Supplement of
An emerging aerosol climatology via remote sensing over Metro Manila, the Philippines

Genevieve Rose Lorenzo et al.
Correspondence to: Armin Sorooshian (armin@arizona.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Time Frame	AOD	C_{v}	FMF	Fine						Coarse					
				AOD	C_{v}	$\mathbf{r}_{\text {peak }}$	$\mathbf{r e f f ~}$	r_{v}	σ	AOD	C_{v}	$\mathbf{r}_{\text {peak }}$	$\mathbf{r e f f f}$	r_{v}	σ
ALL	0.1674	0.0610	0.6514	0.1086	0.0220	0.1482	0.1450	0.1630	0.4890	0.0524	0.0360	3.8575	1.9690	2.6410	0.7330
DJF	0.1507	0.0590	0.6215	0.0907	0.0190	0.1482	0.1475	0.1640	0.4960	0.0557	0.0390	3.8575	2.0410	2.7300	0.7335
MAM	0.1791	0.0630	0.6774	0.1240	0.0235	0.1482	0.1430	0.1600	0.4820	0.0522	0.0360	3.8575	1.9435	2.5995	0.7330
JJA	0.1708	0.0520	0.7700	0.1400	0.0310	0.1482	0.1460	0.1670	0.5080	0.0360	0.0220	2.9400	2.1680	2.7520	0.6670
SON	0.1479	0.0575	0.5733	0.0869	0.0170	0.1482	0.1480	0.1665	0.5035	0.0570	0.0370	2.9400	1.9290	2.5640	0.7505
AM	0.1654	0.0600	0.6443	0.1067	0.0210	0.1482	0.1460	0.1640	0.4950	0.0518	0.0350	3.8575	1.9494	2.5925	0.7360
PM	0.1850	0.0575	0.6847	0.1264	0.0260	0.1482	0.1410	0.1550	0.4590	0.0555	0.0390	3.8575	2.2070	2.8850	0.7190

Figure S1: MISR monthly mean time series of 550 nm AOD (total, large (particle radii >0.7
$\mu \mathrm{m}$), medium (particle radii from 0.35 to $0.7 \mu \mathrm{~m}$), small (particle radii $<0.35 \mu \mathrm{~m}$), non-spherical spherical, and absorption optical depth) and angstrom exponent (AE) for March 2000 to December 2020 for $116.5^{\circ} \mathrm{E}-128.5^{\circ} \mathrm{E} ; 6.5^{\circ} \mathrm{N}-22.5^{\circ} \mathrm{N}$.

Figure S2: Scatterplots of total extinction angstrom exponent (EAE) versus AOD (500 nm). The red circles indicate when AOD exceeded 1.

Figure S3: Cloud fraction images from (a/c) Aqua / MODIS and (b/d) Terra / MODIS satellite products. These are day-time snapshots during the back-trajectory periods: (a/b) 24 August 2009 at 00:00 UTC and (c/d) 25 August 2009 at 00:00 UTC. Red areas in panels show where there is 100% cloud fraction.

Figure S4: Monthly mean MERRA-2 AOD (extinction at 550 nm) from 2009 to 2018 in Southeast Asia.

Standardized PCs in U matrix

Figure S5: Time series of standardized principal components. Maximum and minimum values per principal component are annotated with the month of occurrence.

