	C ₁₈ H ₃₀ O ₆	
355.17525	355.176227	2.749	5	C ₁₈ H ₂₈ O ₇	
369.154689	369.155491	2.174	6	C ₁₈ H ₂₆ O ₈	

Table S6. The intensity of dimers from multi-carbonyls under high RH and low RH

Malagular formula	Absolute intensity	Relative intensity	Absolute intensity	Relative intensity
wolecular formula	(Low RH)	(Low RH)	(High RH)	(High RH)
$C_{19}H_{28}O_5$	3.60×10 ²	6.87×10 ⁻⁵	9.28×10 ³	2.06×10 ⁻³
$C_{19}H_{28}O_7$	5.00×10 ³	9.50×10 ⁻⁴	2.73×10 ⁴	6.08×10 ⁻³

$C_{19}H_{28}O_{6}$	1.78×10^{3}	3.40×10 ⁻⁴	1.39×10^{4}	3.10×10 ⁻³
$C_{18}H_{28}O_{6}$	3.19×10 ³	6.08×10 ⁻⁴	4.30×10 ³	9.56×10 ⁻⁴
$C_{18}H_{24}O_{6}$			6.06×10^2	1.35×10 ⁻⁴
$C_{18}H_{26}O_5$			6.28×10^{2}	1.40×10 ⁻⁴

Table S7. Dimers: RH-dependent discoveries for limonene and Δ^3 -carene.

54 dimers exclusively d	letected under high RH	63 dimers exclusively detected under low RH			
(limo	nene)	(Δ ³ -carene)			
Mala a la Canada	Absolute intensity	Malaa laa Gaaa la	Absolute intensity		
Molecular formula	(High RH)	Molecular formula	(Low RH)		
C ₁₈ H ₂₆ O ₄	4.66×10^{2}	$C_{17}H_{24}O_5$	1.59×10 ³		
$C_{16}H_{20}O_{6}$	7.24×10^{2}	$C_{10}H_{14}O_{11}$	3.90×10 ³		
$C_{13}H_{18}O_9$	3.36×10^{2}	$C_{14}H_{14}O_8$	4.02×10^{3}		
$C_{17}H_{22}O_6$	6.63×10 ³	$C_{20}H_{40}O_2$	4.60×10 ³		
$C_{18}H_{26}O_5$	6.28×10^{2}	$C_{12}H_{10}O_{10}$	4.00×10 ³		
$C_{19}H_{32}O_4$	1.58×10^{3}	$C_{13}H_{16}O_9$	8.34×10 ³		
$C_{15}H_{18}O_8$	1.65×10^{3}	$C_{19}H_{26}O_4$	4.96×10 ³		
$C_{13}H_{12}O_{10}$	8.85×10 ³	$C_{17}H_{22}O_6$	1.05×10 ³		
$C_{14}H_{20}O_9$	8.44×10^{2}	$C_{13}H_{12}O_{10}$	5.46×10 ³		
$C_{16}H_{28}O_7$	9.89×10 ³	$C_{13}H_{18}O_{10}$	4.68×10 ³		
C15H26O8	2.18×10 ³	$C_{15}H_{12}O_9$	4.22×10 ³		
$C_{10}H_8O_{13}$	6.33×10 ³	$C_{10}H_{12}O_{13}$	5.00×10 ³		
$C_{18}H_{24}O_{6}$	6.06×10^2	$C_{22}H_{28}O_3$	8.88×10 ³		
$C_{11}H_{14}O_{12}$	7.70×10^{2}	$C_{19}H_{26}O_{6}$	1.54×10^{3}		
$C_{21}H_{22}O_4$	4.80×10 ³	$C_{16}H_{20}O_9$	1.64×10 ³		
C20H34O4	2.53×10 ³	$C_{15}H_{18}O_{10}$	5.00×10 ³		
$C_{23}H_{32}O_2$	2.12×10 ³	$C_{16}H_{22}O_9$	1.69×10 ³		
$C_{18}H_{32}O_{6}$	3.68×10^{2}	$C_{18}H_{22}O_8$	3.32×10 ³		
$C_{17}H_{30}O_7$	7.46×10 ³	$C_{12}H_{16}O_{13}$	4.00×10 ³		
$C_{14}H_{22}O_{10}$	4.04×10 ³	$C_{20}H_{32}O_{6}$	8.21×10 ³		
$C_{21}H_{36}O_4$	1.36×10^{4}	$C_{16}H_{18}O_{10}$	4.50×10 ³		
$C_{17}H_{30}O_8$	4.68×10^{2}	$C_{16}H_{20}O_{10}$	5.20×10 ³		
$C_{12}H_{16}O_{13}$	2.43×10 ³	$C_{19}H_{24}O_8$	8.21×10 ³		
$C_{11}H_{14}O_{14}$	4.46×10^{2}	$C_{20}H_{28}O_7$	2.38×10 ³		
$C_{18}H_{30}O_8$	4.46×10^{2}	$C_{17}H_{20}O_{10}$	4.16×10 ³		
$C_{16}H_{26}O_{10}$	7.44×10^{2}	$C_{21}H_{36}O_{6}$	8.03×10 ³		
$C_{17}H_{20}O_{10}$	2.12×10^{3}	$C_{16}H_{26}O_{11}$	1.16×10 ³		
$C_{16}H_{24}O_{11}$	1.48×10^{3}	$C_{17}H_{26}O_{11}$	1.32×10^{3}		
$C_{20}H_{24}O_8$	3.96×10^{3}	$C_{18}H_{18}O_{11}$	4.02×10^{3}		
$C_{17}H_{22}O_{11}$	2.48×10^{3}	$C_{18}H_{22}O_{11}$	4.54×10 ³		
$C_{21}H_{34}O_8$	1.28×10^4	$C_{18}H_{26}O_{11}$	1.49×10 ³		
C ₁₃ H ₂₂ O ₁₅	4.06×10^2	$C_{22}H_{28}O_8$	4.62×10^{3}		

$C_{19}H_{32}O_{10}$	5.30×10 ²	$C_{15}H_{18}O_{14}$	4.08×10^{3}
C ₂₂ H ₃₂ O ₈	5.90×10 ³	C ₂₀ H ₃₂ O ₁₀	5.97×10 ³
$C_{20}H_{28}O_{10}$	1.53×10 ³	C ₁₇ H ₂₂ O ₁₃	5.10×10 ³
$C_{18}H_{18}O_{13}$	4.49×10 ³	$C_{21}H_{28}O_{10}$	4.25×10 ³
C ₁₉ H ₂₄ O ₁₂	1.49×10 ⁴	C ₁₉ H ₂₂ O ₁₂	5.44×10 ³
$C_{19}H_{30}O_{12}$	6.10×10 ²	$C_{22}H_{34}O_9$	7.52×10 ³
$C_{15}H_{18}O_{16}$	1.14×10 ³	$C_{21}H_{34}O_{10}$	2.12×10 ³
C ₂₃ H ₃₈ O ₉	4.34×10 ²	$C_{14}H_{24}O_{16}$	4.80×10 ³
$C_{32}H_{44}O_2$	8.96×10 ²	$C_{15}H_{22}O_{16}$	4.04×10^{3}
$C_{21}H_{36}O_{11}$	3.74×10 ²	$C_{17}H_{30}O_{14}$	3.51×10 ³
$C_{14}H_{26}O_{17}$	1.00×10 ³	$C_{22}H_{36}O_{10}$	4.02×10 ³
$C_{20}H_{26}O_{13}$	1.26×10^{4}	$C_{18}H_{24}O_{14}$	4.44×10 ³
$C_{22}H_{34}O_{11}$	1.92×10 ³	$C_{19}H_{28}O_{13}$	6.68×10 ³
$C_{20}H_{30}O_{13}$	9.36×10 ²	$C_{20}H_{22}O_{13}$	3.90×10 ³
$C_{18}H_{24}O_{15}$	2.05×10 ³	$C_{21}H_{26}O_{12}$	4.48×10^{3}
$C_{21}H_{38}O_{12}$	9.16×10 ²	$C_{22}H_{30}O_{11}$	2.29×10 ³
$C_{24}H_{38}O_{10}$	3.78×10 ³	$C_{15}H_{24}O_{17}$	4.70×10 ³
C ₁₆ H ₂₄ O ₁₇	1.26×10 ³	C ₂₅ H ₃₈ O ₉	5.24×10 ³
$C_{21}H_{24}O_{14}$	4.80×10 ³	$C_{17}H_{26}O_{16}$	5.18×10 ³
$C_{20}H_{34}O_4$	4.98×10 ²	$C_{21}H_{26}O_{13}$	4.82×10 ³
$C_{18}H_{30}O_{6}$	2.74×10 ³	$C_{22}H_{30}O_{12}$	2.47×10^{3}
$C_{18}H_{28}O_7$	1.53×10 ⁴	$C_{16}H_{24}O_{17}$	5.16×10 ³
		$C_{17}H_{28}O_{16}$	6.58×10^{3}
		$C_{29}H_{44}O_{6}$	5.82×10 ³
		$C_{17}H_{30}O_{16}$	2.06×10 ³
		$C_{22}H_{38}O_{12}$	3.86×10 ³
		C ₁₆ H ₃₂ O ₁₇	7.04×10 ³
		$C_{23}H_{30}O_{12}$	1.26×10 ³
		$C_{24}H_{34}O_{11}$	6.82×10^{3}
		$C_{20}H_{30}O_{10}$	4.14×10^{3}
		$C_{20}H_{32}O_{11}$	3.41×10 ³

Table S8. Intensity and partitioning coefficient for Δ^3 -carene products identified by MS (can be found

	Molecular	Low RH		High RH		Partitioning coefficient	
	formula	Absolute	Relative	Absolute	Relative	Low	High
		intensity	intensity	intensity	intensity	RH	RH
HOMs	$C_{10}H_{14}O_{11}$	3.41×10 ²	5.44×10 ⁻⁵	-	-	1.00	1.00

in the proposed mechanism).

	$C_{10}H_{16}O_8$	1.42×10 ³	2.26×10 ⁻⁴	8.31×10 ²	1.89×10 ⁻⁴	1.00	1.00
	$C_{10}H_{18}O_{11}$	2.32×10 ³	3.70×10 ⁻⁴	1.61×10 ³	3.65×10 ⁻⁴	1.00	1.00
	$C_{10}H_{18}O_8$	4.60×10 ²	7.34×10 ⁻⁵	-	-	1.00	1.00
	$C_{20}H_{30}O_{6}$	1.25×10 ⁴	1.97×10 ⁻³	7.55×10 ³	1.71×10 ⁻³	1.00	1.00
Dimers	$C_{20}H_{30}O_8$	6.99×10 ³	1.11×10 ⁻³	4.16×10 ³	9.44×10 ⁻⁴	1.00	1.00
	$C_{20}H_{30}O_{10}$	3.62×10 ³	5.77×10 ⁻⁴	-	-	1.00	1.00
	$C_{20}H_{32}O_7$	1.58×10 ⁴	2.51×10 ⁻³	7.45×10 ³	1.69×10 ⁻³	1.00	1.00
	$C_{20}H_{32}O_9$	1.31×10 ⁴	2.09×10 ⁻³	8.76×10 ³	1.99×10 ⁻³	1.00	1.00
	C ₂₀ H ₃₂ O ₁₁	2.98×10 ³	4.76×10 ⁻⁴	-	-	1.00	1.00
	C ₂₀ H ₃₂ O ₁₃	5.11×10 ²	8.15×10 ⁻⁵	3.12×10^2	7.09×10 ⁻⁵	1.00	1.00

Table S9. The experimental data and results of β -caryophyllene oxidation.

Erre	[Precursor]	[O]3	T (IZ)	RH	N(14.1-735nm) ^a	M(14.1-735nm) ^b	D(mean) ^c	SOA yield
Exp.	(ppb)	(ppm)	I (K)	(%)	(no.cm ⁻³)	(µg m ⁻³)	(nm)	(%)
1	234.9	6.3	298	3.2	$(2.3\pm0.1)\times10^{6}$	168.2±13.8	49.9±2.5	9.4±0.8
2	255.3	6.4	298	58	$(3.6\pm0.5)\times10^{6}$	584.1±10.9	64.3±0.7	25.1±0.5

^a $N_{(14.1-735 \text{ nm})}$ means the total particle number concentration from size 13.8 nm to 723.4 nm. ^b $M_{(13.8-723.4 \text{ nm})}$ means the total particle mass concentration from size13.8 nm to 723.4 nm. ^c $D_{(mean)}$ means the particle mean diameter.

Fig S1. The formation of sCIs from the ozonolysis of limonene and Δ^3 -carene.

Figure S2. Schematic description of the experiment.

Figure S3. Time evolution of SOA size (electromobility diameter) and mass concentration obtained from limonene/O₃ and Δ^3 -carene/O₃ experiments (Exp. 6 and Exp. 11).

Fig. S4. UPLC/ (–) ESI-Q-TOF-MS mass spectra of SOA from Δ^3 -carene ozonolysis. (a) MS under high and low RH conditions; (b) the identification of monomers under low RH condition.

Figure S5. Proposed formation mechanisms for SOA formation from Δ^3 -carene ozonolysis under high RH.

Figure S6. The SOA formation of low-concentration limonene under low and high RH (a) mass concentration (b) number concentration (c) SOA yield (d) mean diameter.

Figure S7. The SOA formation from endocyclic ozonolysis of limonene under low and high RH (a) mass concentration (b) number concentration (c) SOA yield (d) mean diameter. The initial concentration of limonene is 450 ppb and the concentration of O_3 is 67 ppb. Limonene ozonolysis primarily took place on endo-double bonds, with a rate constant of 2.01×10^{-16} cm³ molec.⁻¹ s⁻¹ (Shu and Atkinson, 1994).

Based on this rate constant, it can be estimated that approximately 10% of the limonene was consumed by O_3 upon exiting the reactor.

Figure S8. The molecular structure of β -caryophyllene and limonene.

Figure S9. The SOA formation of β -caryophyllene under low and high RH (a) mass concentration (b) number concentration (c) SOA yield (d) mean diameter.

Reference

Donahue, N. M., Kroll, J. H., Pandis, S. N., and Robinson, A. L.: A two-dimensional volatility basis set
Part 2: Diagnostics of organic-aerosol evolution, Atmos. Chem. Phys., 12, 615-634, https://doi.org/10.5194/acp-12-615-2012, 2012.

Li, Y., Poeschl, U., and Shiraiwa, M.: Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols, Atmos. Chem. Phys., 16, 3327-3344, https://doi.org/10.5194/acp-16-3327-2016, 2016.

Sbai, S. E. and Farida, B.: Photochemical aging and secondary organic aerosols generated from limonene in an oxidation flow reactor, Environ. Sci. Pollut. Res., 26, 18411-18420, https://doi.org/10.1007/s11356-019-05012-5, 2019.

Shu, Y. G. and Atkinson, R.: Rate Constants for the gas-pahse reactions of O_3 with a series of terpenes and OH radical formation from the O_3 reactions with sesquiterpenes at 296 ±2K, Int. J. Chem. Kinet., 26, 1193-1205, 10.1002/kin.550261207, 1994.