Articles | Volume 22, issue 14
https://doi.org/10.5194/acp-22-9681-2022
https://doi.org/10.5194/acp-22-9681-2022
Research article
 | 
29 Jul 2022
Research article |  | 29 Jul 2022

The impacts of wildfires on ozone production and boundary layer dynamics in California's Central Valley

Keming Pan and Ian C. Faloona

Related authors

Maximum ozone concentrations in the southwestern US and Texas: implications of the growing predominance of the background contribution
David D. Parrish, Ian C. Faloona, and Richard G. Derwent
Atmos. Chem. Phys., 25, 263–289, https://doi.org/10.5194/acp-25-263-2025,https://doi.org/10.5194/acp-25-263-2025, 2025
Short summary
Opinion: Establishing a science-into-policy process for tropospheric ozone assessment
Richard G. Derwent, David D. Parrish, and Ian C. Faloona
Atmos. Chem. Phys., 23, 13613–13623, https://doi.org/10.5194/acp-23-13613-2023,https://doi.org/10.5194/acp-23-13613-2023, 2023
Short summary
Technical note: Northern midlatitude baseline ozone – long-term changes and the COVID-19 impact
David D. Parrish, Richard G. Derwent, Ian C. Faloona, and Charles A. Mims
Atmos. Chem. Phys., 22, 13423–13430, https://doi.org/10.5194/acp-22-13423-2022,https://doi.org/10.5194/acp-22-13423-2022, 2022
Short summary
Photochemical production of ozone and emissions of NOx and CH4 in the San Joaquin Valley
Justin F. Trousdell, Dani Caputi, Jeanelle Smoot, Stephen A. Conley, and Ian C. Faloona
Atmos. Chem. Phys., 19, 10697–10716, https://doi.org/10.5194/acp-19-10697-2019,https://doi.org/10.5194/acp-19-10697-2019, 2019
Short summary
Residual layer ozone, mixing, and the nocturnal jet in California's San Joaquin Valley
Dani J. Caputi, Ian Faloona, Justin Trousdell, Jeanelle Smoot, Nicholas Falk, and Stephen Conley
Atmos. Chem. Phys., 19, 4721–4740, https://doi.org/10.5194/acp-19-4721-2019,https://doi.org/10.5194/acp-19-4721-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Surface exchange fluxes of HONO during the growth process of paddy fields in the Huaihe River Basin, China
Fanhao Meng, Baobin Han, Min Qin, Wu Fang, Ke Tang, Dou Shao, Zhitang Liao, Jun Duan, Yan Feng, Yong Huang, Ting Ni, and Pinhua Xie
Atmos. Chem. Phys., 24, 14191–14208, https://doi.org/10.5194/acp-24-14191-2024,https://doi.org/10.5194/acp-24-14191-2024, 2024
Short summary
Molecular and seasonal characteristics of organic vapors in urban Beijing: insights from Vocus-PTR measurements
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yuyang Li, Yi Yuan, Junchen Guo, Yiqi Zhao, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
Atmos. Chem. Phys., 24, 13793–13810, https://doi.org/10.5194/acp-24-13793-2024,https://doi.org/10.5194/acp-24-13793-2024, 2024
Short summary
The variations in volatile organic compounds based on the policy change for Omicron in the traffic hub of Zhengzhou
Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li
Atmos. Chem. Phys., 24, 13587–13601, https://doi.org/10.5194/acp-24-13587-2024,https://doi.org/10.5194/acp-24-13587-2024, 2024
Short summary
On the dynamics of ozone depletion events at Villum Research Station in the High Arctic
Jakob Boyd Pernov, Jens Liengaard Hjorth, Lise Lotte Sørensen, and Henrik Skov
Atmos. Chem. Phys., 24, 13603–13631, https://doi.org/10.5194/acp-24-13603-2024,https://doi.org/10.5194/acp-24-13603-2024, 2024
Short summary
Measurement report: Long-term measurements of surface ozone and trends in semi-natural sub-Saharan African ecosystems
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 24, 13151–13182, https://doi.org/10.5194/acp-24-13151-2024,https://doi.org/10.5194/acp-24-13151-2024, 2024
Short summary

Cited articles

Ainsworth, E.: A. Understanding and improving global crop response to ozone pollution, Plant J., 90, 886–897, https://doi.org/10.1111/tpj.13298, 2017. 
AirNow-Tech: Data Queries, MADIS [data set], https://www.airnowtech.org/data/index.cfm (last access: 3 June 2021), 2020. 
Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simpson, I., Blake, D. R., McMeeking, G. R., Sullivan, A., Lee, T., Kreidenweis, S., Urbanski, S., Reardon, J., Griffith, D. W. T., Johnson, T. J., and Weise, D. R.: Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes, Atmos. Chem. Phys., 13, 1141–1165, https://doi.org/10.5194/acp-13-1141-2013, 2013. 
Baker, K. R., Woody, M. C., Valin, L., Szykman, J., Yates, E. L., Iraci, L. T., Choi, H. D., Soja, A. J., Koplitz, S. N., Zhou, L. Campuzano-Jost, P. Jimenez, J. L., and Hair, J. W.: Photochemical model evaluation of 2013 California wild fire air quality impacts using surface, aircraft, and satellite data, Sci. Total Environ., 637, 1137–1149, https://doi.org/10.1016/j.scitotenv.2018.05.048, 2018. 
Download
Short summary
This work represents a unique analysis of 10 existing air quality network sites and meteorological sites, two AmeriFlux sites, and a radio acoustic sounding system in the Central Valley of California during five consecutive fire seasons, June through September, from 2016 to 2020. We find that the ozone production rate increases by ~ 50 % during wildfire influenced periods. Wildfire smoke also decreases the heat flux by 30 % and results in 12 % lower mixed-layer height.
Altmetrics
Final-revised paper
Preprint