Articles | Volume 23, issue 18
https://doi.org/10.5194/acp-23-10579-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-10579-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An emerging aerosol climatology via remote sensing over Metro Manila, the Philippines
Genevieve Rose Lorenzo
Department of Hydrology and Atmospheric Sciences, University of
Arizona, Tucson, Arizona 85721, USA
Air Quality Dynamics-Instrumentation & Technology Development
Laboratory, Manila Observatory, Quezon City, 1108, the Philippines
Avelino F. Arellano
Department of Hydrology and Atmospheric Sciences, University of
Arizona, Tucson, Arizona 85721, USA
Maria Obiminda Cambaliza
Air Quality Dynamics-Instrumentation & Technology Development
Laboratory, Manila Observatory, Quezon City, 1108, the Philippines
Department of Physics, School of Science and Engineering, Ateneo de
Manila University, Quezon City, 1108, the Philippines
Christopher Castro
Department of Hydrology and Atmospheric Sciences, University of
Arizona, Tucson, Arizona 85721, USA
Melliza Templonuevo Cruz
Air Quality Dynamics-Instrumentation & Technology Development
Laboratory, Manila Observatory, Quezon City, 1108, the Philippines
Institute of Environmental Science and Meteorology, University of the Philippines, Diliman, Quezon City, 1101, the Philippines
Larry Di Girolamo
Department of Atmospheric Science, University of Illinois,
Urbana-Champlain, Illinois 61801, USA
Glenn Franco Gacal
Air Quality Dynamics-Instrumentation & Technology Development
Laboratory, Manila Observatory, Quezon City, 1108, the Philippines
Miguel Ricardo A. Hilario
Department of Hydrology and Atmospheric Sciences, University of
Arizona, Tucson, Arizona 85721, USA
Nofel Lagrosas
Center for Environmental Remote Sensing, Chiba University, Chiba,
263-8522, Japan
Hans Jarett Ong
Air Quality Dynamics-Instrumentation & Technology Development
Laboratory, Manila Observatory, Quezon City, 1108, the Philippines
James Bernard Simpas
Air Quality Dynamics-Instrumentation & Technology Development
Laboratory, Manila Observatory, Quezon City, 1108, the Philippines
Department of Physics, School of Science and Engineering, Ateneo de
Manila University, Quezon City, 1108, the Philippines
Sherdon Niño Uy
Air Quality Dynamics-Instrumentation & Technology Development
Laboratory, Manila Observatory, Quezon City, 1108, the Philippines
Department of Hydrology and Atmospheric Sciences, University of
Arizona, Tucson, Arizona 85721, USA
Department of Chemical and Environmental Engineering, University of
Arizona, Tucson, Arizona 85721, USA
Related authors
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2604, https://doi.org/10.5194/egusphere-2024-2604, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Novel aerosol hygroscopicity analysis of CAMP2Ex field campaign data show low aerosol hygroscopicity values in Southeast Asia. Organic carbon from smoke decreases hygroscopicity to levels more like those in continental than in polluted marine regions. Hygroscopicity changes at cloud level demonstrate how surface particles impact clouds in the region affecting model representation of aerosol and cloud interactions in similar polluted marine regions with high organic carbon emissions.
Sanja Dmitrovic, Joseph S. Schlosser, Ryan Bennett, Brian Cairns, Gao Chen, Glenn S. Diskin, Richard A. Ferrare, Johnathan W. Hair, Michael A. Jones, Jeffrey S. Reid, Taylor J. Shingler, Michael A. Shook, Armin Sorooshian, Kenneth L. Thornhill, Luke D. Ziemba, and Snorre Stamnes
EGUsphere, https://doi.org/10.5194/egusphere-2024-3088, https://doi.org/10.5194/egusphere-2024-3088, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study focuses on aerosol particles, which critically influence the atmosphere by scattering and absorbing light. To understand these interactions, airborne field campaigns deploy instruments that can measure these particles’ directly or indirectly via remote sensing. We introduce the In Situ Aerosol Retrieval Algorithm (ISARA) to ensure consistency between aerosol measurements and show that the two data sets generally align, with some deviation caused by the presence of larger particles.
Puja Roy, Robert M. Rauber, and Larry Di Girolamo
Atmos. Chem. Phys., 24, 11653–11678, https://doi.org/10.5194/acp-24-11653-2024, https://doi.org/10.5194/acp-24-11653-2024, 2024
Short summary
Short summary
Cloud droplet temperature and lifetime impact cloud microphysical processes such as the activation of ice-nucleating particles. We investigate the thermal and radial evolution of supercooled cloud droplets and their surrounding environments with an aim to better understand observed enhanced ice formation at supercooled cloud edges. This analysis shows that the magnitude of droplet cooling during evaporation is greater than estimated from past studies, especially for drier environments.
Soodabeh Namdari, Sanja Dmitrovic, Gao Chen, Yonghoon Choi, Ewan Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard A. Ferrare, Johnathan W. Hair, Simon Kirschler, John B. Nowak, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Xubin Zeng, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3024, https://doi.org/10.5194/egusphere-2024-3024, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We conducted this study to assess the accuracy of airborne measurements of wind, temperature, and humidity, essential for understanding atmospheric processes. Using data from NASA's ACTIVATE campaign, we compared measurements from the TAMMS and DLH aboard a Falcon aircraft with dropsondes from a King Air, matching data points based on location and time using statistical methods. The study showed strong agreement, confirming the reliability of these methods for advancing climate models.
Chayan Roychoudhury, Cenlin He, Rajesh Kumar, and Avelino F. Arellano Jr.
EGUsphere, https://doi.org/10.5194/egusphere-2024-2298, https://doi.org/10.5194/egusphere-2024-2298, 2024
Short summary
Short summary
We aim to understand the complexity of Earth's climate by proposing a novel, cost-effective approach to understand the web of interactions driving climate change. We focus on how pollution and weather processes interact and drive snowmelt in Asian glaciers. Our findings reveal significant yet overlooked processes across different climate models. Our approach can help in refining the development of these models for more reliable predictions in climate-vulnerable regions.
Kavitha Mottungan, Chayan Roychoudhury, Vanessa Brocchi, Benjamin Gaubert, Wenfu Tang, Mohammad Amin Mirrezaei, John McKinnon, Yafang Guo, David W. T. Griffith, Dietrich G. Feist, Isamu Morino, Mahesh K. Sha, Manvendra K. Dubey, Martine De Mazière, Nicholas M. Deutscher, Paul O. Wennberg, Ralf Sussmann, Rigel Kivi, Tae-Young Goo, Voltaire A. Velazco, Wei Wang, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 17, 5861–5885, https://doi.org/10.5194/amt-17-5861-2024, https://doi.org/10.5194/amt-17-5861-2024, 2024
Short summary
Short summary
A combination of data analysis techniques is introduced to separate local and regional influences on observed levels of carbon dioxide, carbon monoxide, and methane from an established ground-based remote sensing network. We take advantage of the covariations in these trace gases to identify the dominant type of sources driving these levels. Applying these methods in conjunction with existing approaches to other datasets can better address uncertainties in identifying sources and sinks.
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2604, https://doi.org/10.5194/egusphere-2024-2604, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Novel aerosol hygroscopicity analysis of CAMP2Ex field campaign data show low aerosol hygroscopicity values in Southeast Asia. Organic carbon from smoke decreases hygroscopicity to levels more like those in continental than in polluted marine regions. Hygroscopicity changes at cloud level demonstrate how surface particles impact clouds in the region affecting model representation of aerosol and cloud interactions in similar polluted marine regions with high organic carbon emissions.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Yafang Guo, Mohammad Amin Mirrezaei, Armin Sorooshian, and Avelino F. Arellano
EGUsphere, https://doi.org/10.5194/egusphere-2024-2617, https://doi.org/10.5194/egusphere-2024-2617, 2024
Short summary
Short summary
We assess the contributions of fire and anthropogenic emissions to O3 levels in Phoenix Arizona during a period of intense heat and drought conditions. We find that fire exacerbates O3 pollution and that interactions between weather, climate, and air chemistry are important to consider. This has implications to activities related to formulating emission reduction strategies in areas that are currently under-studied yet becoming relevant due to reports of increasing global aridity.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2743, https://doi.org/10.5194/egusphere-2024-2743, 2024
Short summary
Short summary
In-situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below cloud base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024, https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
Short summary
We examined marine boundary layer clouds and their interactions with aerosols in the E3SM single-column model (SCM) for a case study. The SCM shows good agreement when simulating the clouds with high-resolution models. It reproduces the relationship between cloud droplet and aerosol particle number concentrations as produced in global models. However, the relationship between cloud liquid water and droplet number concentration is different, warranting further investigation.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Sanja Dmitrovic, Johnathan W. Hair, Brian L. Collister, Ewan Crosbie, Marta A. Fenn, Richard A. Ferrare, David B. Harper, Chris A. Hostetler, Yongxiang Hu, John A. Reagan, Claire E. Robinson, Shane T. Seaman, Taylor J. Shingler, Kenneth L. Thornhill, Holger Vömel, Xubin Zeng, and Armin Sorooshian
Atmos. Meas. Tech., 17, 3515–3532, https://doi.org/10.5194/amt-17-3515-2024, https://doi.org/10.5194/amt-17-3515-2024, 2024
Short summary
Short summary
This study introduces and evaluates a new ocean surface wind speed product from the NASA Langley Research Center (LARC) airborne High-Spectral-Resolution Lidar – Generation 2 (HSRL-2) during the NASA ACTIVATE mission. We show that HSRL-2 surface wind speed data are accurate when compared to ground-truth dropsonde measurements. Therefore, the HSRL-2 instrument is able obtain accurate, high-resolution surface wind speed data in airborne field campaigns.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Taylor Shingler, Johnathan W. Hair, Armin Sorooshian, Richard A. Ferrare, Brian Cairns, Yonghoon Choi, Joshua DiGangi, Glenn S. Diskin, Chris Hostetler, Simon Kirschler, Richard H. Moore, David Painemal, Claire Robinson, Shane T. Seaman, K. Lee Thornhill, Christiane Voigt, and Edward Winstead
Atmos. Chem. Phys., 24, 6123–6152, https://doi.org/10.5194/acp-24-6123-2024, https://doi.org/10.5194/acp-24-6123-2024, 2024
Short summary
Short summary
Marine clouds are found to clump together in regions or lines, readily discernible from satellite images of the ocean. While clustering is also a feature of deep storm clouds, we focus on smaller cloud systems associated with fair weather and brief localized showers. Two aircraft sampled the region around these shallow systems: one incorporated measurements taken within, adjacent to, and below the clouds, while the other provided a survey from above using remote sensing techniques.
Yafang Guo, Chayan Roychoudhury, Mohammad Amin Mirrezaei, Rajesh Kumar, Armin Sorooshian, and Avelino F. Arellano
Geosci. Model Dev., 17, 4331–4353, https://doi.org/10.5194/gmd-17-4331-2024, https://doi.org/10.5194/gmd-17-4331-2024, 2024
Short summary
Short summary
This research focuses on surface ozone (O3) pollution in Arizona, a historically air-quality-challenged arid and semi-arid region in the US. The unique characteristics of this kind of region, e.g., intense heat, minimal moisture, and persistent desert shrubs, play a vital role in comprehending O3 exceedances. Using the WRF-Chem model, we analyzed O3 levels in the pre-monsoon month, revealing the model's skill in capturing diurnal and MDA8 O3 levels.
Michie Vianca De Vera, Larry Di Girolamo, Guangyu Zhao, Robert M. Rauber, Stephen W. Nesbitt, and Greg M. McFarquhar
Atmos. Chem. Phys., 24, 5603–5623, https://doi.org/10.5194/acp-24-5603-2024, https://doi.org/10.5194/acp-24-5603-2024, 2024
Short summary
Short summary
Tropical oceanic low clouds remain a dominant source of uncertainty in cloud feedback in climate models due to their macrophysical properties (fraction, size, height, shape, distribution) being misrepresented. High-resolution satellite imagery over the Philippine oceans is used here to characterize cumulus macrophysical properties and their relationship to meteorological variables. Such information can act as a benchmark for cloud models and can improve low-cloud generation in climate models.
Leong Wai Siu, Joseph S. Schlosser, David Painemal, Brian Cairns, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Chris A. Hostetler, Longlei Li, Mary M. Kleb, Amy Jo Scarino, Taylor J. Shingler, Armin Sorooshian, Snorre A. Stamnes, and Xubin Zeng
Atmos. Meas. Tech., 17, 2739–2759, https://doi.org/10.5194/amt-17-2739-2024, https://doi.org/10.5194/amt-17-2739-2024, 2024
Short summary
Short summary
An unprecedented 3-year aerosol dataset was collected from a recent NASA field campaign over the western North Atlantic Ocean, which offers a special opportunity to evaluate two state-of-the-art remote sensing instruments, one lidar and the other polarimeter, on the same aircraft. Special attention has been paid to validate aerosol optical depth data and their uncertainties when no reference dataset is available. Physical reasons for the disagreement between two instruments are discussed.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Jason L. Tackett, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1127, https://doi.org/10.5194/egusphere-2024-1127, 2024
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosols over the western North Atlantic Ocean (WNAO) during the winter and summer campaigns of ACTIVATE 2020. Model results are evaluated against in situ and remote sensing measurements from two aircraft as well as ground-based and satellite observations. The improved understanding of the aerosol life cycle, composition, transport pathways, and distribution has important implications for characterizing aerosol-cloud-meteorology interactions over the WNAO.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Daniel Ziskin, Debbie Mao, David Edwards, Avelino Arellano, Kevin Raeder, Jeffrey Anderson, and Helen Worden
Atmos. Meas. Tech., 17, 1941–1963, https://doi.org/10.5194/amt-17-1941-2024, https://doi.org/10.5194/amt-17-1941-2024, 2024
Short summary
Short summary
We assimilate different MOPITT CO products to understand the impact of (1) assimilating multispectral and joint retrievals versus single spectral products, (2) assimilating satellite profile products versus column products, and (3) assimilating multispectral and joint retrievals versus assimilating individual products separately.
Eva-Lou Edwards, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Claire E. Robinson, Michael A. Shook, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 3349–3378, https://doi.org/10.5194/acp-24-3349-2024, https://doi.org/10.5194/acp-24-3349-2024, 2024
Short summary
Short summary
We investigate Cl− depletion in sea salt particles over the northwest Atlantic from December 2021 to June 2022 using an airborne dataset. Losses of Cl− are greatest in May and least in December–February and March. Inorganic acidic species can account for all depletion observed for December–February, March, and June near Bermuda but none in May. Quantifying Cl− depletion as a percentage captures seasonal trends in depletion but fails to convey the effects it may have on atmospheric oxidation.
Miguel Ricardo A. Hilario, Avelino F. Arellano, Ali Behrangi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Michael A. Shook, Luke D. Ziemba, and Armin Sorooshian
Atmos. Meas. Tech., 17, 37–55, https://doi.org/10.5194/amt-17-37-2024, https://doi.org/10.5194/amt-17-37-2024, 2024
Short summary
Short summary
Wet scavenging strongly influences aerosol lifetime and interactions but is a large uncertainty in global models. We present a method to identify meteorological variables relevant for estimating wet scavenging. During long-range transport over the tropical western Pacific, relative humidity and the frequency of humid conditions are better predictors of scavenging than precipitation. This method can be applied to other regions, and our findings can inform scavenging parameterizations in models.
Nofel Lagrosas, Kosuke Okubo, Hitoshi Irie, Yutaka Matsumi, Tomoki Nakayama, Yutaka Sugita, Takashi Okada, and Tatsuo Shiina
Atmos. Meas. Tech., 16, 5937–5951, https://doi.org/10.5194/amt-16-5937-2023, https://doi.org/10.5194/amt-16-5937-2023, 2023
Short summary
Short summary
This work examines the near-ground aerosol–weather relationship from 7-month continuous lidar and weather observations in Chiba, Japan. Optical parameters from lidar data are compared with weather parameters to understand and quantify the aerosol–weather relationship and how these optical parameters are affected by the weather and season. The results provide insights into analyzing optical properties of radioactive aerosols when the lidar system is continuously operated in a radioactive area.
Simon Kirschler, Christiane Voigt, Bruce E. Anderson, Gao Chen, Ewan C. Crosbie, Richard A. Ferrare, Valerian Hahn, Johnathan W. Hair, Stefan Kaufmann, Richard H. Moore, David Painemal, Claire E. Robinson, Kevin J. Sanchez, Amy J. Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10731–10750, https://doi.org/10.5194/acp-23-10731-2023, https://doi.org/10.5194/acp-23-10731-2023, 2023
Short summary
Short summary
In this study we present an overview of liquid and mixed-phase clouds and precipitation in the marine boundary layer over the western North Atlantic Ocean. We compare microphysical properties of pure liquid clouds to mixed-phase clouds and show that the initiation of the ice phase in mixed-phase clouds promotes precipitation. The observational data presented in this study are well suited for investigating the processes that give rise to liquid and mixed-phase clouds, ice, and precipitation.
Qian Xiao, Jiaoshi Zhang, Yang Wang, Luke D. Ziemba, Ewan Crosbie, Edward L. Winstead, Claire E. Robinson, Joshua P. DiGangi, Glenn S. Diskin, Jeffrey S. Reid, K. Sebastian Schmidt, Armin Sorooshian, Miguel Ricardo A. Hilario, Sarah Woods, Paul Lawson, Snorre A. Stamnes, and Jian Wang
Atmos. Chem. Phys., 23, 9853–9871, https://doi.org/10.5194/acp-23-9853-2023, https://doi.org/10.5194/acp-23-9853-2023, 2023
Short summary
Short summary
Using recent airborne measurements, we show that the influences of anthropogenic emissions, transport, convective clouds, and meteorology lead to new particle formation (NPF) under a variety of conditions and at different altitudes in tropical marine environments. NPF is enhanced by fresh urban emissions in convective outflow but is suppressed in air masses influenced by aged urban emissions where reactive precursors are mostly consumed while particle surface area remains relatively high.
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 3931–3957, https://doi.org/10.5194/amt-16-3931-2023, https://doi.org/10.5194/amt-16-3931-2023, 2023
Short summary
Short summary
We test a new method for measuring the 3D spatial variations of water within clouds, using measurements of reflections of the Sun's light observed at multiple angles by satellites. This is a great improvement on older methods, which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds, where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
Rose Marie Miller, Robert M. Rauber, Larry Di Girolamo, Matthew Rilloraza, Dongwei Fu, Greg M. McFarquhar, Stephen W. Nesbitt, Luke D. Ziemba, Sarah Woods, and Kenneth Lee Thornhill
Atmos. Chem. Phys., 23, 8959–8977, https://doi.org/10.5194/acp-23-8959-2023, https://doi.org/10.5194/acp-23-8959-2023, 2023
Short summary
Short summary
The influence of human-produced aerosols on clouds remains one of the uncertainties in radiative forcing of Earth’s climate. Measurements of aerosol chemistry from sources around the Philippines illustrate the linkage between aerosol chemical composition and cloud droplet characteristics. Differences in aerosol chemical composition in the marine layer from biomass burning, industrial, ship-produced, and marine aerosols are shown to impact cloud microphysical structure just above cloud base.
Armin Sorooshian, Mikhail D. Alexandrov, Adam D. Bell, Ryan Bennett, Grace Betito, Sharon P. Burton, Megan E. Buzanowicz, Brian Cairns, Eduard V. Chemyakin, Gao Chen, Yonghoon Choi, Brian L. Collister, Anthony L. Cook, Andrea F. Corral, Ewan C. Crosbie, Bastiaan van Diedenhoven, Joshua P. DiGangi, Glenn S. Diskin, Sanja Dmitrovic, Eva-Lou Edwards, Marta A. Fenn, Richard A. Ferrare, David van Gilst, Johnathan W. Hair, David B. Harper, Miguel Ricardo A. Hilario, Chris A. Hostetler, Nathan Jester, Michael Jones, Simon Kirschler, Mary M. Kleb, John M. Kusterer, Sean Leavor, Joseph W. Lee, Hongyu Liu, Kayla McCauley, Richard H. Moore, Joseph Nied, Anthony Notari, John B. Nowak, David Painemal, Kasey E. Phillips, Claire E. Robinson, Amy Jo Scarino, Joseph S. Schlosser, Shane T. Seaman, Chellappan Seethala, Taylor J. Shingler, Michael A. Shook, Kenneth A. Sinclair, William L. Smith Jr., Douglas A. Spangenberg, Snorre A. Stamnes, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Andrzej P. Wasilewski, Hailong Wang, Edward L. Winstead, Kira Zeider, Xubin Zeng, Bo Zhang, Luke D. Ziemba, and Paquita Zuidema
Earth Syst. Sci. Data, 15, 3419–3472, https://doi.org/10.5194/essd-15-3419-2023, https://doi.org/10.5194/essd-15-3419-2023, 2023
Short summary
Short summary
The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol–cloud–meteorology interactions. HU-25 Falcon and King Air aircraft conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes.
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 1803–1847, https://doi.org/10.5194/amt-16-1803-2023, https://doi.org/10.5194/amt-16-1803-2023, 2023
Short summary
Short summary
We describe a new method for measuring the 3D spatial variations in water within clouds using the reflected light of the Sun viewed at multiple different angles by satellites. This is a great improvement over older methods, which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds, where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023, https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary
Short summary
The impact of aerosols on clouds is one of the largest uncertainties in the human forcing of the climate. Aerosol can increase the concentrations of droplets in clouds, but observational and model studies produce widely varying estimates of this effect. We show that these estimates can be reconciled if only polluted clouds are studied, but this is insufficient to constrain the climate impact of aerosol. The uncertainty in aerosol impact on clouds is currently driven by cases with little aerosol.
Yulan Hong, Stephen W. Nesbitt, Robert J. Trapp, and Larry Di Girolamo
Atmos. Meas. Tech., 16, 1391–1406, https://doi.org/10.5194/amt-16-1391-2023, https://doi.org/10.5194/amt-16-1391-2023, 2023
Short summary
Short summary
Deep convective updrafts form overshooting tops (OTs) when they extend into the upper troposphere and lower stratosphere. An OT often indicates hazardous weather conditions. The global distribution of OTs is useful for understanding global severe weather conditions. The Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua and Terra satellites provides 2 decades of records on the Earth–atmosphere system with stable orbits, which are used in this study to derive 20-year OT climatology.
Yoel A. Cala-Pérez, Carlos A. Ochoa-Moya, Arturo I. Quintanar, and Christopher L. Castro
EGUsphere, https://doi.org/10.5194/egusphere-2022-1332, https://doi.org/10.5194/egusphere-2022-1332, 2022
Preprint withdrawn
Short summary
Short summary
We built two climate classifications based on historical climate and numerical model data and analyzed the model’s performance, comparing both classifications. The model showed small but significant changes in the future climate projection of precipitation. Changes in the wind pattern over the Caribbean were not noticeable. Assessing future climate using these classifications was a valuable tool for understanding future climate projections.
Hossein Dadashazar, Andrea F. Corral, Ewan Crosbie, Sanja Dmitrovic, Simon Kirschler, Kayla McCauley, Richard Moore, Claire Robinson, Joseph S. Schlosser, Michael Shook, K. Lee Thornhill, Christiane Voigt, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 13897–13913, https://doi.org/10.5194/acp-22-13897-2022, https://doi.org/10.5194/acp-22-13897-2022, 2022
Short summary
Short summary
Multi-season airborne data over the northwestern Atlantic show that organic mass fraction and the relative amount of oxygenated organics within that fraction are enhanced in droplet residual particles as compared to particles below and above cloud. In-cloud aqueous processing is shown to be a potential driver of this compositional shift in cloud. This implies that aerosol–cloud interactions in the region reduce aerosol hygroscopicity due to the jump in the organic : sulfate ratio in cloud.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Claire E. Robinson, Edward L. Winstead, K. Lee Thornhill, Rachel A. Braun, Alexander B. MacDonald, Connor Stahl, Armin Sorooshian, Susan C. van den Heever, Joshua P. DiGangi, Glenn S. Diskin, Sarah Woods, Paola Bañaga, Matthew D. Brown, Francesca Gallo, Miguel Ricardo A. Hilario, Carolyn E. Jordan, Gabrielle R. Leung, Richard H. Moore, Kevin J. Sanchez, Taylor J. Shingler, and Elizabeth B. Wiggins
Atmos. Chem. Phys., 22, 13269–13302, https://doi.org/10.5194/acp-22-13269-2022, https://doi.org/10.5194/acp-22-13269-2022, 2022
Short summary
Short summary
The linkage between cloud droplet and aerosol particle chemical composition was analyzed using samples collected in a polluted tropical marine environment. Variations in the droplet composition were related to physical and dynamical processes in clouds to assess their relative significance across three cases that spanned a range of rainfall amounts. In spite of the pollution, sea salt still remained a major contributor to the droplet composition and was preferentially enhanced in rainwater.
Eva-Lou Edwards, Jeffrey S. Reid, Peng Xian, Sharon P. Burton, Anthony L. Cook, Ewan C. Crosbie, Marta A. Fenn, Richard A. Ferrare, Sean W. Freeman, John W. Hair, David B. Harper, Chris A. Hostetler, Claire E. Robinson, Amy Jo Scarino, Michael A. Shook, G. Alexander Sokolowsky, Susan C. van den Heever, Edward L. Winstead, Sarah Woods, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 12961–12983, https://doi.org/10.5194/acp-22-12961-2022, https://doi.org/10.5194/acp-22-12961-2022, 2022
Short summary
Short summary
This study compares NAAPS-RA model simulations of aerosol optical thickness (AOT) and extinction to those retrieved with a high spectral resolution lidar near the Philippines. Agreement for AOT was good, and extinction agreement was strongest below 1500 m. Substituting dropsonde relative humidities into NAAPS-RA did not drastically improve agreement, and we discuss potential reasons why. Accurately modeling future conditions in this region is crucial due to its susceptibility to climate change.
Edward Gryspeerdt, Daniel T. McCoy, Ewan Crosbie, Richard H. Moore, Graeme J. Nott, David Painemal, Jennifer Small-Griswold, Armin Sorooshian, and Luke Ziemba
Atmos. Meas. Tech., 15, 3875–3892, https://doi.org/10.5194/amt-15-3875-2022, https://doi.org/10.5194/amt-15-3875-2022, 2022
Short summary
Short summary
Droplet number concentration is a key property of clouds, influencing a variety of cloud processes. It is also used for estimating the cloud response to aerosols. The satellite retrieval depends on a number of assumptions – different sampling strategies are used to select cases where these assumptions are most likely to hold. Here we investigate the impact of these strategies on the agreement with in situ data, the droplet number climatology and estimates of the indirect radiative forcing.
Simon Kirschler, Christiane Voigt, Bruce Anderson, Ramon Campos Braga, Gao Chen, Andrea F. Corral, Ewan Crosbie, Hossein Dadashazar, Richard A. Ferrare, Valerian Hahn, Johannes Hendricks, Stefan Kaufmann, Richard Moore, Mira L. Pöhlker, Claire Robinson, Amy J. Scarino, Dominik Schollmayer, Michael A. Shook, K. Lee Thornhill, Edward Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 8299–8319, https://doi.org/10.5194/acp-22-8299-2022, https://doi.org/10.5194/acp-22-8299-2022, 2022
Short summary
Short summary
In this study we show that the vertical velocity dominantly impacts the cloud droplet number concentration (NC) of low-level clouds over the western North Atlantic in the winter and summer season, while the cloud condensation nuclei concentration, aerosol size distribution and chemical composition impact NC within a season. The observational data presented in this study can evaluate and improve the representation of aerosol–cloud interactions for a wide range of conditions.
Dongwei Fu, Larry Di Girolamo, Robert M. Rauber, Greg M. McFarquhar, Stephen W. Nesbitt, Jesse Loveridge, Yulan Hong, Bastiaan van Diedenhoven, Brian Cairns, Mikhail D. Alexandrov, Paul Lawson, Sarah Woods, Simone Tanelli, Sebastian Schmidt, Chris Hostetler, and Amy Jo Scarino
Atmos. Chem. Phys., 22, 8259–8285, https://doi.org/10.5194/acp-22-8259-2022, https://doi.org/10.5194/acp-22-8259-2022, 2022
Short summary
Short summary
Satellite-retrieved cloud microphysics are widely used in climate research because of their central role in water and energy cycles. Here, we provide the first detailed investigation of retrieved cloud drop sizes from in situ and various satellite and airborne remote sensing techniques applied to real cumulus cloud fields. We conclude that the most widely used passive remote sensing method employed in climate research produces high biases of 6–8 µm (60 %–80 %) caused by 3-D radiative effects.
Joseph S. Schlosser, Connor Stahl, Armin Sorooshian, Yen Thi-Hoang Le, Ki-Joon Jeon, Peng Xian, Carolyn E. Jordan, Katherine R. Travis, James H. Crawford, Sung Yong Gong, Hye-Jung Shin, In-Ho Song, and Jong-sang Youn
Atmos. Chem. Phys., 22, 7505–7522, https://doi.org/10.5194/acp-22-7505-2022, https://doi.org/10.5194/acp-22-7505-2022, 2022
Short summary
Short summary
During a major haze pollution episode in March 2019, anthropogenic emissions were dominant in the boundary layer over Incheon and Seoul, South Korea. Using supermicrometer and submicrometer size- and chemistry-resolved aerosol particle measurements taken during this haze pollution period, this work shows that local emissions and a shallow boundary layer, enhanced humidity, and low temperature promoted local heterogeneous formation of secondary inorganic and organic aerosol species.
Meloë S. F. Kacenelenbogen, Qian Tan, Sharon P. Burton, Otto P. Hasekamp, Karl D. Froyd, Yohei Shinozuka, Andreas J. Beyersdorf, Luke Ziemba, Kenneth L. Thornhill, Jack E. Dibb, Taylor Shingler, Armin Sorooshian, Reed W. Espinosa, Vanderlei Martins, Jose L. Jimenez, Pedro Campuzano-Jost, Joshua P. Schwarz, Matthew S. Johnson, Jens Redemann, and Gregory L. Schuster
Atmos. Chem. Phys., 22, 3713–3742, https://doi.org/10.5194/acp-22-3713-2022, https://doi.org/10.5194/acp-22-3713-2022, 2022
Short summary
Short summary
The impact of aerosols on Earth's radiation budget and human health is important and strongly depends on their composition. One desire of our scientific community is to derive the composition of the aerosol from satellite sensors. However, satellites observe aerosol optical properties (and not aerosol composition) based on remote sensing instrumentation. This study assesses how much aerosol optical properties can tell us about aerosol composition.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Hossein Dadashazar, Majid Alipanah, Miguel Ricardo A. Hilario, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Andrew J. Peters, Amy Jo Scarino, Michael Shook, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Bo Zhang, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 16121–16141, https://doi.org/10.5194/acp-21-16121-2021, https://doi.org/10.5194/acp-21-16121-2021, 2021
Short summary
Short summary
This study investigates precipitation impacts on long-range transport of North American outflow over the western North Atlantic Ocean (WNAO). Results demonstrate that precipitation scavenging plays a significant role in modifying surface aerosol concentrations over the WNAO, especially in winter and spring due to large-scale scavenging processes. This study highlights how precipitation impacts surface aerosol properties with relevance for other marine regions vulnerable to continental outflow.
Connor Stahl, Ewan Crosbie, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Zenn Marie Cainglet, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Julie Mae Dado, Miguel Ricardo A. Hilario, Gabrielle Frances Leung, Alexander B. MacDonald, Angela Monina Magnaye, Jeffrey Reid, Claire Robinson, Michael A. Shook, James Bernard Simpas, Shane Marie Visaga, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 14109–14129, https://doi.org/10.5194/acp-21-14109-2021, https://doi.org/10.5194/acp-21-14109-2021, 2021
Short summary
Short summary
A total of 159 cloud water samples were collected and measured for total organic carbon (TOC) during CAMP2Ex. On average, 30 % of TOC was speciated based on carboxylic/sulfonic acids and dimethylamine. Results provide a critical constraint on cloud composition and vertical profiles of TOC and organic species ranging from ~250 m to ~ 7 km and representing a variety of cloud types and air mass source influences such as biomass burning, marine emissions, anthropogenic activity, and dust.
Hossein Dadashazar, David Painemal, Majid Alipanah, Michael Brunke, Seethala Chellappan, Andrea F. Corral, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Claire Robinson, Amy Jo Scarino, Michael Shook, Kenneth Sinclair, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Xubin Zeng, Luke Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 21, 10499–10526, https://doi.org/10.5194/acp-21-10499-2021, https://doi.org/10.5194/acp-21-10499-2021, 2021
Short summary
Short summary
This study investigates the seasonal cycle of cloud drop number concentration (Nd) over the western North Atlantic Ocean (WNAO) using multiple datasets. Reasons for the puzzling discrepancy between the seasonal cycles of Nd and aerosol concentration were identified. Results indicate that Nd is highest in winter (when aerosol proxy values are often lowest) due to conditions both linked to cold-air outbreaks and that promote greater droplet activation.
Genevieve Rose Lorenzo, Paola Angela Bañaga, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Mojtaba AzadiAghdam, Avelino Arellano, Grace Betito, Rachel Braun, Andrea F. Corral, Hossein Dadashazar, Eva-Lou Edwards, Edwin Eloranta, Robert Holz, Gabrielle Leung, Lin Ma, Alexander B. MacDonald, Jeffrey S. Reid, James Bernard Simpas, Connor Stahl, Shane Marie Visaga, and Armin Sorooshian
Atmos. Chem. Phys., 21, 6155–6173, https://doi.org/10.5194/acp-21-6155-2021, https://doi.org/10.5194/acp-21-6155-2021, 2021
Short summary
Short summary
Firework emissions change the physicochemical and optical properties of water-soluble particles, which subsequently alters the background aerosol’s respirability, influence on surroundings, ability to uptake gases, and viability as cloud condensation nuclei (CCN). There was heavy aerosol loading due to fireworks in the boundary layer. The aerosol constituents were largely water-soluble and submicrometer in size due to both inorganic salts in firework materials and gas-to-particle conversion.
Miguel Ricardo A. Hilario, Ewan Crosbie, Michael Shook, Jeffrey S. Reid, Maria Obiminda L. Cambaliza, James Bernard B. Simpas, Luke Ziemba, Joshua P. DiGangi, Glenn S. Diskin, Phu Nguyen, F. Joseph Turk, Edward Winstead, Claire E. Robinson, Jian Wang, Jiaoshi Zhang, Yang Wang, Subin Yoon, James Flynn, Sergio L. Alvarez, Ali Behrangi, and Armin Sorooshian
Atmos. Chem. Phys., 21, 3777–3802, https://doi.org/10.5194/acp-21-3777-2021, https://doi.org/10.5194/acp-21-3777-2021, 2021
Short summary
Short summary
This study characterizes long-range transport from major Asian pollution sources into the tropical northwest Pacific and the impact of scavenging on these air masses. We combined aircraft observations, HYSPLIT trajectories, reanalysis, and satellite retrievals to reveal distinct composition and size distribution profiles associated with specific emission sources and wet scavenging. The results of this work have implications for international policymaking related to climate and health.
Connor Stahl, Melliza Templonuevo Cruz, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Mojtaba Azadi Aghdam, Maria Obiminda Cambaliza, Genevieve Rose Lorenzo, Alexander B. MacDonald, Miguel Ricardo A. Hilario, Preciosa Corazon Pabroa, John Robin Yee, James Bernard Simpas, and Armin Sorooshian
Atmos. Chem. Phys., 20, 15907–15935, https://doi.org/10.5194/acp-20-15907-2020, https://doi.org/10.5194/acp-20-15907-2020, 2020
Short summary
Short summary
Long-term (16-month) high-frequency (weekly) measurements of size-resolved aerosol composition are reported. Important insights are discussed about factors (e.g., transport, fires, precipitation, photo-oxidation) impacting the mass size distributions of organic and sulfonic acids at a coastal megacity with diverse meteorology. The size-resolved nature of the data yielded one such finding that organic acids preferentially adsorb to dust rather than sea salt particles.
Yulan Hong and Larry Di Girolamo
Atmos. Chem. Phys., 20, 8267–8291, https://doi.org/10.5194/acp-20-8267-2020, https://doi.org/10.5194/acp-20-8267-2020, 2020
Short summary
Short summary
Cloud phase plays a crucial role in Earth radiation budget but is not well understood. Using A-Train satellite observations, this study provides climatological studies of cloud phase characteristics over Southeast Asia on multiple meteorological scales. Results show that ice, liquid, and ice over liquid clouds display distinct spatial heterogeneity and spectral radiance features. The intraseasonal and interannual behaviors of cloud phases are useful to track the MJO and ENSO.
Alexander B. MacDonald, Ali Hossein Mardi, Hossein Dadashazar, Mojtaba Azadi Aghdam, Ewan Crosbie, Haflidi H. Jonsson, Richard C. Flagan, John H. Seinfeld, and Armin Sorooshian
Atmos. Chem. Phys., 20, 7645–7665, https://doi.org/10.5194/acp-20-7645-2020, https://doi.org/10.5194/acp-20-7645-2020, 2020
Short summary
Short summary
Understanding how humans affect Earth's climate requires understanding of how particles in the air affect the number concentration of droplets in a cloud (Nd). We use the air-equivalent mass concentration of different chemical species contained in cloud water to predict Nd. In this study we found that the prediction of Nd is (1) best described by total sulfate; (2) improved when considering up to five species; and (3) dependent on factors like turbulence, smoke presence, and in-cloud height.
Hossein Dadashazar, Ewan Crosbie, Mohammad S. Majdi, Milad Panahi, Mohammad A. Moghaddam, Ali Behrangi, Michael Brunke, Xubin Zeng, Haflidi H. Jonsson, and Armin Sorooshian
Atmos. Chem. Phys., 20, 4637–4665, https://doi.org/10.5194/acp-20-4637-2020, https://doi.org/10.5194/acp-20-4637-2020, 2020
Short summary
Short summary
Clearings in the marine-boundary-layer (MBL) cloud deck of the Pacific Ocean were studied. Remote sensing, reanalysis, and airborne data were used along with machine-learning modeling to characterize the spatiotemporal nature of clearings and factors governing their growth. The most significant implications of our results are linked to modeling of fog and MBL clouds, with implications for societal and environmental issues like climate, military operations, transportation, and coastal ecology.
Michel M. Verstraete, Linda A. Hunt, Hugo De Lemos, and Larry Di Girolamo
Earth Syst. Sci. Data, 12, 611–628, https://doi.org/10.5194/essd-12-611-2020, https://doi.org/10.5194/essd-12-611-2020, 2020
Short summary
Short summary
The radiometric camera-by-camera cloud mask product, available for each of the nine cameras of the MISR instrument, contains a variable number of missing values, especially wherever and whenever the instrument is switched from the Global to Local Mode of operation. This paper proposes a simple method for effectively replacing those missing values and demonstrates the performance of the process. MISR data and software tools are obtainable from public domain websites to explore this issue further.
Rachel A. Braun, Mojtaba Azadi Aghdam, Paola Angela Bañaga, Grace Betito, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Genevieve Rose Lorenzo, Alexander B. MacDonald, James Bernard Simpas, Connor Stahl, and Armin Sorooshian
Atmos. Chem. Phys., 20, 2387–2405, https://doi.org/10.5194/acp-20-2387-2020, https://doi.org/10.5194/acp-20-2387-2020, 2020
Miguel Ricardo A. Hilario, Melliza T. Cruz, Maria Obiminda L. Cambaliza, Jeffrey S. Reid, Peng Xian, James B. Simpas, Nofel D. Lagrosas, Sherdon Niño Y. Uy, Steve Cliff, and Yongjing Zhao
Atmos. Chem. Phys., 20, 1255–1276, https://doi.org/10.5194/acp-20-1255-2020, https://doi.org/10.5194/acp-20-1255-2020, 2020
Short summary
Short summary
The research apportions size-resolved aerosol contributions from the South China Sea during the Vasco research cruise in September 2011. As aerosols can affect precipitation rates and cloud formation, identifying sources is key to characterizing the region and developing our understanding of aerosol–cloud behavior. A strong biomass burning signal was identified using elemental particulate matter in the fine and ultrafine size ranges. Oil combustion, soil dust, and sea spray were also identified.
Melliza Templonuevo Cruz, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Connor Stahl, Mojtaba Azadi Aghdam, Maria Obiminda Cambaliza, Hossein Dadashazar, Miguel Ricardo Hilario, Genevieve Rose Lorenzo, Lin Ma, Alexander B. MacDonald, Preciosa Corazon Pabroa, John Robin Yee, James Bernard Simpas, and Armin Sorooshian
Atmos. Chem. Phys., 19, 10675–10696, https://doi.org/10.5194/acp-19-10675-2019, https://doi.org/10.5194/acp-19-10675-2019, 2019
Short summary
Short summary
This study is the first to report size-resolved PM mass and composition in metro Manila, Philippines. The results, which focus on the southwest monsoon season (SWM), are important with regard to understanding the competition between local sources and long-range transport, characterizing the properties of aerosol impacted by both aqueous processing and wet scavenging, and providing contextual data for comparison with other monsoonal regions and coastal megacities.
Barbara Ervens, Armin Sorooshian, Abdulmonam M. Aldhaif, Taylor Shingler, Ewan Crosbie, Luke Ziemba, Pedro Campuzano-Jost, Jose L. Jimenez, and Armin Wisthaler
Atmos. Chem. Phys., 18, 16099–16119, https://doi.org/10.5194/acp-18-16099-2018, https://doi.org/10.5194/acp-18-16099-2018, 2018
Short summary
Short summary
The paper presents a new framework that can be used to identify emission scenarios in which aerosol populations are most likely modified by chemical processes in clouds. We show that in neither very polluted nor in very clean air masses is this the case. Only if the ratio of possible aerosol mass precursors (sulfur dioxide, some organics) and preexisting aerosol mass is sufficiently high will aerosol particles show substantially modified physicochemical properties upon cloud processing.
William H. Brune, Xinrong Ren, Li Zhang, Jingqiu Mao, David O. Miller, Bruce E. Anderson, Donald R. Blake, Ronald C. Cohen, Glenn S. Diskin, Samuel R. Hall, Thomas F. Hanisco, L. Gregory Huey, Benjamin A. Nault, Jeff Peischl, Ilana Pollack, Thomas B. Ryerson, Taylor Shingler, Armin Sorooshian, Kirk Ullmann, Armin Wisthaler, and Paul J. Wooldridge
Atmos. Chem. Phys., 18, 14493–14510, https://doi.org/10.5194/acp-18-14493-2018, https://doi.org/10.5194/acp-18-14493-2018, 2018
Short summary
Short summary
Thunderstorms pull in polluted air from near the ground, transport it up through clouds containing lightning, and deposit it at altitudes where airplanes fly. The resulting chemical mixture in this air reacts to form ozone and particles, which affect climate. In this study, aircraft observations of the reactive gases responsible for this chemistry generally agree with modeled values, even in ice clouds. Thus, atmospheric oxidation chemistry appears to be mostly understood for this environment.
Ewan Crosbie, Matthew D. Brown, Michael Shook, Luke Ziemba, Richard H. Moore, Taylor Shingler, Edward Winstead, K. Lee Thornhill, Claire Robinson, Alexander B. MacDonald, Hossein Dadashazar, Armin Sorooshian, Andreas Beyersdorf, Alexis Eugene, Jeffrey Collett Jr., Derek Straub, and Bruce Anderson
Atmos. Meas. Tech., 11, 5025–5048, https://doi.org/10.5194/amt-11-5025-2018, https://doi.org/10.5194/amt-11-5025-2018, 2018
Short summary
Short summary
A new aircraft-mounted probe for collecting samples of cloud water has been designed, fabricated, and extensively tested. Cloud drop composition provides valuable insight into atmospheric processes, but separating liquid samples from the airstream in a controlled way at flight speeds has proven difficult. The features of the design have been analysed with detailed numerical flow simulations and the new probe has demonstrated improved efficiency and performance through extensive flight testing.
Hossein Dadashazar, Rachel A. Braun, Ewan Crosbie, Patrick Y. Chuang, Roy K. Woods, Haflidi H. Jonsson, and Armin Sorooshian
Atmos. Chem. Phys., 18, 1495–1506, https://doi.org/10.5194/acp-18-1495-2018, https://doi.org/10.5194/acp-18-1495-2018, 2018
Short summary
Short summary
This study shows with airborne data that in the thin layer above stratocumulus clouds, the entrainment interface layer (EIL), aerosol size distributions are influenced both by new particle formation and by pollutants above and below the EIL. These results are important with regard to understanding aerosol–cloud–climate interactions as the aerosol in this layer can influence the characteristics of stratocumulus clouds, which are the dominant cloud type by global area.
Samuel A. Atwood, Jeffrey S. Reid, Sonia M. Kreidenweis, Donald R. Blake, Haflidi H. Jonsson, Nofel D. Lagrosas, Peng Xian, Elizabeth A. Reid, Walter R. Sessions, and James B. Simpas
Atmos. Chem. Phys., 17, 1105–1123, https://doi.org/10.5194/acp-17-1105-2017, https://doi.org/10.5194/acp-17-1105-2017, 2017
Short summary
Short summary
Aerosol particles were measured by ship in remote marine regions of the South China Sea as part of the 2012 7 Southeast Asian Studies (7SEAS) experiments. As the particle populations changed throughout the experiment, the distribution of particle sizes and the amount of water that collected on them changed as well. These changes were associated with various impacts from smoke, sea salt, and pollution sources, and impact how clouds form and precipitation occurs in the region.
Frank Werner, Galina Wind, Zhibo Zhang, Steven Platnick, Larry Di Girolamo, Guangyu Zhao, Nandana Amarasinghe, and Kerry Meyer
Atmos. Meas. Tech., 9, 5869–5894, https://doi.org/10.5194/amt-9-5869-2016, https://doi.org/10.5194/amt-9-5869-2016, 2016
Short summary
Short summary
A research–level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. This yields reliable estimates of important cloud variables at a horizontal resolution of 30 m. Comparisons of the ASTER retrieval results with the operational cloud products from the Moderate Resolution Imaging Spectroradiometer (MODIS) show a high agreement for 48 example cloud fields.
Jeffrey S. Reid, Peng Xian, Brent N. Holben, Edward J. Hyer, Elizabeth A. Reid, Santo V. Salinas, Jianglong Zhang, James R. Campbell, Boon Ning Chew, Robert E. Holz, Arunas P. Kuciauskas, Nofel Lagrosas, Derek J. Posselt, Charles R. Sampson, Annette L. Walker, E. Judd Welton, and Chidong Zhang
Atmos. Chem. Phys., 16, 14041–14056, https://doi.org/10.5194/acp-16-14041-2016, https://doi.org/10.5194/acp-16-14041-2016, 2016
Short summary
Short summary
This paper describes aspects of the 2012 7 Southeast Asian Studies (7SEAS) operations period, the largest within the Maritime Continent. Included were an enhanced deployment of Aerosol Robotic Network (AERONET) sun photometers, multiple lidars, and a Singapore supersite. Simultaneously, a ship was dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012 to observe transported smoke and pollution as it entered the southwest monsoon trough.
Eunsil Jung, Bruce A. Albrecht, Armin Sorooshian, Paquita Zuidema, and Haflidi H. Jonsson
Atmos. Chem. Phys., 16, 11395–11413, https://doi.org/10.5194/acp-16-11395-2016, https://doi.org/10.5194/acp-16-11395-2016, 2016
Short summary
Short summary
We calculate the qualitative behavior of precipitation response to aerosol loadings with cloud depths for warm boundary layer clouds (stratocumulus and shallow marine cumulus), using aircraft measurements across four field campaigns. The finding shows that precipitation responds similarly to aerosol loadings for both stratocumulus and cumulus clouds, regardless of cloud type. Precipitation is most susceptible to aerosol perturbations in the medium–deep depth of clouds.
E. Crosbie, J.-S. Youn, B. Balch, A. Wonaschütz, T. Shingler, Z. Wang, W. C. Conant, E. A. Betterton, and A. Sorooshian
Atmos. Chem. Phys., 15, 6943–6958, https://doi.org/10.5194/acp-15-6943-2015, https://doi.org/10.5194/acp-15-6943-2015, 2015
E. Jung, B. A. Albrecht, H. H. Jonsson, Y.-C. Chen, J. H. Seinfeld, A. Sorooshian, A. R. Metcalf, S. Song, M. Fang, and L. M. Russell
Atmos. Chem. Phys., 15, 5645–5658, https://doi.org/10.5194/acp-15-5645-2015, https://doi.org/10.5194/acp-15-5645-2015, 2015
Short summary
Short summary
To study the effect of giant cloud condensation nuclei (GCCN) on precipitation processes in stratocumulus clouds, 1-10 µm diameter salt particles were released from an aircraft while flying near the cloud top off the central coast of California. The analyses suggest that GCCN result in a four-fold increase in the cloud base rainfall rate and depletion of the cloud water due to rainout.
S. P. Hersey, R. M. Garland, E. Crosbie, T. Shingler, A. Sorooshian, S. Piketh, and R. Burger
Atmos. Chem. Phys., 15, 4259–4278, https://doi.org/10.5194/acp-15-4259-2015, https://doi.org/10.5194/acp-15-4259-2015, 2015
Short summary
Short summary
A decadal aerosol climatology of South Africa's major metropolitan areas is presented, utilizing data from multiple satellite platforms and 19 ground-monitoring sites. Remotely sensed data are dominated by a seasonal signal corresponding to transported biomass burning during austral spring, while ground data are dominated by domestic burning in low-income areas during austral winter. We report poor agreement between satellite- and ground-based aerosol measurements.
I. Astin and L. Di Girolamo
Atmos. Chem. Phys., 14, 9917–9922, https://doi.org/10.5194/acp-14-9917-2014, https://doi.org/10.5194/acp-14-9917-2014, 2014
A. Wonaschütz, M. Coggon, A. Sorooshian, R. Modini, A. A. Frossard, L. Ahlm, J. Mülmenstädt, G. C. Roberts, L. M. Russell, S. Dey, F. J. Brechtel, and J. H. Seinfeld
Atmos. Chem. Phys., 13, 9819–9835, https://doi.org/10.5194/acp-13-9819-2013, https://doi.org/10.5194/acp-13-9819-2013, 2013
A. Sorooshian, T. Shingler, A. Harpold, C. W. Feagles, T. Meixner, and P. D. Brooks
Atmos. Chem. Phys., 13, 7361–7379, https://doi.org/10.5194/acp-13-7361-2013, https://doi.org/10.5194/acp-13-7361-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Quantifying the effects of the microphysical properties of black carbon on the determination of brown carbon using measurements at multiple wavelengths
Ozone Monitoring Instrument (OMI) UV aerosol index data analysis over the Arctic region for future data assimilation and climate forcing applications
Monitoring multiple satellite aerosol optical depth (AOD) products within the Copernicus Atmosphere Monitoring Service (CAMS) data assimilation system
Comparisons between the distributions of dust and combustion aerosols in MERRA-2, FLEXPART, and CALIPSO and implications for deposition freezing over wintertime Siberia
Atmospheric oxidation mechanism and kinetics of indole initiated by ●OH and ●Cl: a computational study
Identifying the spatiotemporal variations in ozone formation regimes across China from 2005 to 2019 based on polynomial simulation and causality analysis
Aerosol vertical distribution and interactions with land/sea breezes over the eastern coast of the Red Sea from lidar data and high-resolution WRF-Chem simulations
Improved inversion of aerosol components in the atmospheric column from remote sensing data
Retrieval of aerosol components directly from satellite and ground-based measurements
Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance
Retrieval of desert dust and carbonaceous aerosol emissions over Africa from POLDER/PARASOL products generated by the GRASP algorithm
Estimating the open biomass burning emissions in central and eastern China from 2003 to 2015 based on satellite observation
Intra-annual variations of regional aerosol optical depth, vertical distribution, and particle types from multiple satellite and ground-based observational datasets
Chemical composition of ambient PM2. 5 over China and relationship to precursor emissions during 2005–2012
Synergistic use of Lagrangian dispersion and radiative transfer modelling with satellite and surface remote sensing measurements for the investigation of volcanic plumes: the Mount Etna eruption of 25–27 October 2013
Climatology of the aerosol optical depth by components from the Multi-angle Imaging SpectroRadiometer (MISR) and chemistry transport models
A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances
Simulation of GOES-R ABI aerosol radiances using WRF-CMAQ: a case study approach
Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations
The global 3-D distribution of tropospheric aerosols as characterized by CALIOP
A unified approach to infrared aerosol remote sensing and type specification
Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events
Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010
Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data
Mixing of dust and NH3 observed globally over anthropogenic dust sources
The composition and variability of atmospheric aerosol over Southeast Asia during 2008
NASA A-Train and Terra observations of the 2010 Russian wildfires
The Eyjafjallajökull eruption in April 2010 – detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles
Saharan dust infrared optical depth and altitude retrieved from AIRS: a focus over North Atlantic – comparison to MODIS and CALIPSO
Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition
Jie Luo, Dan Li, Yuanyuan Wang, Dandan Sun, Weizhen Hou, Jinghe Ren, Hailing Wu, Peng Zhou, and Jibing Qiu
Atmos. Chem. Phys., 24, 427–448, https://doi.org/10.5194/acp-24-427-2024, https://doi.org/10.5194/acp-24-427-2024, 2024
Short summary
Short summary
Remote sensing of brown carbon is very important for climate research, and current optical methods rely mainly on spectral properties for inversion. However, the influence of the microscopic properties of black carbon has rarely been considered by previous studies. This paper shows how the remote sensing of brown carbon is affected by the microphysical properties of black carbon and highlights the adaptability of remote sensing methods.
Blake T. Sorenson, Jianglong Zhang, Jeffrey S. Reid, Peng Xian, and Shawn L. Jaker
Atmos. Chem. Phys., 23, 7161–7175, https://doi.org/10.5194/acp-23-7161-2023, https://doi.org/10.5194/acp-23-7161-2023, 2023
Short summary
Short summary
We quality-control Ozone Monitoring Instrument (OMI) aerosol index data by identifying row anomalies and removing systematic biases, using the data to quantify trends in UV-absorbing aerosols over the Arctic region. We found decreasing trends in UV-absorbing aerosols in spring months and increasing trends in summer months. For the first time, observational evidence of increasing trends in UV-absorbing aerosols over the North Pole is found using the OMI data, especially over the last half decade.
Sebastien Garrigues, Samuel Remy, Julien Chimot, Melanie Ades, Antje Inness, Johannes Flemming, Zak Kipling, Istvan Laszlo, Angela Benedetti, Roberto Ribas, Soheila Jafariserajehlou, Bertrand Fougnie, Shobha Kondragunta, Richard Engelen, Vincent-Henri Peuch, Mark Parrington, Nicolas Bousserez, Margarita Vazquez Navarro, and Anna Agusti-Panareda
Atmos. Chem. Phys., 22, 14657–14692, https://doi.org/10.5194/acp-22-14657-2022, https://doi.org/10.5194/acp-22-14657-2022, 2022
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service (CAMS) provides global monitoring of aerosols using the ECMWF forecast model constrained by the assimilation of satellite aerosol optical depth (AOD). This work aims at evaluating two new satellite AODs to enhance the CAMS aerosol global forecast. It highlights the spatial and temporal differences between the satellite AOD products at the model spatial resolution, which is essential information to design multi-satellite AOD data assimilation schemes.
Lauren M. Zamora, Ralph A. Kahn, Nikolaos Evangeliou, Christine D. Groot Zwaaftink, and Klaus B. Huebert
Atmos. Chem. Phys., 22, 12269–12285, https://doi.org/10.5194/acp-22-12269-2022, https://doi.org/10.5194/acp-22-12269-2022, 2022
Short summary
Short summary
Arctic dust, smoke, and pollution particles can affect clouds and Arctic warming. The distributions of these particles were estimated in three different satellite, reanalysis, and model products. These products showed good agreement overall but indicate that it is important to include local dust in models. We hypothesize that mineral dust effects on ice processes in the Arctic atmosphere might be highest over Siberia, where it is cold, moist, and subject to relatively high dust levels.
Jingwen Xue, Fangfang Ma, Jonas Elm, Jingwen Chen, and Hong-Bin Xie
Atmos. Chem. Phys., 22, 11543–11555, https://doi.org/10.5194/acp-22-11543-2022, https://doi.org/10.5194/acp-22-11543-2022, 2022
Short summary
Short summary
·OH/·Cl initiated indole reactions mainly form organonitrates, alkoxy radicals and hydroperoxide products, showing a varying mechanism from previously reported amines reactions. This study reveals carcinogenic nitrosamines cannot be formed in indole oxidation reactions despite radicals formed from -NH- H abstraction. The results are important to understand the atmospheric impact of indole oxidation and extend current understanding on the atmospheric chemistry of organic nitrogen compounds.
Ruiyuan Li, Miaoqing Xu, Manchun Li, Ziyue Chen, Na Zhao, Bingbo Gao, and Qi Yao
Atmos. Chem. Phys., 21, 15631–15646, https://doi.org/10.5194/acp-21-15631-2021, https://doi.org/10.5194/acp-21-15631-2021, 2021
Short summary
Short summary
We employed ground observations of ozone and satellite products of HCHO and NO2 to investigate spatiotemporal variations of ozone formation regimes across China. Two different models were employed for determining the crucial thresholds that separate three ozone formation regimes, including NOx-limited, VOC-limited, and transitional regimes. The close output from two different models provides a reliable reference for better understanding ozone formation regimes.
Sagar P. Parajuli, Georgiy L. Stenchikov, Alexander Ukhov, Illia Shevchenko, Oleg Dubovik, and Anton Lopatin
Atmos. Chem. Phys., 20, 16089–16116, https://doi.org/10.5194/acp-20-16089-2020, https://doi.org/10.5194/acp-20-16089-2020, 2020
Short summary
Short summary
Both natural (dust, sea salt) and anthropogenic (sulfate, organic and black carbon) aerosols are common over the Red Sea coastal plains. King Abdullah University of Science and Technology (KAUST), located on the eastern coast of the Red Sea, hosts the only operating lidar system in the Arabian Peninsula, which measures atmospheric aerosols day and night. We use these lidar data and high-resolution WRF-Chem model simulations to study the potential effect of dust aerosols on Red Sea environment.
Ying Zhang, Zhengqiang Li, Yu Chen, Gerrit de Leeuw, Chi Zhang, Yisong Xie, and Kaitao Li
Atmos. Chem. Phys., 20, 12795–12811, https://doi.org/10.5194/acp-20-12795-2020, https://doi.org/10.5194/acp-20-12795-2020, 2020
Short summary
Short summary
Observation of atmospheric aerosol components plays an important role in reducing uncertainty in climate assessment. In this study, an improved remote sensing method which can better distinguish scattering components is developed, and the aerosol components in the atmospheric column over China are retrieved based on the Sun–sky radiometer Observation NETwork (SONET). The component distribution shows there could be a sea salt component in northwest China from a paleomarine source in desert land.
Lei Li, Oleg Dubovik, Yevgeny Derimian, Gregory L. Schuster, Tatyana Lapyonok, Pavel Litvinov, Fabrice Ducos, David Fuertes, Cheng Chen, Zhengqiang Li, Anton Lopatin, Benjamin Torres, and Huizheng Che
Atmos. Chem. Phys., 19, 13409–13443, https://doi.org/10.5194/acp-19-13409-2019, https://doi.org/10.5194/acp-19-13409-2019, 2019
Short summary
Short summary
A novel methodology to monitor atmospheric aerosol components using remote sensing is presented. The concept is realized within the GRASP (Generalized Retrieval of Aerosol and Surface Properties) project. Application to POLDER/PARASOL and AERONET observations yielded the spatial and temporal variability of absorbing and non-absorbing insoluble and soluble aerosol species in the fine and coarse size fractions. This presents the global-scale aerosol component derived from satellite measurements.
Jin Liao, Thomas F. Hanisco, Glenn M. Wolfe, Jason St. Clair, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Alan Fried, Eloise A. Marais, Gonzalo Gonzalez Abad, Kelly Chance, Hiren T. Jethva, Thomas B. Ryerson, Carsten Warneke, and Armin Wisthaler
Atmos. Chem. Phys., 19, 2765–2785, https://doi.org/10.5194/acp-19-2765-2019, https://doi.org/10.5194/acp-19-2765-2019, 2019
Short summary
Short summary
Organic aerosol (OA) intimately links natural and anthropogenic emissions with air quality and climate. Direct OA measurements from space are currently not possible. This paper describes a new method to estimate OA by combining satellite HCHO and in situ OA and HCHO. The OA estimate is validated with the ground network. This new method has a potential for mapping observation-based global OA estimate.
Cheng Chen, Oleg Dubovik, Daven K. Henze, Tatyana Lapyonak, Mian Chin, Fabrice Ducos, Pavel Litvinov, Xin Huang, and Lei Li
Atmos. Chem. Phys., 18, 12551–12580, https://doi.org/10.5194/acp-18-12551-2018, https://doi.org/10.5194/acp-18-12551-2018, 2018
Short summary
Short summary
This paper introduces a method to use satellite-observed spectral AOD and AAOD to derive three types of aerosol emission sources simultaneously based on inverse modelling at a high spatial and temporal resolution. This study shows it is possible to estimate aerosol emissions and improve the atmospheric aerosol simulation using detailed aerosol optical and microphysical information from satellite observations.
Jian Wu, Shaofei Kong, Fangqi Wu, Yi Cheng, Shurui Zheng, Qin Yan, Huang Zheng, Guowei Yang, Mingming Zheng, Dantong Liu, Delong Zhao, and Shihua Qi
Atmos. Chem. Phys., 18, 11623–11646, https://doi.org/10.5194/acp-18-11623-2018, https://doi.org/10.5194/acp-18-11623-2018, 2018
Short summary
Short summary
In order to support regional modeling impact on air quality and policy making on controlling open biomass burning emissions, accurate open biomass burning emissions were estimated from 2003 to 2015 with high spatial and temporal resolution. Multiple satellite data, updated biomass data and survey results were all used to improve the accuracy. In addition, management policies and all influencing factors in rural areas for open biomass burning emissions were considered.
Bin Zhao, Jonathan H. Jiang, David J. Diner, Hui Su, Yu Gu, Kuo-Nan Liou, Zhe Jiang, Lei Huang, Yoshi Takano, Xuehua Fan, and Ali H. Omar
Atmos. Chem. Phys., 18, 11247–11260, https://doi.org/10.5194/acp-18-11247-2018, https://doi.org/10.5194/acp-18-11247-2018, 2018
Short summary
Short summary
We combine satellite-borne and ground-based observations to investigate the intra-annual variations of regional aerosol column loading, vertical distribution, and particle types. Column aerosol optical depth (AOD), as well as AOD > 800 m, peaks in summer/spring. However, AOD < 800 m and surface PM2.5 concentrations mostly peak in winter. The aerosol intra-annual variations differ significantly according to aerosol types characterized by different sizes, light absorption, and emission sources.
Guannan Geng, Qiang Zhang, Dan Tong, Meng Li, Yixuan Zheng, Siwen Wang, and Kebin He
Atmos. Chem. Phys., 17, 9187–9203, https://doi.org/10.5194/acp-17-9187-2017, https://doi.org/10.5194/acp-17-9187-2017, 2017
Short summary
Short summary
We presented the characteristics of PM2.5 chemical composition over China during 2005–2012 by synthesis of in situ measurement data and satellite-based estimates. We also investigated the driving forces behind the changes by examining the changes in precursor emissions. We found that the decrease in sulfate is partly offset by the increase in nitrate. The results indicate that the synchronized abatement of emissions for multipollutants is necessary for reducing ambient PM2.5 over China.
Pasquale Sellitto, Alcide di Sarra, Stefano Corradini, Marie Boichu, Hervé Herbin, Philippe Dubuisson, Geneviève Sèze, Daniela Meloni, Francesco Monteleone, Luca Merucci, Justin Rusalem, Giuseppe Salerno, Pierre Briole, and Bernard Legras
Atmos. Chem. Phys., 16, 6841–6861, https://doi.org/10.5194/acp-16-6841-2016, https://doi.org/10.5194/acp-16-6841-2016, 2016
Short summary
Short summary
We combine plume dispersion and radiative transfer modelling, and satellite and surface remote sensing observations to study the regional influence of a relatively weak volcanic eruption from Mount Etna (25–27 October 2013) on the optical/micro-physical properties of Mediterranean aerosols. Our results indicate that even relatively weak volcanic eruptions may produce an observable effect on the aerosol properties at the regional scale, with a significant impact on the regional radiative balance.
Huikyo Lee, Olga V. Kalashnikova, Kentaroh Suzuki, Amy Braverman, Michael J. Garay, and Ralph A. Kahn
Atmos. Chem. Phys., 16, 6627–6640, https://doi.org/10.5194/acp-16-6627-2016, https://doi.org/10.5194/acp-16-6627-2016, 2016
Short summary
Short summary
The Multi-angle Imaging SpectroRadiometer (MISR) on NASA's TERRA satellite has provided a global distribution of aerosol amount and type information for each month over 16+ years since March 2000. This study analyzes, for the first time, characteristics of observed and simulated distributions of aerosols for three broad classes of aerosols: spherical nonabsorbing, spherical absorbing, and nonspherical – near or downwind of their major source regions.
M. J. M. Penning de Vries, S. Beirle, C. Hörmann, J. W. Kaiser, P. Stammes, L. G. Tilstra, O. N. E. Tuinder, and T. Wagner
Atmos. Chem. Phys., 15, 10597–10618, https://doi.org/10.5194/acp-15-10597-2015, https://doi.org/10.5194/acp-15-10597-2015, 2015
S. A. Christopher
Atmos. Chem. Phys., 14, 3183–3194, https://doi.org/10.5194/acp-14-3183-2014, https://doi.org/10.5194/acp-14-3183-2014, 2014
M. Mallet, O. Dubovik, P. Nabat, F. Dulac, R. Kahn, J. Sciare, D. Paronis, and J. F. Léon
Atmos. Chem. Phys., 13, 9195–9210, https://doi.org/10.5194/acp-13-9195-2013, https://doi.org/10.5194/acp-13-9195-2013, 2013
D. M. Winker, J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers
Atmos. Chem. Phys., 13, 3345–3361, https://doi.org/10.5194/acp-13-3345-2013, https://doi.org/10.5194/acp-13-3345-2013, 2013
L. Clarisse, P.-F. Coheur, F. Prata, J. Hadji-Lazaro, D. Hurtmans, and C. Clerbaux
Atmos. Chem. Phys., 13, 2195–2221, https://doi.org/10.5194/acp-13-2195-2013, https://doi.org/10.5194/acp-13-2195-2013, 2013
P. Wang, O. N. E. Tuinder, L. G. Tilstra, M. de Graaf, and P. Stammes
Atmos. Chem. Phys., 12, 9057–9077, https://doi.org/10.5194/acp-12-9057-2012, https://doi.org/10.5194/acp-12-9057-2012, 2012
N. C. Hsu, R. Gautam, A. M. Sayer, C. Bettenhausen, C. Li, M. J. Jeong, S.-C. Tsay, and B. N. Holben
Atmos. Chem. Phys., 12, 8037–8053, https://doi.org/10.5194/acp-12-8037-2012, https://doi.org/10.5194/acp-12-8037-2012, 2012
A. Lana, R. Simó, S. M. Vallina, and J. Dachs
Atmos. Chem. Phys., 12, 7977–7993, https://doi.org/10.5194/acp-12-7977-2012, https://doi.org/10.5194/acp-12-7977-2012, 2012
P. Ginoux, L. Clarisse, C. Clerbaux, P.-F. Coheur, O. Dubovik, N. C. Hsu, and M. Van Damme
Atmos. Chem. Phys., 12, 7351–7363, https://doi.org/10.5194/acp-12-7351-2012, https://doi.org/10.5194/acp-12-7351-2012, 2012
W. Trivitayanurak, P. I. Palmer, M. P. Barkley, N. H. Robinson, H. Coe, and D. E. Oram
Atmos. Chem. Phys., 12, 1083–1100, https://doi.org/10.5194/acp-12-1083-2012, https://doi.org/10.5194/acp-12-1083-2012, 2012
J. C. Witte, A. R. Douglass, A. da Silva, O. Torres, R. Levy, and B. N. Duncan
Atmos. Chem. Phys., 11, 9287–9301, https://doi.org/10.5194/acp-11-9287-2011, https://doi.org/10.5194/acp-11-9287-2011, 2011
H. Flentje, H. Claude, T. Elste, S. Gilge, U. Köhler, C. Plass-Dülmer, W. Steinbrecht, W. Thomas, A. Werner, and W. Fricke
Atmos. Chem. Phys., 10, 10085–10092, https://doi.org/10.5194/acp-10-10085-2010, https://doi.org/10.5194/acp-10-10085-2010, 2010
S. Peyridieu, A. Chédin, D. Tanré, V. Capelle, C. Pierangelo, N. Lamquin, and R. Armante
Atmos. Chem. Phys., 10, 1953–1967, https://doi.org/10.5194/acp-10-1953-2010, https://doi.org/10.5194/acp-10-1953-2010, 2010
P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa
Atmos. Chem. Phys., 10, 1155–1169, https://doi.org/10.5194/acp-10-1155-2010, https://doi.org/10.5194/acp-10-1155-2010, 2010
Cited articles
Aerosol Robotic Network (AERONET): Version 3 Direct Sun Algorithm,
Site: Manila Observatory, Philippines [data set],
https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_aod_v3?stage=3®ion=Asia&state=Philippines&site=Manila_Observatory&place_code=10&if_polarized=0
(last access: 28 September 2020), 2020a.
Aerosol Robotic Network (AERONET): Version 3 Direct Sun and Inversion
Algorithm, Site: Manila Observatory, Philippines [data set],
https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_inv_v3?stage=3®ion=Asia&state=Philippines&site=Manila_Observatory&place_code=10&if_polarized=0 (last access: 28 September 2020), 2020b.
Alas, H. D., Müller, T., Birmili, W., Kecorius, S., Cambaliza, M. O.,
Simpas, J. B. B., Cayetano, M., Weinhold, K., Vallar, E., and Galvez, M. C.:
Spatial characterization of black carbon mass concentration in the
atmosphere of a southeast asian megacity: an air quality case study for
Metro Manila, Philippines, Aerosol Air Qual. Res., 18, 2301–2317,
https://doi.org/10.4209/aaqr.2017.08.0281, 2018.
Aldhaif, A. M., Lopez, D. H., Dadashazar, H., and Sorooshian, A.: Sources,
frequency, and chemical nature of dust events impacting the United States
East Coast, Atmos. Environ., 231, 117456,
https://doi.org/10.1016/j.atmosenv.2020.117456, 2020.
Aldhaif, A. M., Lopez, D. H., Dadashazar, H., Painemal, D., Peters, A. J.,
and Sorooshian, A.: An Aerosol Climatology and Implications for Clouds at a
Remote Marine Site: Case Study Over Bermuda, J. Geophys. Res.-Atmos., 126,
e2020JD034038, https://doi.org/10.1029/2020JD034038, 2021.
Alizadeh-Choobari, O., and Gharaylou, M.: Aerosol impacts on radiative and
microphysical properties of clouds and precipitation formation, Atmos. Res.,
185, 53–64, https://doi.org/10.1016/j.atmosres.2016.10.021, 2017.
Amnuaylojaroen, T.: Air Pollution Modeling in Southeast Asia – An Overview,
Vegetation Fires and Pollution in Asia, 531–544,
https://doi.org/10.1007/978-3-031-29916-2_31, 2023.
Ångström, A.: On the atmospheric transmission of sun radiation and
on dust in the air, Geogr. Ann., 11, 156–166, 1929.
Arthur, D. and Vassilvitskii, S.: k-means : The advantages of careful
seeding, Stanford, in: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Louisiana, USA, 7–9 January 2007, 1027-1035, 2007.
AzadiAghdam, M., Braun, R. A., Edwards, E.-L., Bañaga, P. A., Cruz, M.
T., Betito, G., Cambaliza, M. O., Dadashazar, H., Lorenzo, G. R., and Ma,
L.: On the nature of sea salt aerosol at a coastal megacity: Insights from
Manila, Philippines in Southeast Asia, Atmos. Environ., 216, 116922,
https://doi.org/10.1016/j.atmosenv.2019.116922, 2019.
Bagtasa, G.: Contribution of tropical cyclones to rainfall in the
Philippines, J. Climate, 30, 3621–3633,
https://doi.org/10.1175/JCLI-D-16-0150.1, 2017.
Bañares, E. N., Narisma, G. T. T., Simpas, J. B. B., Cruz, F. A. T.,
Lorenzo, G. R. H., Cambaliza, M. O. L., and Coronel, R. C.: Seasonal and
diurnal variations of observed convective rain events in metro Manila,
Philippines, Atmos. Res., 258, 105646,
https://doi.org/10.1016/j.atmosres.2021.105646, 2021.
Barth, M., Rasch, P., Kiehl, J., Benkovitz, C., and Schwartz, S.: Sulfur
chemistry in the National Center for Atmospheric Research Community Climate
Model: Description, evaluation, features, and sensitivity to aqueous
chemistry, J. Geophys. Res.-Atmos., 105, 1387–1415,
https://doi.org/10.1029/1999JD900773, 2000.
Bautista VII, A. T., Pabroa, P. C. B., Santos, F. L., Racho, J. M. D., and
Quirit, L. L.: Carbonaceous particulate matter characterization in an urban
and a rural site in the Philippines, Atmos. Pollut. Res., 5,
245–252, https://doi.org/10.5094/APR.2014.030, 2014.
Bergstrom, R. W., Russell, P. B., and Hignett, P.: Wavelength dependence of
the absorption of black carbon particles: Predictions and results from the
TARFOX experiment and implications for the aerosol single scattering albedo,
J. Atmos. Sci., 59, 567–577,
https://doi.org/10.1175/1520-0469(2002)059<0567:WDOTAO>2.0.CO;2, 2002.
Bergstrom, R. W., Pilewskie, P., Schmid, B., and Russell, P. B.: Estimates
of the spectral aerosol single scattering albedo and aerosol radiative
effects during SAFARI 2000, J. Geophys. Res.-Atmos., 108, 8474,
https://doi.org/10.1029/2002JD002435, 2003.
Bergstrom, R. W., Pilewskie, P., Russell, P. B., Redemann, J., Bond, T. C., Quinn, P. K., and Sierau, B.: Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 7, 5937–5943, https://doi.org/10.5194/acp-7-5937-2007, 2007.
Bi, J., Huang, J., Hu, Z., Holben, B., and Guo, Z.: Investigating the
aerosol optical and radiative characteristics of heavy haze episodes in
Beijing during January of 2013, J. Geophys. Res.-Atmos., 119, 9884–9900,
https://doi.org/10.1002/2014JD021757, 2014.
Björnsson, H. and Venegas, S.: A manual for EOF and SVD analyses of
climatic data, CCGCR Report, 97, 112–134, 1997.
Bohren, C. F. and Clothiaux, E. E.: Fundamentals of atmospheric radiation:
an introduction with 400 problems, John Wiley & Sons, ISBN 978-3-527-40503-9, 490 pp., 2006.
Bosilovich, M. G., Lucchesi, R., and Suarez, M., MERRA-2: File Specification, NASA GSFC, 73 pp., 2016.
Braun, R. A., Aghdam, M. A., Bañaga, P. A., Betito, G., Cambaliza, M. O., Cruz, M. T., Lorenzo, G. R., MacDonald, A. B., Simpas, J. B., Stahl, C., and Sorooshian, A.: Long-range aerosol transport and impacts on size-resolved aerosol composition in Metro Manila, Philippines, Atmos. Chem. Phys., 20, 2387–2405, https://doi.org/10.5194/acp-20-2387-2020, 2020.
Buchard, V., Randles, C., Da Silva, A., Darmenov, A., Colarco, P.,
Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A., and Ziemba, L.: The
MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case
studies, J. Climate, 30, 6851–6872,
https://doi.org/10.1175/JCLI-D-16-0613.1, 2017.
Cahyono, W. E., Setyawati, W., Hamdi, S., Cholianawati, N., Kombara, P. Y.,
and Sari, W. J.: Observations of aerosol optical properties during tropical
forest fires in Indonesia, Materials Today: Proceedings, 63, S445–S450,
https://doi.org/10.1016/j.matpr.2022.04.113, 2022.
Caido, N. G., Ong, P. M., Rempillo, O., Galvez, M. C., and Vallar, E.:
Spatiotemporal analysis of MODIS aerosol optical depth data in the
Philippines from 2010 to 2020, Atmosphere, 13, 939,
https://doi.org/10.3390/atmos13060939, 2022.
Chang, C.-P., Wang, Z., McBride, J., and Liu, C.-H.: Annual cycle of
Southeast Asia – Maritime Continent rainfall and the asymmetric monsoon
transition, J. Climate, 18, 287–301,
https://doi.org/10.1175/JCLI-3257.1, 2005.
Che, H., Xia, X., Zhu, J., Wang, H., Wang, Y., Sun, J., Zhang, X., and Shi,
G.: Aerosol optical properties under the condition of heavy haze over an
urban site of Beijing, China, Environ. Sci. Pollut. R., 22, 1043–1053,
https://doi.org/10.1007/s11356-014-3415-5, 2015.
Chen, Q., McGowan, S., Gouramanis, C., Fong, L., Balasubramanian, R., and
Taylor, D.: Rapidly rising transboundary atmospheric pollution from
industrial and urban sources in Southeast Asia and its implications for
regional sustainable development, Environ. Res. Lett., 15, 1040a1045,
https://doi.org/10.1088/1748-9326/abb5ce, 2020.
Choi, M., Lim, H., Kim, J., Lee, S., Eck, T. F., Holben, B. N., Garay, M. J., Hyer, E. J., Saide, P. E., and Liu, H.: Validation, comparison, and integration of GOCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth over East Asia during the 2016 KORUS-AQ campaign, Atmos. Meas. Tech., 12, 4619–4641, https://doi.org/10.5194/amt-12-4619-2019, 2019.
Cohen, J. B.: Quantifying the occurrence and magnitude of the Southeast
Asian fire climatology, Environ. Res. Lett., 9, 114018,
https://doi.org/10.1088/1748-9326/9/11/114018, 2014.
Cohen, J. B., Lecoeur, E., and Hui Loong Ng, D.: Decadal-scale relationship between measurements of aerosols, land-use change, and fire over Southeast Asia, Atmos. Chem. Phys., 17, 721–743, https://doi.org/10.5194/acp-17-721-2017, 2017.
Coronas, J.: The Climate and Weather of the Philippines, 1903–1918, by Rev.
José Coronas. SJ, Chief, Meteorological Division, Weather Bureau, Manila
Observatory, Manila, Bureau of Printing, 196 pp., 1920.
Crosbie, E., Sorooshian, A., Monfared, N. A., Shingler, T., and Esmaili, O.:
A multi-year aerosol characterization for the greater Tehran area using
satellite, surface, and modeling data, Atmosphere, 5, 178–197,
https://doi.org/10.3390/atmos5020178, 2014.
Crosbie, E., Ziemba, L. D., Shook, M. A., Robinson, C. E., Winstead, E. L., Thornhill, K. L., Braun, R. A., MacDonald, A. B., Stahl, C., Sorooshian, A., van den Heever, S. C., DiGangi, J. P., Diskin, G. S., Woods, S., Bañaga, P., Brown, M. D., Gallo, F., Hilario, M. R. A., Jordan, C. E., Leung, G. R., Moore, R. H., Sanchez, K. J., Shingler, T. J., and Wiggins, E. B.: Measurement report: Closure analysis of aerosol–cloud composition in tropical maritime warm convection, Atmos. Chem. Phys., 22, 13269–13302, https://doi.org/10.5194/acp-22-13269-2022, 2022.
Cruz, F., Narisma, G. T., Villafuerte II, M. Q., Chua, K. C., and Olaguera,
L. M.: A climatological analysis of the southwest monsoon rainfall in the
Philippines, Atmos. Res., 122, 609–616,
https://doi.org/10.1016/j.atmosres.2012.06.010, 2013.
Cruz, M. T., Bañaga, P. A., Betito, G., Braun, R. A., Stahl, C., Aghdam, M. A., Cambaliza, M. O., Dadashazar, H., Hilario, M. R., Lorenzo, G. R., Ma, L., MacDonald, A. B., Pabroa, P. C., Yee, J. R., Simpas, J. B., and Sorooshian, A.: Size-resolved composition and morphology of particulate matter during the southwest monsoon in Metro Manila, Philippines, Atmos. Chem. Phys., 19, 10675–10696, https://doi.org/10.5194/acp-19-10675-2019, 2019.
Cruz, M. T., Simpas, J. B., Sorooshian, A., Betito, G., Cambaliza, M. O. L.,
Collado, J. T., Eloranta, E. W., Holz, R., Topacio, X. G. V., and Del
Socorro, J.: Impacts of regional wind circulations on aerosol pollution and
planetary boundary layer structure in Metro Manila, Philippines, Atmos.
Environ., 293, 119455, https://doi.org/10.1016/j.atmosenv.2022.119455, 2023.
Deep, A., Pandey, C. P., Nandan, H., Singh, N., Yadav, G., Joshi, P.,
Purohit, K., and Bhatt, S.: Aerosols optical depth and Ångström
exponent over different regions in Garhwal Himalaya, India,
Environ. Monit. Assess., 193, 324,
https://doi.org/10.1007/s10661-021-09048-4, 2021.
Di Girolamo, L., Holz, R., Reid, J., Tanelli, S., van den Heever, S.,
Narsma, G., and Simpas, J.: Cloud and aerosol monsoonal
processes-Philippines experiment (CAMP2Ex), NASA White Paper, A proposed joint US-Philippine airborne mission to study aerosol and land use impacts on monsoonal precipitation during late summer 2018, 2015.
Diner, D. J., Di Girolamo, L., and Nolin, A.: Preface to the MISR special
issue, Remote Sens. Environ., 107, 1,
https://doi.org/10.1016/j.rse.2006.11.001, 2007.
Dong, X. and Fu, J. S.: Understanding interannual variations of biomass
burning from Peninsular Southeast Asia, part II: Variability and different
influences in lower and higher atmosphere levels, Atmos. Environ.,
115, 9–18, https://doi.org/10.1016/j.atmosenv.2015.05.052, 2015.
Dorado, S. V., Holdsworth, J. L., Lagrosas, N. C., Villarin, J. R., Narisma,
G., Ellis, J., and Perez, R.: Characterization of urban atmosphere of Manila
with lidar, filter sampling, and radiosonde, Lidar Remote Sensing for
Industry and Environment Monitoring, https://doi.org/10.1117/12.417097, 591–598, 2001.
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval
of aerosol optical properties from Sun and sky radiance measurements, J.
Geophys. Res.-Atmos., 105, 20673–20696,
https://doi.org/10.1029/2000JD900282, 2000.
Dubovik, O., Holben, B., Kaufman, Y., Yamasoe, M., Smirnov, A., Tanré,
D., and Slutsker, I.: Single-scattering albedo of smoke retrieved from the
sky radiance and solar transmittance measured from ground, J. Geophys. Res.-Atmos., 103, 31903–31923, https://doi.org/10.1029/98JD02276, 1998.
Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M.
D., Tanré, D., and Slutsker, I.: Variability of absorption and optical
properties of key aerosol types observed in worldwide locations, J. Atmos.
Sci., 59, 590–608, https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2, 2002.
EarthData: Multi-angle Imaging SpectroRadiometer (MISR) Jet Propulsion Laboratory: Level 3 Component Global Aerosol product in netCDF format covering a
month V004, NASA [data set],
https://search.earthdata.nasa.gov/search/granules?p=C108919889-LARC!C108919889-LARC&pg[1][v]=t&pg[1][m]=download&q=MIsr aerosol&qt=2009-01-01T00:00:00.000Z,2018-12-31T23:59:59.999Z&tl=1637172199!3!!&lat=-0.3515625&long=0.5625 (last access: 22 November 2021), 2018.
Eck, T., Holben, B., Reid, J., O'neill, N., Schafer, J., Dubovik, O.,
Smirnov, A., Yamasoe, M., and Artaxo, P.: High aerosol optical depth biomass
burning events: A comparison of optical properties for different source
regions, Geophys. Res. Lett., 30, 2035, https://doi.org/10.1029/2003GL017861,
2003.
Eck, T., Holben, B., Dubovik, O., Smirnov, A., Goloub, P., Chen, H.,
Chatenet, B., Gomes, L., Zhang, X. Y., and Tsay, S. C.: Columnar aerosol
optical properties at AERONET sites in central eastern Asia and aerosol
transport to the tropical mid-Pacific, J. Geophys. Res.-Atmos., 110, D06202,
https://doi.org/10.1029/2004JD005274, 2005.
Eck, T., Holben, B., Reid, J., Mukelabai, M., Piketh, S., Torres, O.,
Jethva, H., Hyer, E., Ward, D., and Dubovik, O.: A seasonal trend of single
scattering albedo in southern African biomass-burning particles:
Implications for satellite products and estimates of emissions for the
world's largest biomass-burning source, J. Geophys. Res.-Atmos., 118,
6414–6432, https://doi.org/10.1002/jgrd.50500, 2013.
Eck, T. F., Holben, B., Reid, J., Dubovik, O., Smirnov, A., O'neill, N.,
Slutsker, I., and Kinne, S.: Wavelength dependence of the optical depth of
biomass burning, urban, and desert dust aerosols, J. Geophys. Res.-Atmos.,
104, 31333–31349, https://doi.org/10.1029/1999JD900923, 1999.
Eck, T. F., Holben, B. N., Reid, J., Giles, D., Rivas, M., Singh, R. P.,
Tripathi, S., Bruegge, C., Platnick, S., and Arnold, G.: Fog-and
cloud-induced aerosol modification observed by the Aerosol Robotic Network
(AERONET), J. Geophys. Res.-Atmos., 117, D07206,
https://doi.org/10.1029/2011JD016839, 2012.
Eckstein, D., Hutfils, M.-L., and Winges, M.: Global Climate Risk Index 2019 (Who Suffers Most From Extreme Weather Events? Weather-related Loss Events in 2017 and 1998 to 2017), Germanwatch e.V., Bonn, Germany, 36 pp., ISBN 978-3-943704-70-9, 2018.
Edwards, E.-L., Reid, J. S., Xian, P., Burton, S. P., Cook, A. L., Crosbie, E. C., Fenn, M. A., Ferrare, R. A., Freeman, S. W., Hair, J. W., Harper, D. B., Hostetler, C. A., Robinson, C. E., Scarino, A. J., Shook, M. A., Sokolowsky, G. A., van den Heever, S. C., Winstead, E. L., Woods, S., Ziemba, L. D., and Sorooshian, A.: Assessment of NAAPS-RA performance in Maritime Southeast Asia during CAMP2Ex, Atmos. Chem. Phys., 22, 12961–12983, https://doi.org/10.5194/acp-22-12961-2022, 2022.
Ervens, B., Sorooshian, A., Aldhaif, A. M., Shingler, T., Crosbie, E., Ziemba, L., Campuzano-Jost, P., Jimenez, J. L., and Wisthaler, A.: Is there an aerosol signature of chemical cloud processing?, Atmos. Chem. Phys., 18, 16099–16119, https://doi.org/10.5194/acp-18-16099-2018, 2018.
Faloona, I.: Sulfur processing in the marine atmospheric boundary layer: A
review and critical assessment of modeling uncertainties, Atmos. Environ.,
43, 2841–2854, https://doi.org/10.1016/j.atmosenv.2009.02.043, 2009.
Feingold, G.: Modeling of the first indirect effect: Analysis of measurement
requirements, Geophys. Res. Lett., 30, 1997, https://doi.org/10.1029/2003GL017967,
2003.
Flores, J. and Balagot, V.: Climate of the Philippines, World survey of climatology, 8, 159–213, 1969.
Formenti, P., Andreae, M. O., and Lelieveld, J.: Measurements of aerosol
optical depth above 3570 m asl in the North Atlantic free troposphere:
results from ACE-2, Tellus B, 52, 678–693, 2000.
Foth, A., Kanitz, T., Engelmann, R., Baars, H., Radenz, M., Seifert, P., Barja, B., Fromm, M., Kalesse, H., and Ansmann, A.: Vertical aerosol distribution in the southern hemispheric midlatitudes as observed with lidar in Punta Arenas, Chile (53.2∘ S and 70.9∘ W), during ALPACA, Atmos. Chem. Phys., 19, 6217–6233, https://doi.org/10.5194/acp-19-6217-2019, 2019.
Garay, M. J., Bull, M. A., Nastan, A. M., Witek, M. L., Seidel, F. C.,
Diner, D. J., Kahn, R. A., Limbacher, J. A., and Kalashnikova, O. V.: Data
Product Specification for the MISR Level 2 Aerosol Product, Jet Propulsion
Laboratory, California Institute of Technology. JPL D-100649.
https://asdc.larc.nasa.gov/documents/misr/DPS_AEROSOL_V023.20180125.pdf (last access: 15 September 2022), 2018.
Gautam, R., Hsu, N. C., Eck, T. F., Holben, B. N., Janjai, S., Jantarach,
T., Tsay, S.-C., and Lau, W. K.: Characterization of aerosols over the
Indochina peninsula from satellite-surface observations during biomass
burning pre-monsoon season, Atmos. Environ., 78, 51–59,
https://doi.org/10.1016/j.atmosenv.2012.05.038, 2013.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., and Reichle, R.: The
modern-era retrospective analysis for research and applications, version 2
(MERRA-2), J. Climate, 30, 5419–5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Geng, H., Hwang, H., Liu, X., Dong, S., and Ro, C.-U.: Investigation of aged aerosols in size-resolved Asian dust storm particles transported from Beijing, China, to Incheon, Korea, using low-Z particle EPMA, Atmos. Chem. Phys., 14, 3307–3323, https://doi.org/10.5194/acp-14-3307-2014, 2014.
Giles, D. M., Holben, B. N., Eck, T. F., Sinyuk, A., Smirnov, A., Slutsker,
I., Dickerson, R., Thompson, A., and Schafer, J.: An analysis of AERONET
aerosol absorption properties and classifications representative of aerosol
source regions, J. Geophys. Res.-Atmos., 117, D17203,
https://doi.org/10.1029/2012JD018127, 2012.
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019.
Global Modeling and Assimilation Office (GMAO): MERRA-2
inst3_3d_asm_Np: 3d,3-Hourly,
Instantaneous, Pressure-Level, Assimilation, Assimilated Meteorological
Fields V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and
Information Services Center (GES DISC) [data set],
https://doi.org/10.5067/QBZ6MG944HW0, 2015a.
Global Modeling and Assimilation Office (GMAO): MERRA-2
tavg1_2d_flx_Nx: 2d,1-Hourly,
Time-Averaged, Single-Level, Assimilation, Surface Flux Diagnostics V5.12.4,
Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services
Center (GES DISC) [data set], https://doi.org/10.5067/7MCPBJ41Y0K6, 2015b.
Global Modeling and Assimilation Office (GMAO): MERRA-2
tavg1_2d_csp_Nx: 2d,1-Hourly,
Time-averaged, Single-Level, Assimilation, COSP Satellite Simulator V5.12.4,
Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services
Center (GES DISC) [data set], https://doi.org/10.5067/H0VVAD8F6MX5, 2015c.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavg1_2d_aer_Nx: 2d,1-Hourly,Time-averaged,Single-Level, Assimilation, Aerosol Diagnostics V5.12.4,
Greenbelt, MD, USA, Goddard Earth Sciences Data
and Information Services Center (GES DISC) [data set],
https://doi.org/10.5067/KLICLTZ8EM9D, 2015d.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavg1_2d_aer_Nx: 2d,1-Hourly, Time-averaged, Single-Level, Assimilation, Aerosol Diagnostics V5.12.4,
Greenbelt, MD, USA, Goddard Earth Sciences Data
and Information Services Center (GES DISC) [data set],
https://doi.org/10.5067/FH9A0MLJPC7N, 2015d.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavgM_2d_aer_Nx: 2d, Monthly mean,Time-averaged, Single-Level, Assimilation,Aerosol Diagnostics V5.12.4,
Greenbelt, MD, USA, Goddard Earth Sciences Data
and Information Services Center (GES DISC) [data set],
https://doi.org/10.5067/V92O8XZ30XBI, 2015e.
Global Modeling and Assimilation Office (GMAO): MERRA-2 instM_3d_ana_Np: 3d,Monthly mean,Instantaneous,Pressure-Level,Analysis,Analyzed Meteorological Fields V5.12.4,
Greenbelt, MD, USA, Goddard Earth Sciences Data
and Information Services Center (GES DISC) [data set],
https://doi.org/10.5067/KLICLTZ8EM9D, 2015f.
Glover, D., and Jessup, T.: The Indonesian fires and haze of 1997: the
economic toll, Economy and Environment Program for SE Asia (EEPSEA)
Singapore and the World Wildlife Fund (WWF) Indonesia, Jakarta, EEPSEA Research, Report rr1998051, 9 pp., 1998.
Guyon, P., Boucher, O., Graham, B., Beck, J., Mayol-Bracero, O. L., Roberts,
G. C., Maenhaut, W., Artaxo, P., and Andreae, M. O.: Refractive index of
aerosol particles over the Amazon tropical forest during LBA-EUSTACH 1999,
J. Aerosol Sci., 34, 883–907, https://doi.org/10.1016/S0021-8502(03)00052-1,
2003.
Harenda, K. M., Markowicz, K. M., Poczta, P., Stachlewska, I. S.,
Bojanowski, J. S., Czernecki, B., McArthur, A., Schuetemeyer, D., and
Chojnicki, B. H.: Estimation of the effects of aerosol optical properties on
peatland production in Rzecin, Poland, Agr. Forest Meteorol.,
316, 108861, https://doi.org/10.1016/j.agrformet.2022.108861, 2022.
Hartley, W. S. and Hobbs, P. V.: An aerosol model and aerosol-induced
changes in the clear-sky albedo off the east coast of the United States, J.
Geophys. Res.-Atmos., 106, 9733–9748, https://doi.org/10.1029/2001JD900025,
2001.
Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative
forcing due to tropospheric aerosols: A review, Rev. Geophys., 38, 513–543,
https://doi.org/10.1029/1999RG000078, 2000.
Hendrickson, B. N., Brooks, S. D., Thornton, D. C., Moore, R. H., Crosbie,
E., Ziemba, L. D., Carlson, C. A., Baetge, N., Mirrielees, J. A., and
Alsante, A. N.: Role of sea surface microlayer properties in cloud
formation, Front. Mar. Sci., 7, 596225,
https://doi.org/10.3389/fmars.2020.596225, 2021.
Herber, A., Thomason, L. W., Gernandt, H., Leiterer, U., Nagel, D., Schulz,
K. H., Kaptur, J., Albrecht, T., and Notholt, J.: Continuous day and night
aerosol optical depth observations in the Arctic between 1991 and 1999, J.
Geophys. Res.-Atmos., 107, AAC6-1–AAC6-13,
https://doi.org/10.1029/2001JD000536, 2002.
Hilario, M. R. A., Cruz, M. T., Bañaga, P. A., Betito, G., Braun, R. A.,
Stahl, C., Cambaliza, M. O., Lorenzo, G. R., MacDonald, A. B., AzadiAghdam,
M., Pabroa, P. C., Yee, J. R., Simpas, J. B., and Sorooshian, A.:
Characterizing weekly cycles of particulate matter in a coastal megacity:
The importance of a seasonal, size-resolved, and chemically-speciated
analysis, J. Geophys. Res.-Atmos., 125, e2020JD032614,
https://doi.org/10.1029/2020JD032614, 2020a.
Hilario, M. R. A., Cruz, M. T., Cambaliza, M. O. L., Reid, J. S., Xian, P., Simpas, J. B., Lagrosas, N. D., Uy, S. N. Y., Cliff, S., and Zhao, Y.: Investigating size-segregated sources of elemental composition of particulate matter in the South China Sea during the 2011 Vasco cruise, Atmos. Chem. Phys., 20, 1255–1276, https://doi.org/10.5194/acp-20-1255-2020, 2020b.
Hilario, M. R. A., Crosbie, E., Shook, M., Reid, J. S., Cambaliza, M. O. L., Simpas, J. B. B., Ziemba, L., DiGangi, J. P., Diskin, G. S., Nguyen, P., Turk, F. J., Winstead, E., Robinson, C. E., Wang, J., Zhang, J., Wang, Y., Yoon, S., Flynn, J., Alvarez, S. L., Behrangi, A., and Sorooshian, A.: Measurement report: Long-range transport patterns into the tropical northwest Pacific during the CAMP2Ex aircraft campaign: chemical composition, size distributions, and the impact of convection, Atmos. Chem. Phys., 21, 3777–3802, https://doi.org/10.5194/acp-21-3777-2021, 2021a.
Hilario, M. R. A., Olaguera, L. M., Narisma, G. T., and Matsumoto, J.:
Diurnal characteristics of summer precipitation over Luzon Island,
Philippines, Asia-Pac. J. Atmos. Sci., 57, 573–585,
https://doi.org/10.1007/s13143-020-00214-1, 2021b.
Hilario, M. R. A., Bañaga, P. A., Betito, G., Braun, R. A., Cambaliza,
M. O., Cruz, M. T., Lorenzo, G. R., MacDonald, A. B., Pabroa, P. C., and
Simpas, J. B.: Stubborn aerosol: why particulate mass concentrations do not
drop during the wet season in Metro Manila, Philippines, Environ.
Sci.-Atmos., 2, 1428–1437, https://doi.org/10.1039/D2EA00073C,
2022.
Hogan, T. F., Liu, M., Ridout, J. A., Peng, M. S., Whitcomb, T. R., Ruston,
B. C., Reynolds, C. A., Eckermann, S. D., Moskaitis, J. R., and Baker, N.
L.: The navy global environmental model, Oceanography, 27, 116–125,
https://doi.org/10.5670/oceanog.2014.73, 2014.
Holben, B. N., Eck, T. F., Slutsker, I. a., Tanre, D., Buis, J., Setzer, A.,
Vermote, E., Reagan, J. A., Kaufman, Y., and Nakajima, T.: AERONET – A
federated instrument network and data archive for aerosol characterization,
Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Holben, B. N., Tanre, D., Smirnov, A., Eck, T., Slutsker, I., Abuhassan, N.,
Newcomb, W., Schafer, J., Chatenet, B., and Lavenu, F.: An emerging
ground-based aerosol climatology: Aerosol optical depth from AERONET, J.
Geophys. Res.-Atmos., 106, 12067–12097,
https://doi.org/10.1029/2001JD900014, 2001.
Hong, Y. and Di Girolamo, L.: Cloud phase characteristics over Southeast Asia from A-Train satellite observations, Atmos. Chem. Phys., 20, 8267–8291, https://doi.org/10.5194/acp-20-8267-2020, 2020.
Hong, Y. and Di Girolamo, L.: An overview of aerosol properties in clear
and cloudy sky based on CALIPSO observations, Earth Space Sci., 9,
e2022EA002287, https://doi.org/10.1029/2022EA002287, 2022.
Hoppel, W., Frick, G., Fitzgerald, J., and Larson, R.: Marine boundary layer
measurements of new particle formation and the effects nonprecipitating
clouds have on aerosol size distribution, J. Geophys. Res.-Atmos., 99,
14443–14459, https://doi.org/10.1029/94JD00797, 1994.
Huang, C., Li, J., Sun, W., Chen, Q., Mao, Q.-J., and Yuan, Y.: Long-Term
Variation Assessment of Aerosol Load and Dominant Types over Asia for Air
Quality Studies Using Multi-Sources Aerosol Datasets, Remote Sens., 13,
3116, https://doi.org/10.3390/rs13163116, 2021.
Hyer, E. J., Reid, J. S., Prins, E. M., Hoffman, J. P., Schmidt, C. C.,
Miettinen, J. I., and Giglio, L.: Patterns of fire activity over Indonesia
and Malaysia from polar and geostationary satellite observations, Atmos.
Res., 122, 504–519, https://doi.org/10.1016/j.atmosres.2012.06.011, 2013.
Jamora, J. B., Gudia, S. E. L., Go, A. W., Giduquio, M. B., and Loretero, M.
E.: Potential CO2 reduction and cost evaluation in use and transport of coal
ash as cement replacement: A case in the Philippines, Waste Manage., 103,
137–145, https://doi.org/10.1016/j.wasman.2019.12.026, 2020.
Jose, S., Gharai, B., Niranjan, K., and Rao, P.: Investigation on seasonal
variations of aerosol properties and its influence on radiative effect over
an urban location in central India, Atmos. Environ., 133, 41–48,
https://doi.org/10.1016/j.atmosenv.2016.03.029, 2016.
Kaskaoutis, D., Kosmopoulos, P., Kambezidis, H., and Nastos, P.: Aerosol
climatology and discrimination of different types over Athens, Greece, based
on MODIS data, Atmos. Environ., 41, 7315–7329,
https://doi.org/10.1016/j.atmosenv.2007.05.017, 2007.
Kaskaoutis, D., Badarinath, K., Kumar Kharol, S., Rani Sharma, A., and
Kambezidis, H.: Variations in the aerosol optical properties and types over
the tropical urban site of Hyderabad, India, J. Geophys.
Res.-Atmos., 114, D22204, https://doi.org/10.1029/2009JD012423, 2009.
Kiely, L., Spracklen, D. V., Wiedinmyer, C., Conibear, L., Reddington, C. L., Archer-Nicholls, S., Lowe, D., Arnold, S. R., Knote, C., Khan, M. F., Latif, M. T., Kuwata, M., Budisulistiorini, S. H., and Syaufina, L.: New estimate of particulate emissions from Indonesian peat fires in 2015, Atmos. Chem. Phys., 19, 11105–11121, https://doi.org/10.5194/acp-19-11105-2019, 2019.
Kim, J.-S. and Park, K.: Atmospheric aging of Asian dust particles during
long range transport, Aerosol Sci. Tech., 46, 913–924,
https://doi.org/10.1080/02786826.2012.680984, 2012.
Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.: Evidence that the
spectral dependence of light absorption by aerosols is affected by organic
carbon, J. Geophys. Res.-Atmos., 109, D21208, https://doi.org/10.1029/2004JD004999,
2004.
Koven, C. D. and Fung, I.: Inferring dust composition from
wavelength-dependent absorption in Aerosol Robotic Network (AERONET) data,
J. Geophys. Res.-Atmos., 111, D14205, https://doi.org/10.1029/2005JD006678, 2006.
Kudo, R., Nishizawa, T., and Aoyagi, T.: Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements, Atmos. Meas. Tech., 9, 3223–3243, https://doi.org/10.5194/amt-9-3223-2016, 2016.
Kumar, K. R., Sivakumar, V., Reddy, R. R., Gopal, K. R., and Adesina, A. J.:
Identification and classification of different aerosol types over a
subtropical rural site in Mpumalanga, South Africa: seasonal variations as
retrieved from the AERONET Sunphotometer, Aerosol Air Qual. Res., 14,
108–123, https://doi.org/10.4209/aaqr.2013.03.0079, 2014.
Kumar, K. R., Yin, Y., Sivakumar, V., Kang, N., Yu, X., Diao, Y., Adesina,
A. J., and Reddy, R.: Aerosol climatology and discrimination of aerosol
types retrieved from MODIS, MISR and OMI over Durban (29.88∘ S, 31.02∘ E),
South Africa, Atmos. Environ., 117, 9–18,
https://doi.org/10.1016/j.atmosenv.2015.06.058, 2015.
Kuttippurath, J. and Raj, S.: Two decades of aerosol observations by AATSR,
MISR, MODIS and MERRA-2 over India and Indian Ocean, Remote Sens. Environ.,
257, 112363, https://doi.org/10.1016/j.rse.2021.112363, 2021.
Lee, H.-H., Iraqui, O., Gu, Y., Yim, S. H.-L., Chulakadabba, A., Tonks, A. Y.-M., Yang, Z., and Wang, C.: Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia, Atmos. Chem. Phys., 18, 6141–6156, https://doi.org/10.5194/acp-18-6141-2018, 2018.
Lee, J., Kim, J., Song, C., Kim, S., Chun, Y., Sohn, B., and Holben, B.:
Characteristics of aerosol types from AERONET sunphotometer measurements,
Atmos. Environ., 44, 3110–3117,
https://doi.org/10.1016/j.atmosenv.2010.05.035, 2010.
Li, G., Bei, N., Cao, J., Huang, R., Wu, J., Feng, T., Wang, Y., Liu, S., Zhang, Q., Tie, X., and Molina, L. T.: A possible pathway for rapid growth of sulfate during haze days in China, Atmos. Chem. Phys., 17, 3301–3316, https://doi.org/10.5194/acp-17-3301-2017, 2017.
Li, J., Carlson, B. E., and Lacis, A. A.: Application of spectral analysis
techniques in the intercomparison of aerosol data: 1. An EOF approach to
analyze the spatial-temporal variability of aerosol optical depth using
multiple remote sensing data sets, J. Geophys. Res.-Atmos., 118, 8640–8648,
https://doi.org/10.1002/jgrd.50686, 2013.
Li, Z., Niu, F., Fan, J., Liu, Y., Rosenfeld, D., and Ding, Y.: Long-term
impacts of aerosols on the vertical development of clouds and precipitation,
Nat. Geosci., 4, 888–894, https://doi.org/10.1038/ngeo1313, 2011.
Lin, N.-H., Sayer, A. M., Wang, S.-H., Loftus, A. M., Hsiao, T.-C., Sheu,
G.-R., Hsu, N. C., Tsay, S.-C., and Chantara, S.: Interactions between
biomass-burning aerosols and clouds over Southeast Asia: Current status,
challenges, and perspectives, Environ. Pollut., 195, 292–307,
https://doi.org/10.1016/j.envpol.2014.06.036, 2014.
Lloyd, S.: Least squares quantization in PCM, IEEE T. Inform. Theory, 28,
129–137, https://doi.org/10.1109/TIT.1982.1056489, 1982.
Lynch, P., Reid, J. S., Westphal, D. L., Zhang, J., Hogan, T. F., Hyer, E. J., Curtis, C. A., Hegg, D. A., Shi, Y., Campbell, J. R., Rubin, J. I., Sessions, W. R., Turk, F. J., and Walker, A. L.: An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences, Geosci. Model Dev., 9, 1489–1522, https://doi.org/10.5194/gmd-9-1489-2016, 2016.
Markowicz, K., Zawadzka-Manko, O., Lisok, J., Chilinski, M., and Xian, P.:
The impact of moderately absorbing aerosol on surface sensible, latent, and
net radiative fluxes during the summer of 2015 in Central Europe, J.
Aerosol Sci., 151, 105627,
https://doi.org/10.1016/j.jaerosci.2020.105627, 2021.
Matsumoto, J., Olaguera, L. M. P., Nguyen-Le, D., Kubota, H., and
Villafuerte, M. Q.: Climatological seasonal changes of wind and rainfall in
the Philippines, Int. J. Climatol., 40, 4843–4857,
https://doi.org/10.1002/joc.6492, 2020.
Mims III, F. M.: A 30-Year Climatology (1990–2020) of Aerosol Optical Depth
and Total Column Water Vapor and Ozone over Texas, B. Am.
Meteorol. Soc., 103, E101–E109,
https://doi.org/10.1175/BAMS-D-21-0010.1, 2022.
Moosmüller, H. and Sorensen, C.: Small and large particle limits of
single scattering albedo for homogeneous, spherical particles, J. Quant.
Spectrosc. Ra., 204, 250–255, https://doi.org/10.1016/j.jqsrt.2017.09.029,
2018.
Mora, M., Braun, R. A., Shingler, T., and Sorooshian, A.: Analysis of
remotely sensed and surface data of aerosols and meteorology for the Mexico
Megalopolis Area between 2003 and 2015, J. Geophys. Res.-Atmos., 122,
8705–8723, https://doi.org/10.1002/2017JD026739, 2017.
Nakata, M., Mukai, S., and Yasumoto, M.: Seasonal and regional
characteristics of aerosol pollution in east and southeast Asia, Front.
Environ. Sci., 6, 29, https://doi.org/10.3389/fenvs.2018.00029,
2018.
NASA: Fires and Smoke in Borneo: Fires and Smoke in Borneo,
https://earthobservatory.nasa.gov/images/40182/fires-and-smoke-in-borneo (last access: 12 February 2022),
2009.
NASA GSFC:
AERONET Inversion Products (Version 3), https://aeronet.gsfc.nasa.gov/new_web/Documents/Inversion_products_for_V3.pdf (last access: 25 June 2021), 2019.
NASA: Worldview, AQUA MODIS cloud fraction, 24 August 2019, NASA [data set], https://worldview.earthdata.nasa.gov/?v=80.75069053975838,-7.786202652672809,165.45983158387872,31.54304140352593&l=Coastlines_15m,MODIS_Aqua_Cloud_Fraction_Night&lg=true&t=2019-08-24-T16:29:32Z (last access: 17 January 2023), 2023a.
NASA: Worldview, AQUA MODIS cloud fraction, 25 August 2019, NASA [data set], https://worldview.earthdata.nasa.gov/?v=80.75069053975838,-7.786202652672809,165.45983158387872,31.54304140352593&l=Coastlines_15m,MODIS_Aqua_Cloud_Fraction_Night&lg=true&t=2019-08-25-T16:29:32Z (last access: 17 January 2023), 2023b.
NASA: Worldview, TERRA MODIS cloud fraction, 24 August 2019,
NASA [data set],
https://worldview.earthdata.nasa.gov/?v=81.96916046398741,-7.786202652672809,164.2413616596497,31.54304140352593&l=Coastlines_15m,MODIS_Terra_Cloud_Fraction_Night&lg=true&t=2019-08-24-T16:29:32Z (last access: 17 January 2023), 2023c.
NASA: Worldview, TERRA MODIS cloud fraction, 25 August 2019,
NASA [data set],
https://worldview.earthdata.nasa.gov/?v=81.96916046398741,-7.786202652672809,164.2413616596497,31.54304140352593&l=Coastlines_15m,MODIS_Terra_Cloud_Fraction_Night&lg=true&t=2019-08-25-T16:29:32Z
(last access: 17 January 2023), 2023d.
Naval Research Laboratory: Untitled Document [data set], https://www.nrlmry.navy.mil/aerosol-bin/aerosol/display_directory_all_t.cgi?DIR=/web/aerosol/public_html/globaer/ops_01/seasia/ (last access: 4 June 2021), 2023.
Nguyen, P., Shearer, E. J., Tran, H., Ombadi, M., Hayatbini, N., Palacios,
T., Huynh, P., Braithwaite, D., Updegraff, G., and Hsu, K.: The CHRS Data
Portal, an easily accessible public repository for PERSIANN global satellite
precipitation data, Sci. Data, 6, 1–10,
https://doi.org/10.1038/sdata.2018.296, 2019a.
Nguyen, T. T., Pham, H. V., Lasko, K., Bui, M. T., Laffly, D., Jourdan, A.,
and Bui, H. Q.: Spatiotemporal analysis of ground and satellite-based
aerosol for air quality assessment in the Southeast Asia region,
Environ. Pollut., 255, 113106,
https://doi.org/10.1016/j.envpol.2019.113106, 2019b.
NOAA Air Resources Laboratory: Meteorology & Starting Location(s), NOAA [data set], https://www.ready.noaa.gov/hypub-bin/trajasrc.pl, last access: 5 June, 2023.
North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J.: Sampling errors
in the estimation of empirical orthogonal functions, Mon. Weather Rev., 110,
699–706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2, 1982.
O'Neill, N., Eck, T., Smirnov, A., Holben, B., and Thulasiraman, S.:
Spectral discrimination of coarse and fine mode optical depth, J. Geophys.
Res.-Atmos., 108, 4559, https://doi.org/10.1029/2002JD002975, 2003.
Oanh, N. K., Upadhyay, N., Zhuang, Y.-H., Hao, Z.-P., Murthy, D., Lestari,
P., Villarin, J., Chengchua, K., Co, H., and Dung, N.: Particulate air
pollution in six Asian cities: Spatial and temporal distributions, and
associated sources, Atmos. Environ., 40, 3367–3380,
https://doi.org/10.1016/j.atmosenv.2006.01.050, 2006.
Oanh, N. T. K., Permadi, D. A., Hopke, P. K., Smith, K. R., Dong, N. P., and
Dang, A. N.: Annual emissions of air toxics emitted from crop residue open
burning in Southeast Asia over the period of 2010–2015, Atmos. Environ.,
187, 163–173, https://doi.org/10.1016/j.atmosenv.2018.05.061, 2018.
Ong, H. J. J., Lagrosas, N., Uy, S. N., Gacal, G. F. B., Dorado, S., Tobias
Jr, V., and Holben, B.: Determination of Monthly Aerosol Types in Manila
Observatory and Notre Dame of Marbel University from Aerosol Robotic Network
(AERONET) measurements, AGU Fall Meeting Abstracts, A54E-03, 2016AGUFM.A54E..03O, 2016.
Pace, G., di Sarra, A., Meloni, D., Piacentino, S., and Chamard, P.: Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types, Atmos. Chem. Phys., 6, 697–713, https://doi.org/10.5194/acp-6-697-2006, 2006.
Pandolfi, M., Alados-Arboledas, L., Alastuey, A., Andrade, M., Angelov, C., Artiñano, B., Backman, J., Baltensperger, U., Bonasoni, P., Bukowiecki, N., Collaud Coen, M., Conil, S., Coz, E., Crenn, V., Dudoitis, V., Ealo, M., Eleftheriadis, K., Favez, O., Fetfatzis, P., Fiebig, M., Flentje, H., Ginot, P., Gysel, M., Henzing, B., Hoffer, A., Holubova Smejkalova, A., Kalapov, I., Kalivitis, N., Kouvarakis, G., Kristensson, A., Kulmala, M., Lihavainen, H., Lunder, C., Luoma, K., Lyamani, H., Marinoni, A., Mihalopoulos, N., Moerman, M., Nicolas, J., O'Dowd, C., Petäjä, T., Petit, J.-E., Pichon, J. M., Prokopciuk, N., Putaud, J.-P., Rodríguez, S., Sciare, J., Sellegri, K., Swietlicki, E., Titos, G., Tuch, T., Tunved, P., Ulevicius, V., Vaishya, A., Vana, M., Virkkula, A., Vratolis, S., Weingartner, E., Wiedensohler, A., and Laj, P.: A European aerosol phenomenology – 6: scattering properties of atmospheric aerosol particles from 28 ACTRIS sites, Atmos. Chem. Phys., 18, 7877–7911, https://doi.org/10.5194/acp-18-7877-2018, 2018.
Petters, M. D., Carrico, C. M., Kreidenweis, S. M., Prenni, A. J., DeMott,
P. J., Collett Jr, J. L., and Moosmüller, H.: Cloud condensation
nucleation activity of biomass burning aerosol, J. Geophys. Res.-Atmos.,
114, D22205, https://doi.org/10.1029/2009JD012353, 2009.
Plymale, N. T., Szekely, J. E., and Rubinstein, A. H.: Statistical Cluster
Analysis of Global Aerosol Optical Depth for Simplified Atmospheric
Modeling, J. Appl. Meteorol. Clim.,
https://doi.org/10.1175/JAMC-D-21-0150.1, 2021.
PSA: Highlights of the Philippine Population 2015 Census of Population,
Philippine Statistics Authority: Republic of the Philippines, http://psa.gov.ph/content/highlights-philippine-population-2015-census-population (last access: 12 February 2022), 2016.
Qi, Y., Ge, J., and Huang, J.: Spatial and temporal distribution of MODIS
and MISR aerosol optical depth over northern China and comparison with
AERONET, Chinese Sci. Bull., 58, 2497–2506,
https://doi.org/10.1007/s11434-013-5678-5, 2013.
Ramage, C. S.: Monsoon meteorology, Academic Press, New York, 198 pp., ISBN 0125766505, 1971.
Randles, C., Da Silva, A., Buchard, V., Colarco, P., Darmenov, A.,
Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., and Hair, J.: The
MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data
assimilation evaluation, J. Climate, 30, 6823–6850,
https://doi.org/10.1175/JCLI-D-16-0609.1, 2017.
Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning emissions part II: intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799–825, https://doi.org/10.5194/acp-5-799-2005, 2005.
Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Sampson, C. R., Zhang, C., Fukada, E. M., and Maloney, E. D.: Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in the Maritime Continent, Atmos. Chem. Phys., 12, 2117–2147, https://doi.org/10.5194/acp-12-2117-2012, 2012.
Reid, J., Maring, H., Narisma, G., van den Heever, S., Di Girolamo, L.,
Ferrare, R., Holz, R., Lawson, P., Mace, G., and Simpas, J.: The coupling
between tropical meteorology, aerosol lifecycle, convection, and radiation,
during the Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP
2 Ex), B. Am. Meteorol. Soc., 104, E1179–E1205, https://doi.org/10.1175/BAMS-D-21-0285.1,
2023.
Reid, J. S., Hobbs, P. V., Liousse, C., Martins, J. V., Weiss, R. E., and
Eck, T. F.: Comparisons of techniques for measuring shortwave absorption and
black carbon content of aerosols from biomass burning in Brazil, J. Geophys.
Res.-Atmos., 103, 32031–32040, https://doi.org/10.1029/98JD00773, 1998.
Reid, J. S., Hyer, E. J., Johnson, R. S., Holben, B. N., Yokelson, R. J.,
Zhang, J., Campbell, J. R., Christopher, S. A., Di Girolamo, L., and Giglio,
L.: Observing and understanding the Southeast Asian aerosol system by remote
sensing: An initial review and analysis for the Seven Southeast Asian
Studies (7SEAS) program, Atmos. Res., 122, 403–468,
https://doi.org/10.1016/j.atmosres.2012.06.005, 2013.
Reid, J. S., Lagrosas, N. D., Jonsson, H. H., Reid, E. A., Sessions, W. R., Simpas, J. B., Uy, S. N., Boyd, T. J., Atwood, S. A., Blake, D. R., Campbell, J. R., Cliff, S. S., Holben, B. N., Holz, R. E., Hyer, E. J., Lynch, P., Meinardi, S., Posselt, D. J., Richardson, K. A., Salinas, S. V., Smirnov, A., Wang, Q., Yu, L., and Zhang, J.: Observations of the temporal variability in aerosol properties and their relationships to meteorology in the summer monsoonal South China Sea/East Sea: the scale-dependent role of monsoonal flows, the Madden–Julian Oscillation, tropical cyclones, squall lines and cold pools, Atmos. Chem. Phys., 15, 1745–1768, https://doi.org/10.5194/acp-15-1745-2015, 2015.
Rizza, U., Mancinelli, E., Morichetti, M., Passerini, G., and Virgili, S.:
Aerosol optical depth of the main aerosol species over Italian cities based
on the NASA/MERRA-2 model reanalysis, Atmosphere, 10, 709,
https://doi.org/10.3390/atmos10110709, 2019.
Rolph, G., Stein, A., and Stunder, B.: Real-time environmental applications
and display system: READY, Environ. Modell. Softw., 95, 210–228,
https://doi.org/10.1016/j.envsoft.2017.06.025, 2017.
Ross, A. D., Holz, R. E., Quinn, G., Reid, J. S., Xian, P., Turk, F. J., and Posselt, D. J.: Exploring the first aerosol indirect effect over Southeast Asia using a 10-year collocated MODIS, CALIOP, and model dataset, Atmos. Chem. Phys., 18, 12747–12764, https://doi.org/10.5194/acp-18-12747-2018, 2018.
Ross, J. L., Hobbs, P. V., and Holben, B.: Radiative characteristics of
regional hazes dominated by smoke from biomass burning in Brazil: Closure
tests and direct radiative forcing, J. Geophys. Res.-Atmos., 103,
31925–31941, https://doi.org/10.1029/97JD03677, 1998.
Saleh, R., Hennigan, C. J., McMeeking, G. R., Chuang, W. K., Robinson, E. S., Coe, H., Donahue, N. M., and Robinson, A. L.: Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions, Atmos. Chem. Phys., 13, 7683–7693, https://doi.org/10.5194/acp-13-7683-2013, 2013.
Schlosser, J. S., Braun, R. A., Bradley, T., Dadashazar, H., MacDonald, A.
B., Aldhaif, A. A., Aghdam, M. A., Mardi, A. H., Xian, P., and Sorooshian,
A.: Analysis of aerosol composition data for western United States wildfires
between 2005 and 2015: Dust emissions, chloride depletion, and most enhanced
aerosol constituents, J. Geophys. Res.-Atmos., 122, 8951–8966,
https://doi.org/10.1002/2017JD026547, 2017.
Schuster, G. L., Dubovik, O., and Holben, B. N.: Angstrom exponent and
bimodal aerosol size distributions, J. Geophys. Res.-Atmos., 111, D07207,
https://doi.org/10.1029/2005JD006328, 2006.
Schuster, G. L., Dubovik, O., and Arola, A.: Remote sensing of soot carbon – Part 1: Distinguishing different absorbing aerosol species, Atmos. Chem. Phys., 16, 1565–1585, https://doi.org/10.5194/acp-16-1565-2016, 2016.
Sharma, M., Kaskaoutis, D. G., Singh, R. P., and Singh, S.: Seasonal
variability of atmospheric aerosol parameters over Greater Noida using
ground sunphotometer observations, Aerosol Air Qual. Res., 14, 608–622,
https://doi.org/10.4209/aaqr.2013.06.0219, 2014.
Shen, Z., Liu, J., Horowitz, L. W., Henze, D. K., Fan, S., H., L. I., Mauzerall, D. L., Lin, J.-T., and Tao, S.: Analysis of transpacific transport of black carbon during HIPPO-3: implications for black carbon aging, Atmos. Chem. Phys., 14, 6315–6327, https://doi.org/10.5194/acp-14-6315-2014, 2014.
Sinyuk, A., Holben, B. N., Eck, T. F., Giles, D. M., Slutsker, I., Korkin, S., Schafer, J. S., Smirnov, A., Sorokin, M., and Lyapustin, A.: The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2, Atmos. Meas. Tech., 13, 3375–3411, https://doi.org/10.5194/amt-13-3375-2020, 2020.
Smirnov, A., Holben, B. N., Dubovik, O., O'Neill, N. T., Eck, T. F.,
Westphal, D. L., Goroch, A. K., Pietras, C., and Slutsker, I.: Atmospheric
aerosol optical properties in the Persian Gulf, J. Atmos. Sci., 59, 620–634,
https://doi.org/10.1175/1520-0469(2002)059<0620:AAOPIT>2.0.CO;2, 2002.
Smith, S. J., van Aardenne, J., Klimont, Z., Andres, R. J., Volke, A., and Delgado Arias, S.: Anthropogenic sulfur dioxide emissions: 1850–2005, Atmos. Chem. Phys., 11, 1101–1116, https://doi.org/10.5194/acp-11-1101-2011, 2011.
Sorooshian, A., Wang, Z., Feingold, G., and L'Ecuyer, T. S.: A satellite
perspective on cloud water to rain water conversion rates and relationships
with environmental conditions, J. Geophys. Res.-Atmos., 118, 6643–6650,
https://doi.org/10.1002/jgrd.50523, 2013.
Stahl, C., Cruz, M. T., Bañaga, P. A., Betito, G., Braun, R. A., Aghdam, M. A., Cambaliza, M. O., Lorenzo, G. R., MacDonald, A. B., Hilario, M. R. A., Pabroa, P. C., Yee, J. R., Simpas, J. B., and Sorooshian, A.: Sources and characteristics of size-resolved particulate organic acids and methanesulfonate in a coastal megacity: Manila, Philippines, Atmos. Chem. Phys., 20, 15907–15935, https://doi.org/10.5194/acp-20-15907-2020, 2020.
Stahl, C., Crosbie, E., Bañaga, P. A., Betito, G., Braun, R. A., Cainglet, Z. M., Cambaliza, M. O., Cruz, M. T., Dado, J. M., Hilario, M. R. A., Leung, G. F., MacDonald, A. B., Magnaye, A. M., Reid, J., Robinson, C., Shook, M. A., Simpas, J. B., Visaga, S. M., Winstead, E., Ziemba, L., and Sorooshian, A.: Total organic carbon and the contribution from speciated organics in cloud water: airborne data analysis from the CAMP2Ex field campaign, Atmos. Chem. Phys., 21, 14109–14129, https://doi.org/10.5194/acp-21-14109-2021, 2021.
Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M., and
Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Stevens, B. and Feingold, G.: Untangling aerosol effects on clouds and
precipitation in a buffered system, Nature, 461, 607–613,
https://doi.org/10.1038/nature08281, 2009.
Sullivan, R. C., Levy, R. C., da Silva, A. M., and Pryor, S. C.: Developing
and diagnosing climate change indicators of regional aerosol optical
properties, Sci. Rep., 7, 1–13,
https://doi.org/10.1038/s41598-017-18402-x, 2017.
Tao, W. K., Chen, J. P., Li, Z., Wang, C., and Zhang, C.: Impact of aerosols
on convective clouds and precipitation, Rev. Geophys., 50, RG2001,
https://doi.org/10.1029/2011RG000369, 2012.
The MathWorks Inc.: MATLAB version: 9.10.0 (R2021a), The MathWorks Inc. [code], https://www.mathworks.com, 2020.
The MathWorks Inc.: MATLAB version: 9.14.0 (R2023a), The MathWorks Inc. [code], https://www.mathworks.com, 2022.
Tsay, S.-C., Hsu, N. C., Lau, W. K.-M., Li, C., Gabriel, P. M., Ji, Q.,
Holben, B. N., Welton, E. J., Nguyen, A. X., and Janjai, S.: From BASE-ASIA
toward 7-SEAS: A satellite-surface perspective of boreal spring
biomass-burning aerosols and clouds in Southeast Asia, Atmos.
Environ., 78, 20–34, https://doi.org/10.1016/j.atmosenv.2012.12.013,
2013.
van Beelen, A. J., Roelofs, G. J. H., Hasekamp, O. P., Henzing, J. S., and Röckmann, T.: Estimation of aerosol water and chemical composition from AERONET Sun–sky radiometer measurements at Cabauw, the Netherlands, Atmos. Chem. Phys., 14, 5969–5987, https://doi.org/10.5194/acp-14-5969-2014, 2014.
Wall, C. J., Norris, J. R., Possner, A., McCoy, D. T., McCoy, I. L., and
Lutsko, N. J.: Assessing effective radiative forcing from aerosol–cloud
interactions over the global ocean, P. Natl. Acad.
Sci. USA, 119, e2210481119, https://doi.org/10.1073/pnas.2210481119, 2022.
Wang, L., Lau, K.-H., Fung, C.-H., and Gan, J.-P.: The relative vorticity of
ocean surface winds from the QuikSCAT satellite and its effects on the
geneses of tropical cyclones in the South China Sea, Tellus A, 59, 562–569,
https://doi.org/10.1111/j.1600-0870.2007.00249.x, 2007.
Wang, S.-H., Welton, E. J., Holben, B. N., Tsay, S.-C., Lin, N.-H., Giles,
D., Stewart, S. A., Janjai, S., Nguyen, X. A., and Hsiao, T.-C.: Vertical
distribution and columnar optical properties of springtime biomass-burning
aerosols over Northern Indochina during 2014 7-SEAS campaign, Aerosol
Air Qual. Res., 15, 2037–2050,
https://doi.org/10.4209/aaqr.2015.05.0310, 2015.
Wu, M.-C. and Choy, C.-W.: An Observational Study of the Changes in the
Intensity and Motion of Tropical Cyclones crossing Luzon, Tropical Cyclone
Research and Review, 4, 95–109, https://doi.org/10.6057/2015TCRRh3.01, 2016.
Xian, P., Reid, J. S., Atwood, S. A., Johnson, R. S., Hyer, E. J., Westphal,
D. L., and Sessions, W.: Smoke aerosol transport patterns over the Maritime
Continent, Atmos. Res., 122, 469–485,
https://doi.org/10.1016/j.atmosres.2012.05.006, 2013.
Xiao, N., Shi, T., Calder, C. A., Munroe, D. K., Berrett, C., Wolfinbarger,
S., and Li, D.: Spatial characteristics of the difference between MISR and
MODIS aerosol optical depth retrievals over mainland Southeast Asia, Remote
Sens. Environ., 113, 1–9, https://doi.org/10.1016/j.rse.2008.07.011,
2009.
Xie, Y., Li, Z., Zhang, Y., Zhang, Y., Li, D., Li, K., Xu, H., Zhang, Y.,
Wang, Y., and Chen, X.: Estimation of atmospheric aerosol composition from
ground-based remote sensing measurements of Sun-sky radiometer, J. Geophys.
Res.-Atmos., 122, 498–518, https://doi.org/10.1002/2016JD025839, 2017.
Yang, S., Lau, W. K., Ji, Z., Dong, W., and Yang, S.: Impacts of radiative
effect of pre-monsoon biomass burning aerosols on atmospheric circulation
and rainfall over Southeast Asia and southern China, Clim. Dynam., 59,
417–432, https://doi.org/10.1007/s00382-021-06135-7, 2022.
Yumul Jr., G. P., Cruz, N. A., Dimalanta, C. B., Servando, N. T., and
Hilario, F. D.: The 2007 dry spell in Luzon (Philippines): its cause, impact
and corresponding response measures, Clim. Change, 100, 633–644,
https://doi.org/10.1007/s10584-009-9677-0, 2010.
Zhao, G., Di Girolamo, L., Dey, S., Jones, A. L., and Bull, M.: Examination
of direct cumulus contamination on MISR-retrieved aerosol optical depth and
angstrom coefficient over ocean, Geophys. Res. Lett., 36, L13811,
https://doi.org/10.1029/2009GL038549, 2009.
Zhao, G., Zhao, C., Kuang, Y., Bian, Y., Tao, J., Shen, C., and Yu, Y.: Calculating the aerosol asymmetry factor based on measurements from the humidified nephelometer system, Atmos. Chem. Phys., 18, 9049–9060, https://doi.org/10.5194/acp-18-9049-2018, 2018.
Short summary
Aerosol and weather interactions in Southeast Asia are complex and understudied. An emerging aerosol climatology was established in Metro Manila, the Philippines, from aerosol particle physicochemical properties and meteorology, revealing five sources. Even with local traffic, transported smoke from biomass burning, aged dust, and cloud processing, background marine particles dominate and correspond to lower aerosol optical depth in Metro Manila compared to other Southeast Asian megacities.
Aerosol and weather interactions in Southeast Asia are complex and understudied. An emerging...
Altmetrics
Final-revised paper
Preprint