Articles | Volume 22, issue 13
https://doi.org/10.5194/acp-22-9033-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-9033-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Particle phase-state variability in the North Atlantic free troposphere during summertime is determined by atmospheric transport patterns and sources
Zezhen Cheng
Environmental Molecular Sciences Laboratory, Pacific Northwest
National Laboratory (PNNL), Richland, Washington 99352, USA
Megan Morgenstern
Atmospheric Sciences Program, Michigan Technological University,
Houghton, Michigan, 49921, USA
Bo Zhang
National Institute of Aerospace, Hampton, VA 23666, USA
Matthew Fraund
Advanced Light Source, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA
Nurun Nahar Lata
Environmental Molecular Sciences Laboratory, Pacific Northwest
National Laboratory (PNNL), Richland, Washington 99352, USA
Rhenton Brimberry
Environmental Molecular Sciences Laboratory, Pacific Northwest
National Laboratory (PNNL), Richland, Washington 99352, USA
Matthew A. Marcus
Advanced Light Source, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA
Lynn Mazzoleni
Atmospheric Sciences Program, Michigan Technological University,
Houghton, Michigan, 49921, USA
Paulo Fialho
Institute of Volcanology and Risk Assessment – IVAR, Rua da Mãe
de Deus, 9500-321 Ponta Delgada, Portugal
Silvia Henning
Leibniz Institute for Tropospheric Research, Permoserstraße 15,
04318 Leipzig, Germany
Birgit Wehner
Leibniz Institute for Tropospheric Research, Permoserstraße 15,
04318 Leipzig, Germany
Claudio Mazzoleni
Atmospheric Sciences Program, Michigan Technological University,
Houghton, Michigan, 49921, USA
Environmental Molecular Sciences Laboratory, Pacific Northwest
National Laboratory (PNNL), Richland, Washington 99352, USA
Related authors
Haley M. Royer, Michael T. Sheridan, Hope E. Elliott, Edmund Blades, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Zihua Zhu, Andrew P. Ault, and Cassandra J. Gaston
Atmos. Chem. Phys., 25, 5743–5759, https://doi.org/10.5194/acp-25-5743-2025, https://doi.org/10.5194/acp-25-5743-2025, 2025
Short summary
Short summary
Saharan dust transported across the Atlantic to the Caribbean, South America, and North America is hypothesized to undergo chemical processing by acids that enhances cloud droplet formation and nutrient availability. In this study, chemical analysis performed on African dust deposited over Barbados shows that acid tracers are found mostly on sea salt and smoke particles, rather than dust, indicating that dust particles undergo minimal chemical processing.
Fan Mei, Qi Zhang, Damao Zhang, Jerome D. Fast, Gourihar Kulkarni, Mikhail S. Pekour, Christopher R. Niedek, Susanne Glienke, Israel Silber, Beat Schmid, Jason M. Tomlinson, Hardeep S. Mehta, Xena Mansoura, Zezhen Cheng, Gregory W. Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
Atmos. Chem. Phys., 25, 3425–3444, https://doi.org/10.5194/acp-25-3425-2025, https://doi.org/10.5194/acp-25-3425-2025, 2025
Short summary
Short summary
This study highlights the unique capability of the ArcticShark, an uncrewed aerial system, in measuring vertically resolved atmospheric properties. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Guangyu Li, Elise K. Wilbourn, Zezhen Cheng, Jörg Wieder, Allison Fagerson, Jan Henneberger, Ghislain Motos, Rita Traversi, Sarah D. Brooks, Mauro Mazzola, Swarup China, Athanasios Nenes, Ulrike Lohmann, Naruki Hiranuma, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 10489–10516, https://doi.org/10.5194/acp-23-10489-2023, https://doi.org/10.5194/acp-23-10489-2023, 2023
Short summary
Short summary
In this work, we present results from an Arctic field campaign (NASCENT) in Ny-Ålesund, Svalbard, on the abundance, variability, physicochemical properties, and potential sources of ice-nucleating particles (INPs) relevant for mixed-phase cloud formation. This work improves the data coverage of Arctic INPs and aerosol properties, allowing for the validation of models predicting cloud microphysical and radiative properties of mixed-phase clouds in the rapidly warming Arctic.
Haley M. Royer, Mira L. Pöhlker, Ovid Krüger, Edmund Blades, Peter Sealy, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Andrew P. Ault, Patricia K. Quinn, Paquita Zuidema, Christopher Pöhlker, Ulrich Pöschl, Meinrat Andreae, and Cassandra J. Gaston
Atmos. Chem. Phys., 23, 981–998, https://doi.org/10.5194/acp-23-981-2023, https://doi.org/10.5194/acp-23-981-2023, 2023
Short summary
Short summary
This paper presents atmospheric particle chemical composition and measurements of aerosol water uptake properties collected at Ragged Point, Barbados, during the winter of 2020. The result of this study indicates the importance of small African smoke particles for cloud droplet formation in the tropical North Atlantic and highlights the large spatial and temporal pervasiveness of smoke over the Atlantic Ocean.
Theresa Mathes, Heather Guy, John Prytherch, Julia Kojoj, Ian Brooks, Sonja Murto, Paul Zieger, Birgit Wehner, Michael Tjernström, and Andreas Held
Atmos. Chem. Phys., 25, 8455–8474, https://doi.org/10.5194/acp-25-8455-2025, https://doi.org/10.5194/acp-25-8455-2025, 2025
Short summary
Short summary
The Arctic is warming faster than the global average and an investigation of aerosol–cloud–sea ice interactions is crucial for studying its climate system. During the ARTofMELT Expedition 2023, particle and sensible heat fluxes were measured over different surfaces. Wide lead surfaces acted as particle sources, with the strongest sensible heat fluxes, while closed ice surfaces acted as particle sinks. In this study, methods to measure these interactions are improved, enhancing our understanding of Arctic climate processes.
Haley M. Royer, Michael T. Sheridan, Hope E. Elliott, Edmund Blades, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Zihua Zhu, Andrew P. Ault, and Cassandra J. Gaston
Atmos. Chem. Phys., 25, 5743–5759, https://doi.org/10.5194/acp-25-5743-2025, https://doi.org/10.5194/acp-25-5743-2025, 2025
Short summary
Short summary
Saharan dust transported across the Atlantic to the Caribbean, South America, and North America is hypothesized to undergo chemical processing by acids that enhances cloud droplet formation and nutrient availability. In this study, chemical analysis performed on African dust deposited over Barbados shows that acid tracers are found mostly on sea salt and smoke particles, rather than dust, indicating that dust particles undergo minimal chemical processing.
Mike C. Rowley, Jasquelin Pena, Matthew A. Marcus, Rachel Porras, Elaine Pegoraro, Cyrill Zosso, Nicholas O. E. Ofiti, Guido L. B. Wiesenberg, Michael W. I. Schmidt, Margaret S. Torn, and Peter S. Nico
SOIL, 11, 381–388, https://doi.org/10.5194/soil-11-381-2025, https://doi.org/10.5194/soil-11-381-2025, 2025
Short summary
Short summary
This study shows that calcium (Ca) preserves soil organic carbon (SOC) in acidic soils, challenging beliefs that their interactions were limited to near-neutral or alkaline soils. Using spectromicroscopy, we found that Ca was co-located with a specific fraction of carbon, rich in aromatic and phenolic groups. This association was disrupted when Ca was removed but was reformed during decomposition with added Ca. Overall, this suggests that Ca amendments could enhance SOC stability.
Fan Mei, Qi Zhang, Damao Zhang, Jerome D. Fast, Gourihar Kulkarni, Mikhail S. Pekour, Christopher R. Niedek, Susanne Glienke, Israel Silber, Beat Schmid, Jason M. Tomlinson, Hardeep S. Mehta, Xena Mansoura, Zezhen Cheng, Gregory W. Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
Atmos. Chem. Phys., 25, 3425–3444, https://doi.org/10.5194/acp-25-3425-2025, https://doi.org/10.5194/acp-25-3425-2025, 2025
Short summary
Short summary
This study highlights the unique capability of the ArcticShark, an uncrewed aerial system, in measuring vertically resolved atmospheric properties. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiia Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
Atmos. Chem. Phys., 25, 2207–2241, https://doi.org/10.5194/acp-25-2207-2025, https://doi.org/10.5194/acp-25-2207-2025, 2025
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol–climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Local wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Shravan Deshmukh, Laurent Poulain, Birgit Wehner, Silvia Henning, Jean-Eudes Petit, Pauline Fombelle, Olivier Favez, Hartmut Herrmann, and Mira Pöhlker
Atmos. Chem. Phys., 25, 741–758, https://doi.org/10.5194/acp-25-741-2025, https://doi.org/10.5194/acp-25-741-2025, 2025
Short summary
Short summary
Aerosol hygroscopicity has been investigated at a sub-urban site in Paris; analysis shows the sub-saturated regime's measured hygroscopicity and the chemically derived hygroscopic growth, shedding light on the large effect of external particle mixing and its influence on predicting hygroscopicity.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Barbara Harm-Altstädter, Konrad Bärfuss, Lutz Bretschneider, Martin Schön, Jens Bange, Ralf Käthner, Radovan Krejci, Mauro Mazzola, Kihong Park, Falk Pätzold, Alexander Peuker, Rita Traversi, Birgit Wehner, and Astrid Lampert
Aerosol Research, 1, 39–64, https://doi.org/10.5194/ar-1-39-2023, https://doi.org/10.5194/ar-1-39-2023, 2023
Short summary
Short summary
We present observations of aerosol particles and meteorological parameters in the horizontal and vertical distribution measured with uncrewed aerial systems in the Arctic. The field campaign was carried out during the snow melting season, when ultrafine aerosol particles (UFPs) with a size between 3 and 12 nm occurred frequently. A high variability of the measured UFPs was identified in the spatial scale, which was strongly associated with different atmospheric boundary layer properties.
Guangyu Li, Elise K. Wilbourn, Zezhen Cheng, Jörg Wieder, Allison Fagerson, Jan Henneberger, Ghislain Motos, Rita Traversi, Sarah D. Brooks, Mauro Mazzola, Swarup China, Athanasios Nenes, Ulrike Lohmann, Naruki Hiranuma, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 10489–10516, https://doi.org/10.5194/acp-23-10489-2023, https://doi.org/10.5194/acp-23-10489-2023, 2023
Short summary
Short summary
In this work, we present results from an Arctic field campaign (NASCENT) in Ny-Ålesund, Svalbard, on the abundance, variability, physicochemical properties, and potential sources of ice-nucleating particles (INPs) relevant for mixed-phase cloud formation. This work improves the data coverage of Arctic INPs and aerosol properties, allowing for the validation of models predicting cloud microphysical and radiative properties of mixed-phase clouds in the rapidly warming Arctic.
Daniel A. Knopf, Peiwen Wang, Benny Wong, Jay M. Tomlin, Daniel P. Veghte, Nurun N. Lata, Swarup China, Alexander Laskin, Ryan C. Moffet, Josephine Y. Aller, Matthew A. Marcus, and Jian Wang
Atmos. Chem. Phys., 23, 8659–8681, https://doi.org/10.5194/acp-23-8659-2023, https://doi.org/10.5194/acp-23-8659-2023, 2023
Short summary
Short summary
Ambient particle populations and associated ice-nucleating particles (INPs)
were examined from particle samples collected on board aircraft in the marine
boundary layer and free troposphere in the eastern North Atlantic during
summer and winter. Chemical imaging shows distinct differences in the
particle populations seasonally and with sampling altitudes, which are
reflected in the INP types. Freezing parameterizations are derived for
implementation in cloud-resolving and climate models.
Haley M. Royer, Mira L. Pöhlker, Ovid Krüger, Edmund Blades, Peter Sealy, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Andrew P. Ault, Patricia K. Quinn, Paquita Zuidema, Christopher Pöhlker, Ulrich Pöschl, Meinrat Andreae, and Cassandra J. Gaston
Atmos. Chem. Phys., 23, 981–998, https://doi.org/10.5194/acp-23-981-2023, https://doi.org/10.5194/acp-23-981-2023, 2023
Short summary
Short summary
This paper presents atmospheric particle chemical composition and measurements of aerosol water uptake properties collected at Ragged Point, Barbados, during the winter of 2020. The result of this study indicates the importance of small African smoke particles for cloud droplet formation in the tropical North Atlantic and highlights the large spatial and temporal pervasiveness of smoke over the Atlantic Ocean.
Yuan Wang, Silvia Henning, Laurent Poulain, Chunsong Lu, Frank Stratmann, Yuying Wang, Shengjie Niu, Mira L. Pöhlker, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 15943–15962, https://doi.org/10.5194/acp-22-15943-2022, https://doi.org/10.5194/acp-22-15943-2022, 2022
Short summary
Short summary
Aerosol particle activation affects cloud, precipitation, radiation, and thus the global climate. Its long-term measurements are important but still scarce. In this study, more than 4 years of measurements at a central European station were analyzed. The overall characteristics and seasonal changes of aerosol particle activation are summarized. The power-law fit between particle hygroscopicity factor and diameter was recommended for predicting cloud
condensation nuclei number concentration.
Christian Pilz, Sebastian Düsing, Birgit Wehner, Thomas Müller, Holger Siebert, Jens Voigtländer, and Michael Lonardi
Atmos. Meas. Tech., 15, 6889–6905, https://doi.org/10.5194/amt-15-6889-2022, https://doi.org/10.5194/amt-15-6889-2022, 2022
Short summary
Short summary
Tethered balloon observations are highly valuable for aerosol studies in the lowest part of the atmosphere. This study presents a newly developed platform called CAMP with four aerosol instruments for balloon-borne measurements in the Arctic. Laboratory characterizations and evaluations of the instruments and results of a first field deployment are shown. A case study highlights CAMP's capabilities and the importance of airborne aerosol studies for interpretation of ground-based observations.
Qianjie Chen, Jessica A. Mirrielees, Sham Thanekar, Nicole A. Loeb, Rachel M. Kirpes, Lucia M. Upchurch, Anna J. Barget, Nurun Nahar Lata, Angela R. W. Raso, Stephen M. McNamara, Swarup China, Patricia K. Quinn, Andrew P. Ault, Aaron Kennedy, Paul B. Shepson, Jose D. Fuentes, and Kerri A. Pratt
Atmos. Chem. Phys., 22, 15263–15285, https://doi.org/10.5194/acp-22-15263-2022, https://doi.org/10.5194/acp-22-15263-2022, 2022
Short summary
Short summary
During a spring field campaign in the coastal Arctic, ultrafine particles were enhanced during high wind speeds, and coarse-mode particles were reduced during blowing snow. Calculated periods blowing snow were overpredicted compared to observations. Sea spray aerosols produced by sea ice leads affected the composition of aerosols and snowpack. An improved understanding of aerosol emissions from leads and blowing snow is critical for predicting the future climate of the rapidly warming Arctic.
Xianda Gong, Martin Radenz, Heike Wex, Patric Seifert, Farnoush Ataei, Silvia Henning, Holger Baars, Boris Barja, Albert Ansmann, and Frank Stratmann
Atmos. Chem. Phys., 22, 10505–10525, https://doi.org/10.5194/acp-22-10505-2022, https://doi.org/10.5194/acp-22-10505-2022, 2022
Short summary
Short summary
The sources of ice-nucleating particles (INPs) are poorly understood in the Southern Hemisphere (SH). We studied INPs in the boundary layer in the southern Patagonia region. No seasonal cycle of INP concentrations was observed. The majority of INPs are biogenic particles, likely from local continental sources. The INP concentrations are higher when strong precipitation occurs. While previous studies focused on marine INP sources in SH, we point out the importance of continental sources of INPs.
Janine Lückerath, Andreas Held, Holger Siebert, Michel Michalkow, and Birgit Wehner
Atmos. Chem. Phys., 22, 10007–10021, https://doi.org/10.5194/acp-22-10007-2022, https://doi.org/10.5194/acp-22-10007-2022, 2022
Short summary
Short summary
Three different methods were applied to estimate the vertical aerosol particle flux in the marine boundary layer (MBL) and between the MBL and free troposphere. For the first time, aerosol fluxes derived from these three methods were estimated and compared using airborne aerosol measurements using data from the ACORES field campaign in the northeastern Atlantic Ocean in July 2017. The amount of fluxes was small and directed up and down for different cases, but the methods were applicable.
Carlton Xavier, Metin Baykara, Robin Wollesen de Jonge, Barbara Altstädter, Petri Clusius, Ville Vakkari, Roseline Thakur, Lisa Beck, Silvia Becagli, Mirko Severi, Rita Traversi, Radovan Krejci, Peter Tunved, Mauro Mazzola, Birgit Wehner, Mikko Sipilä, Markku Kulmala, Michael Boy, and Pontus Roldin
Atmos. Chem. Phys., 22, 10023–10043, https://doi.org/10.5194/acp-22-10023-2022, https://doi.org/10.5194/acp-22-10023-2022, 2022
Short summary
Short summary
The focus of this work is to study and improve our understanding of processes involved in the formation and growth of new particles in a remote Arctic marine environment. We run the 1D model ADCHEM along air mass trajectories arriving at Ny-Ålesund in May 2018. The model finds that ion-mediated H2SO4–NH3 nucleation can explain the observed new particle formation at Ny-Ålesund. The growth of particles is driven via H2SO4 condensation and formation of methane sulfonic acid in the aqueous phase.
Christian Tatzelt, Silvia Henning, André Welti, Andrea Baccarini, Markus Hartmann, Martin Gysel-Beer, Manuela van Pinxteren, Robin L. Modini, Julia Schmale, and Frank Stratmann
Atmos. Chem. Phys., 22, 9721–9745, https://doi.org/10.5194/acp-22-9721-2022, https://doi.org/10.5194/acp-22-9721-2022, 2022
Short summary
Short summary
We present the abundance and origin of cloud-relevant aerosol particles in the preindustral-like conditions of the Southern Ocean (SO) during austral summer. Cloud condensation nuclei (CCN) and ice-nucleating particles (INP) were measured during a circum-Antarctic scientific cruise with in situ instrumentation and offline filter measurements, respectively. Transport processes were found to play an equally important role as local sources for both the CCN and INP population of the SO.
Daniel A. Knopf, Joseph C. Charnawskas, Peiwen Wang, Benny Wong, Jay M. Tomlin, Kevin A. Jankowski, Matthew Fraund, Daniel P. Veghte, Swarup China, Alexander Laskin, Ryan C. Moffet, Mary K. Gilles, Josephine Y. Aller, Matthew A. Marcus, Shira Raveh-Rubin, and Jian Wang
Atmos. Chem. Phys., 22, 5377–5398, https://doi.org/10.5194/acp-22-5377-2022, https://doi.org/10.5194/acp-22-5377-2022, 2022
Short summary
Short summary
Marine boundary layer aerosols collected in the remote region of the eastern North Atlantic induce immersion freezing and deposition ice nucleation under typical mixed-phase and cirrus cloud conditions. Corresponding ice nucleation parameterizations for model applications have been derived. Chemical imaging of ambient aerosol and ice-nucleating particles demonstrates that the latter is dominated by sea salt and organics while also representing a major particle type in the particle population.
Xianda Gong, Heike Wex, Thomas Müller, Silvia Henning, Jens Voigtländer, Alfred Wiedensohler, and Frank Stratmann
Atmos. Chem. Phys., 22, 5175–5194, https://doi.org/10.5194/acp-22-5175-2022, https://doi.org/10.5194/acp-22-5175-2022, 2022
Short summary
Short summary
We conducted 10 yr measurements to characterize the atmospheric aerosol at Cabo Verde. An unsupervised machine learning algorithm, K-means, was implemented to study the aerosol types. Cloud condensation nuclei number concentrations during dust periods were 2.5 times higher than marine periods. The long-term data sets, together with the aerosol classification, can be used as a basis to improve understanding of annual cycles of aerosol, and aerosol-cloud interactions in the North Atlantic.
Jay M. Tomlin, Kevin A. Jankowski, Daniel P. Veghte, Swarup China, Peiwen Wang, Matthew Fraund, Johannes Weis, Guangjie Zheng, Yang Wang, Felipe Rivera-Adorno, Shira Raveh-Rubin, Daniel A. Knopf, Jian Wang, Mary K. Gilles, Ryan C. Moffet, and Alexander Laskin
Atmos. Chem. Phys., 21, 18123–18146, https://doi.org/10.5194/acp-21-18123-2021, https://doi.org/10.5194/acp-21-18123-2021, 2021
Short summary
Short summary
Analysis of individual atmospheric particles shows that aerosol transported from North America during meteorological dry intrusion episodes may have a substantial impact on the mixing state and particle-type population over the mid-Atlantic, as organic contribution and particle-type diversity are significantly enhanced during these periods. These observations need to be considered in current atmospheric models.
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021, https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Short summary
The Antarctic Circumnavigation Expedition surveyed a large number of variables describing the dynamic state of ocean and atmosphere, freshwater cycle, atmospheric chemistry, ocean biogeochemistry, and microbiology in the Southern Ocean. To reduce the dimensionality of the dataset, we apply a sparse principal component analysis and identify temporal patterns from diurnal to seasonal cycles, as well as geographical gradients and
hotspotsof interaction. Code and data are open access.
Sebastian Düsing, Albert Ansmann, Holger Baars, Joel C. Corbin, Cyrielle Denjean, Martin Gysel-Beer, Thomas Müller, Laurent Poulain, Holger Siebert, Gerald Spindler, Thomas Tuch, Birgit Wehner, and Alfred Wiedensohler
Atmos. Chem. Phys., 21, 16745–16773, https://doi.org/10.5194/acp-21-16745-2021, https://doi.org/10.5194/acp-21-16745-2021, 2021
Short summary
Short summary
The work deals with optical properties of aerosol particles in dried and atmospheric states. Based on two measurement campaigns in the rural background of central Europe, different measurement approaches were compared with each other, such as modeling based on Mie theory and direct in situ or remote sensing measurements. Among others, it was shown that the aerosol extinction-to-backscatter ratio is relative humidity dependent, and refinement with respect to the model input parameters is needed.
Wenhua Wang, Longyi Shao, Claudio Mazzoleni, Yaowei Li, Simone Kotthaus, Sue Grimmond, Janarjan Bhandari, Jiaoping Xing, Xiaolei Feng, Mengyuan Zhang, and Zongbo Shi
Atmos. Chem. Phys., 21, 5301–5314, https://doi.org/10.5194/acp-21-5301-2021, https://doi.org/10.5194/acp-21-5301-2021, 2021
Short summary
Short summary
We compared the characteristics of individual particles at ground level and above the mixed-layer height. We found that the particles above the mixed-layer height during haze periods are more aged compared to ground level. More coal-combustion-related primary organic particles were found above the mixed-layer height. We suggest that the particles above the mixed-layer height are affected by the surrounding areas, and once mixed down to the ground, they might contribute to ground air pollution.
Rosaria E. Pileci, Robin L. Modini, Michele Bertò, Jinfeng Yuan, Joel C. Corbin, Angela Marinoni, Bas Henzing, Marcel M. Moerman, Jean P. Putaud, Gerald Spindler, Birgit Wehner, Thomas Müller, Thomas Tuch, Arianna Trentini, Marco Zanatta, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Meas. Tech., 14, 1379–1403, https://doi.org/10.5194/amt-14-1379-2021, https://doi.org/10.5194/amt-14-1379-2021, 2021
Short summary
Short summary
Black carbon (BC), which is an important constituent of atmospheric aerosols, remains difficult to quantify due to various limitations of available methods. This study provides an extensive comparison of co-located field measurements, applying two methods based on different principles. It was shown that both methods indeed quantify the same aerosol property – BC mass concentration. The level of agreement that can be expected was quantified, and some reasons for discrepancy were identified.
Jinfeng Yuan, Robin Lewis Modini, Marco Zanatta, Andreas B. Herber, Thomas Müller, Birgit Wehner, Laurent Poulain, Thomas Tuch, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Chem. Phys., 21, 635–655, https://doi.org/10.5194/acp-21-635-2021, https://doi.org/10.5194/acp-21-635-2021, 2021
Short summary
Short summary
Black carbon (BC) aerosols contribute substantially to climate warming due to their unique light absorption capabilities. We performed field measurements at a central European background site in winter and found that variability in the absorption efficiency of BC particles is driven mainly by their internal mixing state. Our results suggest that, at this site, knowing the BC mixing state is sufficient to describe BC light absorption enhancements due to the lensing effect in good approximation.
Gourihar Kulkarni, Naruki Hiranuma, Ottmar Möhler, Kristina Höhler, Swarup China, Daniel J. Cziczo, and Paul J. DeMott
Atmos. Meas. Tech., 13, 6631–6643, https://doi.org/10.5194/amt-13-6631-2020, https://doi.org/10.5194/amt-13-6631-2020, 2020
Short summary
Short summary
This study presents a new continuous-flow-diffusion-chamber-style operated ice chamber (Modified Compact Ice Chamber, MCIC) to measure the immersion-freezing efficiency of atmospheric particles. MCIC allowed us to obtain maximum droplet-freezing efficiency at higher time resolution without droplet breakthrough ambiguity. Its evaluation was performed by reproducing published data from the recent ice nucleation workshop and past laboratory data for standard and airborne ice-nucleating particles.
André Welti, E. Keith Bigg, Paul J. DeMott, Xianda Gong, Markus Hartmann, Mike Harvey, Silvia Henning, Paul Herenz, Thomas C. J. Hill, Blake Hornblow, Caroline Leck, Mareike Löffler, Christina S. McCluskey, Anne Marie Rauker, Julia Schmale, Christian Tatzelt, Manuela van Pinxteren, and Frank Stratmann
Atmos. Chem. Phys., 20, 15191–15206, https://doi.org/10.5194/acp-20-15191-2020, https://doi.org/10.5194/acp-20-15191-2020, 2020
Short summary
Short summary
Ship-based measurements of maritime ice nuclei concentrations encompassing all oceans are compiled. From this overview it is found that maritime ice nuclei concentrations are typically 10–100 times lower than over continents, while concentrations are surprisingly similar in different oceanic regions. The analysis of the influence of ship emissions shows no effect on the data, making ship-based measurements an efficient strategy for the large-scale exploration of ice nuclei concentrations.
Matthew Fraund, Daniel J. Bonanno, Swarup China, Don Q. Pham, Daniel Veghte, Johannes Weis, Gourihar Kulkarni, Ken Teske, Mary K. Gilles, Alexander Laskin, and Ryan C. Moffet
Atmos. Chem. Phys., 20, 11593–11606, https://doi.org/10.5194/acp-20-11593-2020, https://doi.org/10.5194/acp-20-11593-2020, 2020
Short summary
Short summary
High viscosity organic particles (HVOPs) in the Southern Great Plains have been analyzed, and two particle types were found. Previously studied tar balls and the recently discovered airborne soil organic particles (ASOPs) are both shown to be brown carbon (BrC). These particle types can be identified in bulk by an absorption Ångström exponent approaching 2.6. HVOP types can be differentiated by comparing carbon absorption spectrum peak ratios between the carboxylic acid, alcohol, and sp2 peaks.
Leighton A. Regayre, Julia Schmale, Jill S. Johnson, Christian Tatzelt, Andrea Baccarini, Silvia Henning, Masaru Yoshioka, Frank Stratmann, Martin Gysel-Beer, Daniel P. Grosvenor, and Ken S. Carslaw
Atmos. Chem. Phys., 20, 10063–10072, https://doi.org/10.5194/acp-20-10063-2020, https://doi.org/10.5194/acp-20-10063-2020, 2020
Short summary
Short summary
The amount of energy reflected back into space because of man-made particles is highly uncertain. Processes related to naturally occurring particles cause most of the uncertainty, but these processes are poorly constrained by present-day measurements. We show that measurements over the Southern Ocean, far from pollution sources, efficiently reduce climate model uncertainties. Our results pave the way to designing experiments and measurement campaigns that reduce this uncertainty even further.
Cited articles
Adachi, K. and Buseck, P. R.: Atmospheric tar balls from biomass burning in
Mexico, J. Geophys. Res., 116, 2–8, https://doi.org/10.1029/2010JD015102, 2011.
Adachi, K., Sedlacek, A. J., Kleinman, L., Springston, S. R., Wang, J.,
Chand, D., Hubbe, J. M., Shilling, J. E., Onasch, T. B., Kinase, T., Sakata,
K., Takahashi, Y., and Buseck, P. R.: Spherical tarball particles form
through rapid chemical and physical changes of organic matter in
biomass-burning smoke, P. Natl. Acad. Sci. USA, 116,
19336–19341, https://doi.org/10.1073/pnas.1900129116, 2019.
Bateman, A. P., Belassein, H., and Martin, S. T.: Impactor apparatus for the
study of particle rebound: Relative humidity and capillary forces, Aerosol
Sci. Technol., 48, 42–52, https://doi.org/10.1080/02786826.2013.853866, 2014.
Bateman, A. P., Bertram, A. K., and Martin, S. T.: Hygroscopic Influence on
the Semisolid-to-Liquid Transition of Secondary Organic Materials, J. Phys.
Chem., 119, 4386–4395, https://doi.org/10.1021/jp508521c, 2015.
Bateman, A. P., Gong, Z., Liu, P., Sato, B., Cirino, G., Zhang, Y., Artaxo,
P., Bertram, A. K., Manzi, A. O., Rizzo, L. V., Souza, R. A. F., Zaveri, R.
A., and Martin, S. T.: Sub-micrometre particulate matter is primarily in
liquid form over Amazon rainforest, Nat. Geosci., 9, 34–37,
https://doi.org/10.1038/ngeo2599, 2016.
Bateman, A. P., Gong, Z., Harder, T. H., de Sá, S. S., Wang, B., Castillo, P., China, S., Liu, Y., O'Brien, R. E., Palm, B. B., Shiu, H.-W., Cirino, G. G., Thalman, R., Adachi, K., Alexander, M. L., Artaxo, P., Bertram, A. K., Buseck, P. R., Gilles, M. K., Jimenez, J. L., Laskin, A., Manzi, A. O., Sedlacek, A., Souza, R. A. F., Wang, J., Zaveri, R., and Martin, S. T.: Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest, Atmos. Chem. Phys., 17, 1759–1773, https://doi.org/10.5194/acp-17-1759-2017, 2017.
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P.,
Watson-Parris, D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A.
L., Dufresne, J. L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A.,
Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T.,
Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein,
M., Sato, Y., Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo, T.,
Toll, V., Winker, D., and Stevens, B.: Bounding Global Aerosol Radiative
Forcing of Climate Change, Rev. Geophys., 58, 1–45,
https://doi.org/10.1029/2019RG000660, 2020.
Berkemeier, T., Shiraiwa, M., Pöschl, U., and Koop, T.: Competition between water uptake and ice nucleation by glassy organic aerosol particles, Atmos. Chem. Phys., 14, 12513–12531, https://doi.org/10.5194/acp-14-12513-2014, 2014.
Berkemeier, T., Steimer, S. S., Krieger, U. K., Peter, T., Pöschl, U.,
Ammann, M., and Shiraiwa, M.: Ozone uptake on glassy, semi-solid and liquid
organic matter and the role of reactive oxygen intermediates in atmospheric
aerosol chemistry, Phys. Chem. Chem. Phys., 18, 12662–12674, https://doi.org/10.1039/c6cp00634e, 2016.
Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C.
R., Molteni, U., Herrmann, E., Adamov, A., Bukowiecki, N., Chen, X.,
Duplissy, J., Gysel, M., Hutterli, M., Kangasluoma, J., Kontkanen, J.,
Kürten, A., Manninen, H. E., Münch, S., Peräkylä, O.,
Petäjä, T., Rondo, L., Williamson, C., Weingartner, E., Curtius, J.,
Worsnop, D. R., Kulmala, M., Dommen, J., and Baltensperger, U.: New particle
formation in the free troposphere: A question of chemistry and timing,
Science, 352, 1109–1112, https://doi.org/10.1126/science.aad5456, 2016.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
Deangelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Bondy, A. L., Bonanno, D., Moffet, R. C., Wang, B., Laskin, A., and Ault, A. P.: The diverse chemical mixing state of aerosol particles in the southeastern United States, Atmos. Chem. Phys., 18, 12595–12612, https://doi.org/10.5194/acp-18-12595-2018, 2018.
Boose, Y., Kanji, Z. A., Kohn, M., Sierau, B., Zipori, A., Crawford, I.,
Lloyd, G., Bukowiecki, N., Herrmann, E., Kupiszewski, P., Steinbacher, M.,
and Lohmann, U.: Ice nucleating particle measurements at 241 K during winter
months at 3580 m MSL in the swiss alps, J. Atmos. Sci., 73, 2203–2228,
https://doi.org/10.1175/JAS-D-15-0236.1, 2016.
Briggs, N. L., Jaffe, D. A., Gao, H., Hee, J. R., Baylon, P. M., Zhang, Q.,
Zhou, S., Collier, S. C., Sampson, P. D., and Cary, R. A.: Particulate
matter, ozone, and nitrogen species in aged wildfire plumes observed at the
Mount Bachelor Observatory, Aerosol Air Qual. Res., 16, 3075–3087,
https://doi.org/10.4209/aaqr.2016.03.0120, 2016.
Cheng, Y., Su, H., Koop, T., Mikhailov, E., and Pöschl, U.: Size
dependence of phase transitions in aerosol nanoparticles, Nat. Commun., 6,
1–7, https://doi.org/10.1038/ncomms6923, 2015.
Cheng, Z., Sharma, N., Tseng, K.-P., Kovarik, L., and China, S.: Direct
observation and assessment of phase states of ambient and lab-generated
sub-micron particles upon humidification, RSC Adv., 11, 15264–15272,
https://doi.org/10.1039/d1ra02530a, 2021.
China, S., Mazzoleni, C., Gorkowski, K., Aiken, A. C., and Dubey, M. K.:
Morphology and mixing state of individual freshly emitted wildfire
carbonaceous particles, Nat. Commun., 4, 2122, https://doi.org/10.1038/ncomms3122, 2013.
China, S., Scarnato, B., Owen, R. C., Zhang, B., Ampadu, M. T., Kumar, S.,
Dzepina, K., Dziobak, M. P., Fialho, P., Perlinger, J. A., Hueber, J.,
Helmig, D., Mazzoleni, L. R., and Mazzoleni, C.: Morphology and mixing state
of aged soot particles at a remote marine free troposphere site:
Implications for optical properties, Geophys. Res. Lett., 42, 1243–1250,
https://doi.org/10.1002/2014GL062404, 2015.
China, S., Alpert, P. A., Zhang, B., Schum, S., Dzepina, K., Wright, K.,
Owen, R. C., Fialho, P., Mazzoleni, L. R., Mazzoleni, C., and Knopf, D. A.:
Ice cloud formation potential by free tropospheric particles from long-range
transport over the Northern Atlantic Ocean, J. Geophys. Res.-Atmos., 122,
3065–3079, https://doi.org/10.1002/2016JD025817, 2017.
Ching, J., Fast, J., West, M., and Riemer, N.: Metrics to quantify the importance of mixing state for CCN activity, Atmos. Chem. Phys., 17, 7445–7458, https://doi.org/10.5194/acp-17-7445-2017, 2017.
Ching, J., Adachi, K., Zaizen, Y., Igarashi, Y., and Kajino, M.: Aerosol
mixing state revealed by transmission electron microscopy pertaining to
cloud formation and human airway deposition, NPJ Clim. Atmos. Sci., 2,
1–7, https://doi.org/10.1038/s41612-019-0081-9, 2019.
Clarke, A. D., Freitag, S., Simpson, R. M. C., Hudson, J. G., Howell, S. G., Brekhovskikh, V. L., Campos, T., Kapustin, V. N., and Zhou, J.: Free troposphere as a major source of CCN for the equatorial pacific boundary layer: long-range transport and teleconnections, Atmos. Chem. Phys., 13, 7511–7529, https://doi.org/10.5194/acp-13-7511-2013, 2013.
Collaud Coen, M., Andrews, E., Aliaga, D., Andrade, M., Angelov, H., Bukowiecki, N., Ealo, M., Fialho, P., Flentje, H., Hallar, A. G., Hooda, R., Kalapov, I., Krejci, R., Lin, N.-H., Marinoni, A., Ming, J., Nguyen, N. A., Pandolfi, M., Pont, V., Ries, L., Rodríguez, S., Schauer, G., Sellegri, K., Sharma, S., Sun, J., Tunved, P., Velasquez, P., and Ruffieux, D.: Identification of topographic features influencing aerosol observations at high altitude stations, Atmos. Chem. Phys., 18, 12289–12313, https://doi.org/10.5194/acp-18-12289-2018, 2018.
Cozic, J., Verheggen, B., Weingartner, E., Crosier, J., Bower, K. N., Flynn, M., Coe, H., Henning, S., Steinbacher, M., Henne, S., Collaud Coen, M., Petzold, A., and Baltensperger, U.: Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch, Atmos. Chem. Phys., 8, 407–423, https://doi.org/10.5194/acp-8-407-2008, 2008.
DeRieux, W.-S. W., Li, Y., Lin, P., Laskin, J., Laskin, A., Bertram, A. K., Nizkorodov, S. A., and Shiraiwa, M.: Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition, Atmos. Chem. Phys., 18, 6331–6351, https://doi.org/10.5194/acp-18-6331-2018, 2018.
Dette, H. P. and Koop, T.: Glass Formation Processes in Mixed Inorganic Organic Aerosol Particles, J. Phys. Chem. A, 119, 4552–4561,
https://doi.org/10.1021/jp5106967, 2015.
De Wekker, S. F. J. and Kossmann, M.: Convective boundary layer heights over
mountainous terrain – A review of concepts, Front. Earth Sci., 3,
1–22, https://doi.org/10.3389/feart.2015.00077, 2015.
Dunlea, E. J., DeCarlo, P. F., Aiken, A. C., Kimmel, J. R., Peltier, R. E., Weber, R. J., Tomlinson, J., Collins, D. R., Shinozuka, Y., McNaughton, C. S., Howell, S. G., Clarke, A. D., Emmons, L. K., Apel, E. C., Pfister, G. G., van Donkelaar, A., Martin, R. V., Millet, D. B., Heald, C. L., and Jimenez, J. L.: Evolution of Asian aerosols during transpacific transport in INTEX-B, Atmos. Chem. Phys., 9, 7257–7287, https://doi.org/10.5194/acp-9-7257-2009, 2009.
Dzepina, K., Mazzoleni, C., Fialho, P., China, S., Zhang, B., Owen, R. C., Helmig, D., Hueber, J., Kumar, S., Perlinger, J. A., Kramer, L. J., Dziobak, M. P., Ampadu, M. T., Olsen, S., Wuebbles, D. J., and Mazzoleni, L. R.: Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with a long-range transported biomass burning plume, Atmos. Chem. Phys., 15, 5047–5068, https://doi.org/10.5194/acp-15-5047-2015, 2015.
Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmos. Chem. Phys., 11, 11069–11102, https://doi.org/10.5194/acp-11-11069-2011, 2011.
Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.: Review of aerosol-cloud
interactions: Mechanisms, significance, and challenges, J. Atmos. Sci.,
73, 4221–4252, https://doi.org/10.1175/JAS-D-16-0037.1, 2016.
Fischer, H., Kormann, R., Klüpfel, T., Gurk, Ch., Königstedt, R., Parchatka, U., Mühle, J., Rhee, T. S., Brenninkmeijer, C. A. M., Bonasoni, P., and Stohl, A.: Ozone production and trace gas correlations during the June 2000 MINATROC intensive measurement campaign at Mt. Cimone, Atmos. Chem. Phys., 3, 725–738, https://doi.org/10.5194/acp-3-725-2003, 2003.
Fraund, M., Park, T., Yao, L., Bonanno, D., Pham, D. Q., and Moffet, R. C.: Quantitative capabilities of STXM to measure spatially resolved organic volume fractions of mixed organic inorganic particles, Atmos. Meas. Tech., 12, 1619–1633, https://doi.org/10.5194/amt-12-1619-2019, 2019.
Fraund, M., Bonanno, D. J., China, S., Pham, D. Q., Veghte, D., Weis, J., Kulkarni, G., Teske, K., Gilles, M. K., Laskin, A., and Moffet, R. C.: Optical properties and composition of viscous organic particles found in the Southern Great Plains, Atmos. Chem. Phys., 20, 11593–11606, https://doi.org/10.5194/acp-20-11593-2020, 2020.
Gogoi, M. M., Moorthy, K. K., Kompalli, S. K., Chaubey, J. P., Babu, S. S.,
Manoj, M. R., Nair, V. S., and Prabhu, T. P.: Physical and optical properties
of aerosols in a free tropospheric environment: Results from long-term
observations over western trans-Himalayas, Atmos. Environ., 84, 262–274,
https://doi.org/10.1016/j.atmosenv.2013.11.029, 2014.
Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative
forcing due to tropospheric aerosols: A review, Rev. Geophys., 38,
513–543, https://doi.org/10.1029/1999RG000078, 2000.
Hodas, N., Zuend, A., Mui, W., Flagan, R. C., and Seinfeld, J. H.: Influence of particle-phase state on the hygroscopic behavior of mixed organic–inorganic aerosols, Atmos. Chem. Phys., 15, 5027–5045, https://doi.org/10.5194/acp-15-5027-2015, 2015.
Hoffer, A., Tóth, Á., Pósfai, M., Chung, C. E., and Gelencsér, A.: Brown carbon absorption in the red and near-infrared spectral region, Atmos. Meas. Tech., 10, 2353–2359, https://doi.org/10.5194/amt-10-2353-2017, 2017.
Honrath, R. E., Owen, R. C., Val Martín, M., Reid, J. S., Lapina, K.,
Fialho, P., Dziobak, M. P., Kleissl, J., and Westphal, D. L.: Regional and
hemispheric impacts of anthropogenic and biomass burning emissions on
summertime CO and O3 in the North Atlantic lower free troposphere, J.
Geophys. Res., 109, 1–17, https://doi.org/10.1029/2004JD005147, 2004.
Hosny, N. A., Fitzgerald, C., Vyšniauskas, A., Athanasiadis, A.,
Berkemeier, T., Uygur, N., Pöschl, U., Shiraiwa, M., Kalberer, M., Pope,
F. D., and Kuimova, M. K.: Direct imaging of changes in aerosol particle
viscosity upon hydration and chemical aging, Chem. Sci., 7, 1357–1367,
https://doi.org/10.1039/c5sc02959g, 2016.
Huang, J., Minnis, P., Chen, B., Huang, Z., Liu, Z., Zhao, Q., Yi, Y., and
Ayers, J. K.: Long-range transport and vertical structure of Asian dust from
CALIPSO and surface measurements during PACDEX, J. Geophys. Res.-Atmos,
113, 1–13, https://doi.org/10.1029/2008JD010620, 2008.
Igel, A. L., Ekman, A. M. L., Leck, C., Tjernström, M., Savre, J., and
Sedlar, J.: The free troposphere as a potential source of arctic boundary
layer aerosol particles, Geophys. Res. Lett., 44, 7053–7060,
https://doi.org/10.1002/2017GL073808, 2017.
Ilotoviz, E., Ghate, V. P., and Raveh-Rubin, S.: The Impact of Slantwise
Descending Dry Intrusions on the Marine Boundary Layer and Air-Sea Interface
Over the ARM Eastern North Atlantic Site, J. Geophys. Res.-Atmos., 126,
e2020JD033879, https://doi.org/10.1029/2020JD033879, 2021.
Jaffe, D., Prestbo, E., Swartzendruber, P., Weiss-Penzias, P., Kato, S.,
Takami, A., Hatakeyama, S., and Kajii, Y.: Export of atmospheric mercury from
Asia, Atmos. Environ., 39, 3029–3038,
https://doi.org/10.1016/j.atmosenv.2005.01.030, 2005.
Jain, S. and Petrucci, G. A.: A new method to measure aerosol particle
bounce using a cascade electrical low pressure impactor, Aerosol Sci.
Technol., 49, 390–399, https://doi.org/10.1080/02786826.2015.1036393, 2015.
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R.: Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527–554, https://doi.org/10.5194/bg-9-527-2012, 2012.
Kaluarachchi, C. P., Or, V. W., Lan, Y., Madawala, C. K., Hasenecz, E. S.,
Crocker, D. R., Morris, C. K., Lee, H. D., Mayer, K. J., Sauer, J. S., Lee,
C., Dorce, G., Malfatti, F., Stone, E. A., Cappa, C. D., Grassian, V. H.,
Prather, K. A., and Tivanski, A. V.: Size-Dependent Morphology, Composition,
Phase State, and Water Uptake of Nascent Submicrometer Sea Spray Aerosols
during a Phytoplankton Bloom, ACS Earth Sp. Chem., 6, 116–130,
https://doi.org/10.1021/acsearthspacechem.1c00306, 2022.
Kim, H., Collier, S., Ge, X., Xu, J., Sun, Y., Jiang, W., Wang, Y., Herckes,
P., and Zhang, Q.: Chemical processing of water-soluble species and formation
of secondary organic aerosol in fogs, Atmos. Environ., 200,
158–166, https://doi.org/10.1016/j.atmosenv.2018.11.062, 2019.
King, S. M., Butcher, A. C., Rosenoern, T., Coz, E., Lieke, K. I., De Leeuw,
G., Nilsson, E. D., and Bilde, M.: Investigating primary marine aerosol
properties: CCN activity of sea salt and mixed inorganic-organic particles,
Environ. Sci. Technol, 46, 10405–10412, https://doi.org/10.1021/es300574u, 2012.
Kirillova, E. N., Marinoni, A., Bonasoni, P., Vuillermoz, E., Facchini, M. C., Fuzzi, S., and Decesari, S.: Light absorption properties of brown carbon in the high Himalayas, J. Geophys. Res.-Atmos., 121, 9621–9639, https://doi.org/10.1002/2016JD025030, 2016.
Knopf, D. A., Alpert, P. A., and Wang, B.: The Role of Organic Aerosol in
Atmospheric Ice Nucleation: A Review, ACS Earth Sp. Chem., 2, 168–202,
https://doi.org/10.1021/acsearthspacechem.7b00120, 2018.
Koop, T., Bookhold, J., Shiraiwa, M., and Pöschl, U.: Glass transition
and phase state of organic compounds: Dependency on molecular properties and
implications for secondary organic aerosols in the atmosphere, Phys. Chem.
Chem. Phys, 13, 19238–19255, https://doi.org/10.1039/c1cp22617g, 2011.
Kristensen, T. B., Müller, T., Kandler, K., Benker, N., Hartmann, M., Prospero, J. M., Wiedensohler, A., and Stratmann, F.: Properties of cloud condensation nuclei (CCN) in the trade wind marine boundary layer of the western North Atlantic, Atmos. Chem. Phys., 16, 2675–2688, https://doi.org/10.5194/acp-16-2675-2016, 2016.
Kuwata, M. and Martin, S. T.: Phase of atmospheric secondary organic
material affects its reactivity, P. Natl. Acad. Sci. USA, 109, 17354–17359,
https://doi.org/10.1073/pnas.1209071109, 2012.
Laing, J. R., Jaffe, D. A., and Hee, J. R.: Physical and optical properties of aged biomass burning aerosol from wildfires in Siberia and the Western USA at the Mt. Bachelor Observatory, Atmos. Chem. Phys., 16, 15185–15197, https://doi.org/10.5194/acp-16-15185-2016, 2016.
Laskin, A., Wietsma, T. W., Krueger, B. J., and Grassian, V. H.:
Heterogeneous chemistry of individual mineral dust particles with nitric
acid: A combined CCSEM/EDX, ESEM, and ICP-MS study, J. Geophys. Res.,
110, D10208, https://doi.org/10.1029/2004JD005206, 2005.
Laskin, A., Cowin, J. P., and Iedema, M. J.: Analysis of individual
environmental particles using modern methods of electron microscopy and
X-ray microanalysis, J. Electron Spectros. Relat. Phenomena, 150,
260–274, https://doi.org/10.1016/j.elspec.2005.06.008, 2006.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of Atmospheric Brown
Carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167, 2015.
Lata, N. N., Zhang, B., Schum, S., Mazzoleni, L., Brimberry, R., Marcus, M. A., Cantrell, W. H., Fialho, P., and Mazzoleni, C.: Aerosol Composition, Mixing State, and Phase State of Free Tropospheric Particles and Their Role in Ice Cloud Formation, ACS Earth Sp. Chem., 5, 3499–3510, https://doi.org/10.1021/acsearthspacechem.1c00315, 2021.
Lee, A. K. Y., Herckes, P., Leaitch, W. R., MacDonald, A. M., and Abbatt, J.
P. D.: Aqueous OH oxidation of ambient organic aerosol and cloud water
organics: Formation of highly oxidized products, Geophys. Res. Lett.,
38, 2–6, https://doi.org/10.1029/2011GL047439, 2011.
Lee, A. K. Y., Hayden, K. L., Herckes, P., Leaitch, W. R., Liggio, J., Macdonald, A. M., and Abbatt, J. P. D.: Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing, Atmos. Chem. Phys., 12, 7103–7116, https://doi.org/10.5194/acp-12-7103-2012, 2012.
Lienhard, D. M., Huisman, A. J., Krieger, U. K., Rudich, Y., Marcolli, C., Luo, B. P., Bones, D. L., Reid, J. P., Lambe, A. T., Canagaratna, M. R., Davidovits, P., Onasch, T. B., Worsnop, D. R., Steimer, S. S., Koop, T., and Peter, T.: Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?, Atmos. Chem. Phys., 15, 13599–13613, https://doi.org/10.5194/acp-15-13599-2015, 2015.
Liu, P., Li, Y. J., Wang, Y., Bateman, A. P., Zhang, Y., Gong, Z., Bertram,
A. K., and Martin, S. T.: Highly Viscous States Affect the Browning of
Atmospheric Organic Particulate Matter, ACS Cent. Sci., 4, 207–215,
https://doi.org/10.1021/acscentsci.7b00452, 2018a.
Liu, P., Song, M., Zhao, T., Gunthe, S. S., Ham, S., He, Y., Qin, Y. M.,
Gong, Z., Amorim, J. C., Bertram, A. K., and Martin, S. T.: Resolving the
mechanisms of hygroscopic growth and cloud condensation nuclei activity for
organic particulate matter, Nat. Commun., 9, 4076,
https://doi.org/10.1038/s41467-018-06622-2, 2018b.
Liu, Y., Wu, Z., Wang, Y., Xiao, Y., Gu, F., Zheng, J., Tan, T., Shang, D.,
Wu, Y., Zeng, L., Hu, M., Bateman, A. P., and Martin, S. T.: Submicrometer
Particles Are in the Liquid State during Heavy Haze Episodes in the Urban
Atmosphere of Beijing, China, Environ. Sci. Technol. Lett., 4, 427–432,
https://doi.org/10.1021/acs.estlett.7b00352, 2017.
Liu, Y., Wu, Z., Huang, X., Shen, H., Bai, Y., Qiao, K., Meng, X., Hu, W.,
Tang, M., and He, L.: Aerosol Phase State and Its Link to Chemical
Composition and Liquid Water Content in a Subtropical Coastal Megacity,
Environ. Sci. Technol., 53, 5027–5033, https://doi.org/10.1021/acs.est.9b01196,
2019.
Liu, Y., Meng, X., Wu, Z., Huang, D., Wang, H., Chen, J., Chen, J., Zong,
T., Fang, X., Tan, T., Zhao, G., Chen, S., Zeng, L., Guo, S., Huang, X., He,
L., Zeng, L., and Hu, M.: The particle phase state during the biomass burning
events, Sci. Total Environ., 792, 148035,
https://doi.org/10.1016/j.scitotenv.2021.148035, 2021.
Li, Y. J., Liu, P. F., Bergoend, C., Bateman, A. P., and Martin, S. T.:
Rebounding hygroscopic inorganic aerosol particles: Liquids, gels, and
hydrates, Aerosol Sci. Technol., 51, 388–396,
https://doi.org/10.1080/02786826.2016.1263384, 2017.
Li, Y., Day, D. A., Stark, H., Jimenez, J. L., and Shiraiwa, M.: Predictions of the glass transition temperature and viscosity of organic aerosols from volatility distributions, Atmos. Chem. Phys., 20, 8103–8122, https://doi.org/10.5194/acp-20-8103-2020, 2020.
Li, Y., Carlton, A. G., and Shiraiwa, M.: Diurnal and Seasonal Variations in
the Phase State of Secondary Organic Aerosol Material over the Contiguous US
Simulated in CMAQ, ACS Earth Sp. Chem, 5, 1971–1982,
https://doi.org/10.1021/acsearthspacechem.1c00094, 2021.
Malecha, K. T. and Nizkorodov, S. A.: Photodegradation of Secondary Organic
Aerosol Particles as a Source of Small, Oxygenated Volatile Organic
Compounds, Environ. Sci. Technol., 50, 9990–9997,
https://doi.org/10.1021/acs.est.6b02313, 2016.
Marinoni, A., Cristofanelli, P., Calzolari, F., Roccato, F., Bonafè, U.,
and Bonasoni, P.: Continuous measurements of aerosol physical parameters at
the Mt. Cimone GAW Station (2165 m a.s.l., Italy), Sci. Total Environ.,
391, 241–251, https://doi.org/10.1016/j.scitotenv.2007.10.004, 2008.
Marsh, A., Rovelli, G., Song, Y. C., Pereira, K. L., Willoughby, R. E.,
Bzdek, B. R., Hamilton, J. F., Orr-Ewing, A. J., Topping, D. O., and Reid, J.
P.: Accurate representations of the physicochemical properties of
atmospheric aerosols: When are laboratory measurements of value?, Faraday
Discuss., 200, 639–661, https://doi.org/10.1039/c7fd00008a, 2017.
Marshall, F. H., Miles, R. E. H., Song, Y. C., Ohm, P. B., Power, R. M.,
Reid, J. P., and Dutcher, C. S.: Diffusion and reactivity in ultraviscous
aerosol and the correlation with particle viscosity, Chem. Sci., 7,
1298–1308, https://doi.org/10.1039/c5sc03223g, 2016.
Moffet, R. C., Henn, T., Laskin, A., and Gilles, M. K.: Automated chemical
analysis of internally mixed aerosol particles using X-ray spectromicroscopy
at the carbon K-edge, Anal. Chem., 82, 7906–7914,
https://doi.org/10.1021/ac1012909, 2010.
Moffet, R. C., Tivanski, A. V., and Gilles, M. K.: Scanning Transmission X-ray
Microscopy: Applications in Atmospheric Aerosol Research, in Fundamentals
and Applications in Aerosol Spectroscopy, edited by: Signorell, R. and
Reid, J. P., Taylor and Francis Books, Inc., Boca Raton, FL, 419–462, ISBN: 9781420085617, 2011.
Moffet, R. C., Rödel, T. C., Kelly, S. T., Yu, X. Y., Carroll, G. T., Fast, J., Zaveri, R. A., Laskin, A., and Gilles, M. K.: Spectro-microscopic measurements of carbonaceous aerosol aging in Central California, Atmos. Chem. Phys., 13, 10445–10459, https://doi.org/10.5194/acp-13-10445-2013, 2013.
Moosmüller, H., Chakrabarty, R. K., and Arnott, W. P.: Aerosol light
absorption and its measurement: A review, J. Quant. Spectrosc. Radiat.
Transf., 110, 844–878, https://doi.org/10.1016/j.jqsrt.2009.02.035, 2009.
Motos, G., Corbin, J. C., Schmale, J., Modini, R. L., Bertò, M.,
Kupiszewski, P., Baltensperger, U., and Gysel-Beer, M.: Black Carbon Aerosols
in the Lower Free Troposphere are Heavily Coated in Summer but Largely
Uncoated in Winter at Jungfraujoch in the Swiss Alps, Geophys. Res. Lett.,
47, 1–10, https://doi.org/10.1029/2020GL088011, 2020.
Murray, B. J., Wilson, T. W., Dobbie, S., Cui, Z., Al-Jumur, S. M. R. K.,
Möhler, O., Schnaiter, M., Wagner, R., Benz, S., Niemand, M., Saathoff,
H., Ebert, V., Wagner, S., and Kärcher, B.: Heterogeneous nucleation of
ice particles on glassy aerosols under cirrus conditions, Nat. Geosci.,
3, 233–237, https://doi.org/10.1038/ngeo817, 2010.
Myhre, G., Shindell, D., Bréon, F.-M., W. Collins, J. F., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, chapt. 8: , edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge, United Kingdom and New York, NY, USA, 659–740, https://doi.org/10.1017/CBO9781107415324.018, 2013.
NCEP (National Centers for Environmental Prediction): NCEP Global Forecast System (GFS) Analyses and Forecasts [data set], https://www.ncei.noaa.gov/data/global-forecast-system/access/historical/, (last access: 1 May 2022), 2017.
North, G. R., Zhang, F., and Pyle, J.: Encyclopedia of Atmospheric Sciences,
2nd edn., edited by: North, G. R., Pyle, J., and Zhang, F., Academic Press,
Cambridge, MA, ISBN: 9780123822260, 2014.
O'Brien, R. E., Neu, A., Epstein, S. A., Macmillan, A. C., Wang, B., Kelly,
S. T., Nizkorodov, S. A., Laskin, A., Moffet, R. C., and Gilles, M. K.:
Physical properties of ambient and laboratory- generated secondary organic
aerosol, Geophys. Res. Lett., 41, 4347–4353,
https://doi.org/10.1002/2014GL060219, 2014.
Olivier, J. G. J. and Berdowski, J. J. M.: Global emission sources and sinks, in: The Climate System, edited by: Berdowski, J., Guicherit, R. R., and Heij, B., Swets & Zeitlinger, Netherlands, 33–78, INVS: 905809255, 2001.
Owen, R. C. and Honrath, R. E.: Technical note: a new method for the Lagrangian tracking of pollution plumes from source to receptor using gridded model output, Atmos. Chem. Phys., 9, 2577–2595, https://doi.org/10.5194/acp-9-2577-2009, 2009.
Pajunoja, A., Hu, W., Leong, Y. J., Taylor, N. F., Miettinen, P., Palm, B. B., Mikkonen, S., Collins, D. R., Jimenez, J. L., and Virtanen, A.: Phase state of ambient aerosol linked with water uptake and chemical aging in the southeastern US, Atmos. Chem. Phys., 16, 11163–11176, https://doi.org/10.5194/acp-16-11163-2016, 2016.
Pan, X., Underwood, J. S., Xing, J.-H., Mang, S. A., and Nizkorodov, S. A.: Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry, Atmos. Chem. Phys., 9, 3851–3865, https://doi.org/10.5194/acp-9-3851-2009, 2009.
Petters, M. and Kasparoglu, S.: Predicting the influence of particle size on
the glass transition temperature and viscosity of secondary organic
material, Sci. Rep., 10, 1–10, https://doi.org/10.1038/s41598-020-71490-0, 2020.
Pham, D. Q., O'Brien, R., Fraund, M., Bonanno, D., Laskina, O., Beall, C.,
Moore, K. A., Forestieri, S., Wang, X., Lee, C., Sultana, C., Grassian, V.,
Cappa, C. D., Prather, K. A., and Moffet, R. C.: Biological Impacts on Carbon
Speciation and Morphology of Sea Spray Aerosol, ACS Earth Sp. Chem., 1,
551–561, https://doi.org/10.1021/acsearthspacechem.7b00069, 2017.
Pöschl, U. and Shiraiwa, M.: Multiphase Chemistry at the
Atmosphere-Biosphere Interface Influencing Climate and Public Health in the
Anthropocene, Chem. Rev., 115, 4440–4475, https://doi.org/10.1021/cr500487s, 2015a.
Pöschl, U. and Shiraiwa, M.: Multiphase Chemistry at the
Atmosphere-Biosphere Interface Influencing Climate and Public Health in the
Anthropocene, Chem. Rev., 115, 4440–4475, https://doi.org/10.1021/cr500487s, 2015b.
Posfai, M., Gelencser, A., Simonics, R., Arato, K., Li, J., Hobbs, P. V., and
Buseck, P. R.: Atmospheric tar balls: Particles from biomass and biofuel
burning, J. Geophys. Res., 109, D06213, https://doi.org/10.1029/2003JD004169, 2004.
Power, R. M., Simpson, S. H., Reid, J. P., and Hudson, A. J.: The transition
from liquid to solid-like behaviour in ultrahigh viscosity aerosol
particles, Chem. Sci., 4, 2597–2604, https://doi.org/10.1039/c3sc50682g, 2013.
Pringle, K. J., Tost, H., Pozzer, A., Pöschl, U., and Lelieveld, J.: Global distribution of the effective aerosol hygroscopicity parameter for CCN activation, Atmos. Chem. Phys., 10, 5241–5255, https://doi.org/10.5194/acp-10-5241-2010, 2010.
Rasool, Q. Z., Shrivastava, M., Octaviani, M., Zhao, B., Gaudet, B., and Liu,
Y.: Modeling Volatility-Based Aerosol Phase State Predictions in the Amazon
Rainforest, ACS Earth Sp. Chem., 5, 2910–2924,
https://doi.org/10.1021/acsearthspacechem.1c00255, 2021.
Raveh-Rubin, S.: Dry intrusions: Lagrangian climatology and dynamical impact
on the planetary boundary layer, J. Clim., 30, 6661–6682,
https://doi.org/10.1175/JCLI-D-16-0782.1, 2017.
Raveh-Rubin, S. and Catto, J. L.: Climatology and dynamics of the link
between dry intrusions and cold fronts during winter, Part II: Front-centred
perspective, Clim. Dyn., 53, 1893–1909,
https://doi.org/10.1007/s00382-019-04793-2, 2019.
Reid, J. P., Bertram, A. K., Topping, D. O., Laskin, A., Martin, S. T.,
Petters, M. D., Pope, F. D., and Rovelli, G.: The viscosity of
atmospherically relevant organic particles, Nat. Commun., 9, 956,
https://doi.org/10.1038/s41467-018-03027-z, 2018.
Renbaum-Wolff, L., Grayson, J. W., Bateman, A. P., Kuwata, M., Sellier, M.,
Murray, B. J., Shilling, J. E., Martin, S. T., and Bertram, A. K.: Viscosity
of a-pinene secondary organic material and implications for particle growth
and reactivity, P. Natl. Acad. Sci. USA, 110, 8014–8019, https://doi.org/10.1073/pnas.1219548110,
2013.
Richards, D. S., Trobaugh, K. L., Hajek-Herrera, J., Price, C. L., Sheldon,
C. S., Davies, J. F., and Davi, R. D.: Ion-molecule interactions enable
unexpected phase transitions in organic-inorganic aerosol, Sci. Adv., 6,
1–12, https://doi.org/10.1126/sciadv.abb5643, 2020.
Riemer, N., Ault, A. P., West, M., Craig, R. L., and Curtis, J. H.: Aerosol
Mixing State: Measurements, Modeling, and Impacts, Rev. Geophys., 57,
187–249, https://doi.org/10.1029/2018RG000615, 2019.
Rinaldi, M., Gilardoni, S., Paglione, M., Sandrini, S., Fuzzi, S., Massoli, P., Bonasoni, P., Cristofanelli, P., Marinoni, A., Poluzzi, V., and Decesari, S.: Organic aerosol evolution and transport observed at Mt. Cimone (2165 m a.s.l.), Italy, during the PEGASOS campaign, Atmos. Chem. Phys., 15, 11327–11340, https://doi.org/10.5194/acp-15-11327-2015, 2015.
Rose, C., Sellegri, K., Moreno, I., Velarde, F., Ramonet, M., Weinhold, K., Krejci, R., Andrade, M., Wiedensohler, A., Ginot, P., and Laj, P.: CCN production by new particle formation in the free troposphere, Atmos. Chem. Phys., 17, 1529–1541, https://doi.org/10.5194/acp-17-1529-2017, 2017.
Rovelli, G., Song, Y. C., MacLean, A. M., Topping, D. O., Bertram, A. K., and
Reid, J. P.: Comparison of Approaches for Measuring and Predicting the
Viscosity of Ternary Component Aerosol Particles, Anal. Chem., 91,
5074–5082, https://doi.org/10.1021/acs.analchem.8b05353, 2019.
Saleh, R.: From Measurements to Models: Toward Accurate Representation of
Brown Carbon in Climate Calculations, Curr Pollut. Rep, 6, 90–104, https://doi.org/10.1007/s40726-020-00139-3, 2020.
Sanchez, K. J., Chen, C. L., Russell, L. M., Betha, R., Liu, J., Price, D.
J., Massoli, P., Ziemba, L. D., Crosbie, E. C., Moore, R. H., Müller,
M., Schiller, S. A., Wisthaler, A., Lee, A. K. Y., Quinn, P. K., Bates, T.
S., Porter, J., Bell, T. G., Saltzman, E. S., Vaillancourt, R. D., and
Behrenfeld, M. J.: Substantial Seasonal Contribution of Observed Biogenic
Sulfate Particles to Cloud Condensation Nuclei, Sci. Rep., 8, 1–14,
https://doi.org/10.1038/s41598-018-21590-9, 2018.
Saukko, E., Lambe, A. T., Massoli, P., Koop, T., Wright, J. P., Croasdale, D. R., Pedernera, D. A., Onasch, T. B., Laaksonen, A., Davidovits, P., Worsnop, D. R., and Virtanen, A.: Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors, Atmos. Chem. Phys., 12, 7517–7529, https://doi.org/10.5194/acp-12-7517-2012, 2012.
Schill, G. P. and Tolbert, M. A.: Heterogeneous ice nucleation on simulated
sea-spray aerosol using Raman microscopy, J. Phys. Chem. C., 118,
29234–29241, https://doi.org/10.1021/jp505379j, 2014.
Schmale, J., Henning, S., Henzing, B., Keskinen, H., Sellegri, K., Ovadnevaite, J., Bougiatioti, A., Kalivitis, N., Stavroulas, I., Jefferson, A., Park, M., and Schlag, P.: Data Descriptor : Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition, Sci. Data, 4, 170003, https://doi.org/10.1038/sdata.2017.3, 2017.
Schmedding, R., Rasool, Q. Z., Zhang, Y., Pye, H. O. T., Zhang, H., Chen, Y., Surratt, J. D., Lopez-Hilfiker, F. D., Thornton, J. A., Goldstein, A. H., and Vizuete, W.: Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model, Atmos. Chem. Phys., 20, 8201–8225, https://doi.org/10.5194/acp-20-8201-2020, 2020.
Schmeissner, T., Krejci, R., Ström, J., Birmili, W., Wiedensohler, A., Hochschild, G., Gross, J., Hoffmann, P., and Calderon, S.: Analysis of number size distributions of tropical free tropospheric aerosol particles observed at Pico Espejo (4765 m a.s.l.), Venezuela, Atmos. Chem. Phys., 11, 3319–3332, https://doi.org/10.5194/acp-11-3319-2011, 2011.
Schulze, B. C., Charan, S. M., Kenseth, C. M., Kong, W., Bates, K. H.,
Williams, W., Metcalf, A. R., Jonsson, H. H., Woods, R., Sorooshian, A.,
Flagan, R. C., and Seinfeld, J. H.: Characterization of Aerosol
Hygroscopicity Over the Northeast Pacific Ocean: Impacts on Prediction of
CCN and Stratocumulus Cloud Droplet Number Concentrations, Earth Sp. Sci.,
7, e2020EA001098, https://doi.org/10.1029/2020ea001098, 2020.
Schum, S. K., Zhang, B., Džepina, K., Fialho, P., Mazzoleni, C., and Mazzoleni, L. R.: Molecular and physical characteristics of aerosol at a remote free troposphere site: implications for atmospheric aging, Atmos. Chem. Phys., 18, 14017–14036, https://doi.org/10.5194/acp-18-14017-2018, 2018.
Seibert, P. and Frank, A.: Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode, Atmos. Chem. Phys., 4, 51–63, https://doi.org/10.5194/acp-4-51-2004, 2004.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, 2nd edn., John Wiley and Sons, Inc.,
Hoboken, New Jersey, ISBN: 9780471720171, 2006.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J.,
Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas,
I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather, K.
A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental
understanding of the role of aerosol-cloud interactions in the climate
system, P. Natl. Acad. Sci. USA, 113, 5781–5790, https://doi.org/10.1073/pnas.1514043113, 2016.
Sharma, N., China, S., Bhandari, J., Gorkowski, K., Dubey, M., Zaveri, R. A.,
and Mazzoleni, C.: Physical Properties of Aerosol Internally Mixed With Soot
Particles in a Biogenically Dominated Environment in California, Geophys.
Res. Lett., 45, 11473–11482, https://doi.org/10.1029/2018GL079404, 2018.
Shiraiwa, M., Li, Y., Tsimpidi, A. P., Karydis, V. A., Berkemeier, T.,
Pandis, S. N., Lelieveld, J., Koop, T., and Pöschl, U.: Global
distribution of particle phase state in atmospheric secondary organic
aerosols, Nat. Commun., 8, 15002, https://doi.org/10.1038/ncomms15002, 2017.
Shrivastava, M., Lou, S., Zelenyuk, A., Easter, R. C., Corley, R. A.,
Thrall, B. D., Rasch, P. J., Fast, J. D., Simonich, S. L. M., Shen, H., and
Tao, S.: Global long-range transport and lung cancer risk from polycyclic
aromatic hydrocarbons shielded by coatings of organic aerosol, P. Natl. Acad. Sci. USA, 114,
1246–1251, https://doi.org/10.1073/pnas.1702221114, 2017.
Shrivastava, M., Rasool, Q. Z., Zhao, B., Octaviani, M., Zaveri, R. A.,
Zelenyuk, A., Gaudet, B., Liu, Y., Shilling, J. E., Schneider, J., Schulz,
C., Zöger, M., Martin, S. T., Ye, J., Guenther, A., Souza, R. F.,
Wendisch, M., and Pöschl, U.: Tight Coupling of Surface and In-Plant
Biochemistry and Convection Governs Key Fine Particulate Components over the
Amazon Rainforest, ACS Earth Sp. Chem, 6, 380–390,
https://doi.org/10.1021/acsearthspacechem.1c00356, 2022.
Siebert, H., Szodry, K. E., Egerer, U., Wehner, B., Henning, S., Chevalier,
K., Lückerath, J., Welz, O., Weinhold, K., Lauermann, F., Gottschalk,
M., Ehrlich, A., Wendisch, M., Fialho, P., Roberts, G., Allwayin, N., Schum,
S., Shaw, R. A., Mazzoleni, C., Mazzoleni, L., Nowak, J. L., Malinowski, S.
P., Karpinska, K., Kumala, W., Czyzewska, D., Luke, E. P., Kollias, P.,
Wood, R., and Mellado, J. P.: Observations of aerosol, cloud, turbulence, and
radiation properties at the top of the Marine Boundary Layer over the
Eastern North Atlantic Ocean, B. Am. Meteorol. Soc., 102, E123–E147,
https://doi.org/10.1175/BAMS-D-19-0191.1, 2021.
Slade, J. H., Ault, A. P., Bui, A. T., Ditto, J. C., Lei, Z., Bondy, A. L.,
Olson, N. E., Cook, R. D., Desrochers, S. J., Harvey, R. M., Erickson, M.
H., Wallace, H. W., Alvarez, S. L., Flynn, J. H., Boor, B. E., Petrucci, G.
A., Gentner, D. R., Griffin, R. J., and Shepson, P. B.: Bouncier Particles at
Night: Biogenic Secondary Organic Aerosol Chemistry and Sulfate Drive Diel
Variations in the Aerosol Phase in a Mixed Forest, Environ. Sci. Technol.,
53, 4977–4987, https://doi.org/10.1021/acs.est.8b07319, 2019.
Song, Y.-C., Lilek, J., Lee, J. B., Chan, M. N., Wu, Z., Zuend, A., and Song, M.: Viscosity and phase state of aerosol particles consisting of sucrose mixed with inorganic salts, Atmos. Chem. Phys., 21, 10215–10228, https://doi.org/10.5194/acp-21-10215-2021, 2021.
Sorooshian, A., Varutbangkul, V., Brechtel, F. J., Ervens, B., Feingold, G.,
Bahreini, R., Murphy, S. M., Holloway, J. S., Atlas, E. L., Buzorius, G.,
Jonsson, H., Flagan, R. C., and Seinfeld, J. H.: Oxalic acid in clear and
cloudy atmospheres: Analysis of data from International Consortium for
Atmospheric Research on Transport and Transformation 2004, J. Geophys. Res.,
111, 1–17, https://doi.org/10.1029/2005JD006880, 2006.
Sorooshian, A., Lu, M. L., Brechtel, F. J., Jonsson, H., Feingold, G.,
Flagan, R. C., and Seinfeld, J. H.: On the source of organic acid aerosol
layers above clouds, Environ. Sci. Technol., 41, 4647–4654,
https://doi.org/10.1021/es0630442, 2007.
Stockwell, C. E., Jayarathne, T., Cochrane, M. A., Ryan, K. C., Putra, E. I., Saharjo, B. H., Nurhayati, A. D., Albar, I., Blake, D. R., Simpson, I. J., Stone, E. A., and Yokelson, R. J.: Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño, Atmos. Chem. Phys., 16, 11711–11732, https://doi.org/10.5194/acp-16-11711-2016, 2016.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, [code] https://doi.org/10.5194/acp-5-2461-2005, 2005.
Sumlin, B. J., Pandey, A., Walker, M. J., Pattison, R. S., Williams, B. J.,
and Chakrabarty, R. K.: Atmospheric Photooxidation Diminishes Light
Absorption by Primary Brown Carbon Aerosol from Biomass Burning, Environ.
Sci. Technol. Lett, 4, 540–545, https://doi.org/10.1021/acs.estlett.7b00393, 2017.
Sun, J., Hermann, M., Yuan, Y., Birmili, W., Collaud Coen, M., Weinhold, K.,
Madueño, L., Poulain, L., Tuch, T., Ries, L., Sohmer, R., Couret, C.,
Frank, G., Brem, B. T., Gysel-Beer, M., Ma, N., and Wiedensohler, A.:
Long-term trends of black carbon and particle number concentration in the
lower free troposphere in Central Europe, Environ. Sci. Eur., 33, 47, https://doi.org/10.1186/s12302-021-00488-w, 2021.
Sun, Y., Zhang, Q., Macdonald, A. M., Hayden, K., Li, S. M., Liggio, J., Liu, P. S. K., Anlauf, K. G., Leaitch, W. R., Steffen, A., Cubison, M., Worsnop, D. R., van Donkelaar, A., and Martin, R. V.: Size-resolved aerosol chemistry on Whistler Mountain, Canada with a high-resolution aerosol mass spectrometer during INTEX-B, Atmos. Chem. Phys., 9, 3095–3111, https://doi.org/10.5194/acp-9-3095-2009, 2009.
Tomlin, J. M., Jankowski, K. A., Rivera-Adorno, F. A., Fraund, M., Stirm, B. H., Kaeser, R., Eakins, G. S., Mo, R. C., Shepson, P. B., and Laskin, A.: Chemical Imaging of Fine Mode Atmospheric Particles Collected from a Research Aircraft over Agricultural Fields, ACS Earth Sp. Chem., 4, 2171–2184, https://doi.org/10.1021/acsearthspacechem.0c00172, 2020.
Tomlin, J. M., Jankowski, K. A., Veghte, D. P., China, S., Wang, P., Fraund, M., Weis, J., Zheng, G., Wang, Y., Rivera-Adorno, F., Raveh-Rubin, S., Knopf, D. A., Wang, J., Gilles, M. K., Moffet, R. C., and Laskin, A.: Impact of dry intrusion events on the composition and mixing state of particles during the winter Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA), Atmos. Chem. Phys., 21, 18123–18146, https://doi.org/10.5194/acp-21-18123-2021, 2021.
Val Martin, M., Honrath, R. E., Owen, R. C., and Lapina, K.: Large-scale
impacts of anthropogenic pollution and boreal wildfires on the nitrogen
oxides over the central North Atlantic region, J. Geophys. Res., 113,
1–11, https://doi.org/10.1029/2007JD009689, 2008a.
Val Martin, M., Honrath, R. E., Owen, R. C., and Li, Q. B.: Seasonal
variation of nitrogen oxides in the central North Atlantic lower free
troposhere, J. Geophys. Res., 113, 1–15, https://doi.org/10.1029/2007JD009688,
2008b.
Venzac, H., Sellegri, K., Villani, P., Picard, D., and Laj, P.: Seasonal variation of aerosol size distributions in the free troposphere and residual layer at the puy de Dôme station, France, Atmos. Chem. Phys., 9, 1465–1478, https://doi.org/10.5194/acp-9-1465-2009, 2009.
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirilä, P.,
Leskinen, J., Mäkelä, J. M., Holopainen, J. K., Pöschl, U.,
Kulmala, M., Worsnop, D. R., and Laaksonen, A.: An amorphous solid state of
biogenic secondary organic aerosol particles, Nature, 467, 824–827,
https://doi.org/10.1038/nature09455, 2010.
Virtanen, A., Kannosto, J., Kuuluvainen, H., Arffman, A., Joutsensaari, J., Saukko, E., Hao, L., Yli-Pirilä, P., Tiitta, P., Holopainen, J. K., Keskinen, J., Worsnop, D. R., Smith, J. N., and Laaksonen, A.: Bounce behavior of freshly nucleated biogenic secondary organic aerosol particles, Atmos. Chem. Phys., 11, 8759–8766, https://doi.org/10.5194/acp-11-8759-2011, 2011.
Wang, B., O'Brien, R. E., Kelly, S. T., Shilling, J. E., Mo, R. C., Gilles,
M. K., and Laskin, A.: Reactivity of Liquid and Semisolid Secondary Organic
Carbon with Chloride and Nitrate in Atmospheric Aerosols, J. Phys. Chem. A,
119, 4498–4508, 2015.
Wang, B., Harder, T. H., Kelly, S. T., Piens, D. S., China, S., Kovarik, L.,
Keiluweit, M., Arey, B. W., Gilles, M. K., and Laskin, A.: Airborne soil
organic particles generated by precipitation, Nat. Geosci., 9, 433–437,
https://doi.org/10.1038/ngeo2705, 2016.
Wang, J., Cubison, M. J., Aiken, A. C., Jimenez, J. L., and Collins, D. R.: The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols, Atmos. Chem. Phys., 10, 7267–7283, https://doi.org/10.5194/acp-10-7267-2010, 2010.
Weiss-Penzias, P., Jaffe, D. A., Swartzendruber, P., Dennison, J. B., Chand,
D., Hafner, W., and Prestbo, E.: Observations of Asian air pollution in the
free troposphere at Mount Bachelor Observatory during the spring of 2004, J.
Geophys. Res., 111, 1–15, https://doi.org/10.1029/2005JD006522, 2006.
Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5, 657–685, https://doi.org/10.5194/amt-5-657-2012, 2012.
Yamasoe, M. A., Artaxo, P., Miguel, A. H., and Allen, A. G.: Chemical
composition of aerosol particles from direct emissions of vegetation fires
in the Amazon Basin: Water-soluble species and trace elements, Atmos.
Environ., 34, 1641–1653, https://doi.org/10.1016/S1352-2310(99)00329-5, 2000.
Yu, J. Z., Huang, X. F., Xu, J., and Hu, M.: When aerosol sulfate goes up, so
does oxalate: Implication for the formation mechanisms of oxalate, Environ.
Sci. Technol., 39, 128–133, https://doi.org/10.1021/es049559f, 2005.
Zhang, B., Owen, R. C., Perlinger, J. A., Kumar, A., Wu, S., Val Martin, M., Kramer, L., Helmig, D., and Honrath, R. E.: A semi-Lagrangian view of ozone production tendency in North American outflow in the summers of 2009 and 2010, Atmos. Chem. Phys., 14, 2267–2287, https://doi.org/10.5194/acp-14-2267-2014, 2014.
Zhang, B., Owen, R. C., Perlinger, J. A., Helmig, D., Val Martin, M.,
Kramer, L., Mazzoleni, L. R., and Mazzoleni, C.: Ten-year chemical signatures
associated with long-range transport observed in the free troposphere over
the central North Atlantic, Elem. Sci. Anth., 5, 194,
https://doi.org/10.1525/elementa.194, 2017.
Zhao, B., Shrivastava, M., Donahue, N. M., Gordon, H., Schervish, M.,
Shilling, J. E., Zaveri, R. A., Wang, J., Andreae, M. O., Zhao, C., Gaudet,
B., Liu, Y., Fan, J., and Fast, J. D.: High concentration of ultrafine
particles in the Amazon free troposphere produced by organic new particle
formation, P. Natl. Acad. Sci. USA, 117, 25344–25351, https://doi.org/10.1073/pnas.2006716117, 2020.
Zhou, S., Collier, S., Jaffe, D. A., and Zhang, Q.: Free tropospheric aerosols at the Mt. Bachelor Observatory: more oxidized and higher sulfate content compared to boundary layer aerosols, Atmos. Chem. Phys., 19, 1571–1585, https://doi.org/10.5194/acp-19-1571-2019, 2019.
Zufall, M. J. and Davidson, C. I.: Dry Deposition of Particles from the
Atmosphere, in Air Pollution in the Ural Mountains: Environmental, Health
and Policy Aspects, edited by: Linkov, I. and Wilson, R., Springer,
Dordrecht, 55–56, ISBN: 978-94-011-5208-2., 1998.
Short summary
We observed a high abundance of liquid and internally mixed particles in samples collected in the North Atlantic free troposphere during summer. We also found several solid and semisolid particles for different emission sources and transport patterns. Our results suggest that considering the mixing state, emission source, and transport patterns of particles is necessary to estimate their phase state in the free troposphere, which is critical for predicting their effects on climate.
We observed a high abundance of liquid and internally mixed particles in samples collected in...
Altmetrics
Final-revised paper
Preprint