Articles | Volume 22, issue 9
https://doi.org/10.5194/acp-22-5925-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-5925-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of convection on the upper-tropospheric O3 and NOx budget in southeastern China
Xin Zhang
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,
Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Department of Atmospheric Physics, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,
Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Department of Atmospheric Physics, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Ronald van der A
Department of Atmospheric Physics, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Department of Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Henk Eskes
Department of Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Jos van Geffen
Department of Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Yunyao Li
Department of Atmospheric, Oceanic & Earth Sciences, George Mason University, Fairfax, VA 22030, USA
Xiang Kuang
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,
Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Department of Atmospheric Physics, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Jeff L. Lapierre
Earth Networks, Germantown, MD 20876, USA
Kui Chen
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,
Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Department of Atmospheric Physics, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Zhongxiu Zhen
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,
Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Department of Atmospheric Physics, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Jianlin Hu
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,
Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Department of Atmospheric Physics, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Chuan He
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,
Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Department of Atmospheric Physics, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Jinghua Chen
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,
Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Department of Atmospheric Physics, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Rulin Shi
Lightning Technology Laboratory, Inner Mongolia Lightning Warning and Protection Center, Hohhot 010051, China
Jun Zhang
Nanjing National Reference Climatological Station, Nanjing 210044, China
Xingrong Ye
Nanjing National Reference Climatological Station, Nanjing 210044, China
Hao Chen
Nanjing National Reference Climatological Station, Nanjing 210044, China
Related authors
Xiumei Zhang, Ronald van der A, Jieying Ding, Xin Zhang, and Yan Yin
Atmos. Chem. Phys., 23, 5587–5604, https://doi.org/10.5194/acp-23-5587-2023, https://doi.org/10.5194/acp-23-5587-2023, 2023
Short summary
Short summary
We compiled a ship emission inventory based on automatic identification system (AIS) signals in the Jiangsu section of the Yangtze River. This ship emission inventory was compared with Chinese bottom-up inventories and the satellite-derived emissions from TROPOMI. The result shows a consistent spatial distribution, with riverine cities having high NOx emissions. Inland ship emissions of NOx are shown to contribute at least 40 % to air pollution along the river.
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua
Atmos. Chem. Phys., 25, 7581–7596, https://doi.org/10.5194/acp-25-7581-2025, https://doi.org/10.5194/acp-25-7581-2025, 2025
Short summary
Short summary
Several recent studies have reported complete cloud glaciation induced by airborne-based glaciogenic cloud seeding over plains. Since turbulence is an important factor to maintain clouds in a mixed phase, it is hypothesized that turbulence may have an impact on the seeding effect. This hypothesis is evident in the present study, which shows that turbulence can accelerate the impact of airborne glaciogenic seeding of stratiform clouds.
Rimal Abeed, Audrey Fortems-Cheiney, Grégoire Broquet, Robin Plauchu, Isabelle Pison, Antoine Berchet, Elise Potier, Bo Zheng, Gaëlle Dufour, Adriana Coman, Dilek Savas, Guillaume Siour, Henk Eskes, Beatriz Revilla-Romero, Antony Delavois, and Philippe Ciais
EGUsphere, https://doi.org/10.5194/egusphere-2025-3329, https://doi.org/10.5194/egusphere-2025-3329, 2025
Short summary
Short summary
We investigate changes in air pollution from nitrogen oxides NOx (=NO+NO2) across Eastern China from 2019 to 2021, using a satellite-based modelling approach. Our results show a drop in pollution in 2020 in most provinces, and along the China-Mongolia-Russia Economic Corridor. The analysis also captures emission variations during the Lunar New Year. By estimating emissions at the provincial level, the study provides insights into how major events and policy measures influence local air quality.
Audrey Fortems-Cheiney, Grégoire Broquet, Elise Potier, Antoine Berchet, Isabelle Pison, Adrien Martinez, Robin Plauchu, Rimal Abeed, Aurélien Sicsik-Paré, Gaelle Dufour, Adriana Coman, Dilek Savas, Guillaume Siour, Henk Eskes, Hugo A. C. Denier van der Gon, and Stijn N. C. Dellaert
Atmos. Chem. Phys., 25, 6047–6068, https://doi.org/10.5194/acp-25-6047-2025, https://doi.org/10.5194/acp-25-6047-2025, 2025
Short summary
Short summary
This study assesses the potential of the Ozone Monitoring Instrument (OMI) and the TROPOspheric Monitoring Instrument (TROPOMI) satellite observations to inform about the decrease in anthropogenic emissions of nitrogen oxides (NOx) in 2019 compared with 2005 at regional to national scales in Europe. Both the OMI and TROPOMI inversions show decreases in European NOx anthropogenic emission budgets in 2019 compared to 2005 but with different magnitudes.
Simon Chabrillat, Samuel Rémy, Quentin Errera, Vincent Huijnen, Christine Bingen, Jonas Debosscher, François Hendrick, Swen Metzger, Adrien Mora, Daniele Minganti, Marc Op de beek, Léa Reisenfeld, Jason E. Williams, Henk Eskes, and Johannes Flemming
EGUsphere, https://doi.org/10.5194/egusphere-2025-1327, https://doi.org/10.5194/egusphere-2025-1327, 2025
Short summary
Short summary
We document the forecasts of the composition of the stratosphere by the Copernicus Atmosphere Monitoring Service. The model's predictions are compared with satellite measurements over a recent period, during polar ozone depletion events, and after the Mount Pinatubo volcanic eruption. The system performs well for sulfate aerosols, ozone and several other key gases but not as well for several nitrogen-containing gases. Chemical processes in aerosols and polar clouds should be improved.
Yuhang Zhang, Huan Yu, Isabelle De Smedt, Jintai Lin, Nicolas Theys, Michel Van Roozendael, Gaia Pinardi, Steven Compernolle, Ruijing Ni, Fangxuan Ren, Sijie Wang, Lulu Chen, Jos Van Geffen, Mengyao Liu, Alexander M. Cede, Martin Tiefengraber, Alexis Merlaud, Martina M. Friedrich, Andreas Richter, Ankie Piters, Vinod Kumar, Vinayak Sinha, Thomas Wagner, Yongjoo Choi, Hisahiro Takashima, Yugo Kanaya, Hitoshi Irie, Robert Spurr, Wenfu Sun, and Lorenzo Fabris
Atmos. Meas. Tech., 18, 1561–1589, https://doi.org/10.5194/amt-18-1561-2025, https://doi.org/10.5194/amt-18-1561-2025, 2025
Short summary
Short summary
We developed an advanced algorithm for global retrieval of TROPOspheric Monitoring Instrument (TROPOMI) HCHO and NO2 vertical column densities with much improved consistency. Sensitivity tests demonstrate the complexity and nonlinear interactions of auxiliary parameters in the air mass factor calculation. An improved agreement is found with measurements from a global ground-based instrument network. The scientific retrieval provides a useful source of information for studies combining HCHO and NO2.
Beata Opacka, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Jos van Geffen, Eloise A. Marais, Rebekah P. Horner, Dylan B. Millet, Kelly C. Wells, and Alex B. Guenther
Atmos. Chem. Phys., 25, 2863–2894, https://doi.org/10.5194/acp-25-2863-2025, https://doi.org/10.5194/acp-25-2863-2025, 2025
Short summary
Short summary
Vegetation releases biogenic volatile organic compounds, while soils and lightning contribute to the natural emissions of nitrogen oxides into the atmosphere. These gases interact in complex ways. Using satellite data and models, we developed a new method to simultaneously optimize these natural emissions over Africa in 2019. Our approach resulted in an increase in natural emissions, supported by independent data indicating that current estimates are underestimated.
Bas Mijling, Henk Eskes, Sascha Hofmann, Pau Moreno, David García Falin, and María Encarnación de Vega Pastor
EGUsphere, https://doi.org/10.5194/egusphere-2025-202, https://doi.org/10.5194/egusphere-2025-202, 2025
Short summary
Short summary
Given the serious health risks of urban air pollution, monitoring local pollution levels is crucial. The Retina v2 algorithm creates high-resolution pollution maps by integrating satellite and local measurements with an air quality model. Easily portable to other cities, it balances accuracy with low computational demands, matching or outperforming complex dispersion models and data-heavy machine learning. Satellite data proves especially valuable in cities with sparse or no monitoring networks.
Ruiyu Song, Bin Zhu, Lina Sha, Peng Qian, Fei Wang, Chunsong Lu, Yan Yin, and Yuying Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-43, https://doi.org/10.5194/egusphere-2025-43, 2025
Preprint withdrawn
Short summary
Short summary
This study examines how anthropogenic aerosols affect rainfall during the early summer in China’s Yangtze River Delta. Using the WRF-Chem model, we found that moderate emissions increase rainfall by boosting cloud formation. However, high emissions reduce rainfall due to smaller cloud droplets, which hinder their growth. These findings highlight the complex impact of aerosol concentrations on precipitation and provide valuable data for future research on aerosol-cloud-precipitation interactions.
Isolde Glissenaar, Klaas Folkert Boersma, Isidora Anglou, Pieter Rijsdijk, Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Jean-Christopher Lambert, Michel Van Roozendael, and Henk Eskes
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-616, https://doi.org/10.5194/essd-2024-616, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We developed a new global dataset of nitrogen dioxide (NO2) levels in the lower atmosphere, using data from TROPOMI for 2018–2021. This dataset offers improved accuracy and detail compared to earlier versions, meeting high international standards for climate data. By refining how measurement errors are calculated and reduced over time and space, we provide clearer insights into pollution patterns. This work supports better air quality monitoring and informs actions to address pollution globally.
Yutao Chen, Ronald J. van der A, Jieying Ding, Henk Eskes, Jason E. Williams, Nicolas Theys, Athanasios Tsikerdekis, and Pieternel F. Levelt
Atmos. Chem. Phys., 25, 1851–1868, https://doi.org/10.5194/acp-25-1851-2025, https://doi.org/10.5194/acp-25-1851-2025, 2025
Short summary
Short summary
There is a lack of local SO2 top-down emission inventories in India. With the improvement in the divergence method and the derivation of SO2 local lifetime, gridded SO2 emissions over a large area can be estimated efficiently. This method can be applied to any region in the world to derive SO2 emissions. Especially for regions with high latitudes, our methodology has the potential to significantly improve the top-down derivation of SO2 emissions.
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025, https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOx emissions using synthetic NO2 satellite column retrievals from high-resolution model simulations. The FDA accurately reproduced NOx emissions when column observations were limited to the boundary layer and when the variability of the NO2 lifetime, the NOx : NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces strong model dependency, reducing the simplicity of the original FDA formulation.
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025, https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
Short summary
Clustering high-resolution satellite observations into superobservations improves model validation and data assimilation applications. In our paper, we derive quantitative uncertainties for satellite NO2 column observations based on knowledge of the retrievals, including a detailed analysis of spatial error correlations and representativity errors. The superobservations and uncertainty estimates are tested in a global chemical data assimilation system and are found to improve the forecasts.
Vitali Fioletov, Chris A. McLinden, Debora Griffin, Xiaoyi Zhao, and Henk Eskes
Atmos. Chem. Phys., 25, 575–596, https://doi.org/10.5194/acp-25-575-2025, https://doi.org/10.5194/acp-25-575-2025, 2025
Short summary
Short summary
Satellite data were used to estimate urban per capita emissions for 261 major cities worldwide. Three components in tropospheric NO2 data (background NO2, NO2 from urban sources, and NO2 from industrial point sources) were isolated, and then each of these components was analyzed separately. The largest per capita emissions were found in the Middle East and the smallest in India and southern Africa. Urban weekend emissions are 20 %–50 % less than workday emissions for all regions except China.
Jing Yang, Jiaojiao Li, Meilian Chen, Xiaoqin Jing, Yan Yin, Bart Geerts, Zhien Wang, Yubao Liu, Baojun Chen, Shaofeng Hua, Hao Hu, Xiaobo Dong, Ping Tian, Qian Chen, and Yang Gao
Atmos. Chem. Phys., 24, 13833–13848, https://doi.org/10.5194/acp-24-13833-2024, https://doi.org/10.5194/acp-24-13833-2024, 2024
Short summary
Short summary
Detecting unambiguous signatures is vital for examining cloud-seeding impacts, but often, seeding signatures are immersed in natural variability. In this study, reflectivity changes induced by glaciogenic seeding using different AgI concentrations are investigated under various conditions, and a method is developed to estimate the AgI concentration needed to detect unambiguous seeding signatures. The results aid in operational seeding-based decision-making regarding the amount of AgI dispersed.
Augustin Colette, Gaëlle Collin, François Besson, Etienne Blot, Vincent Guidard, Frederik Meleux, Adrien Royer, Valentin Petiot, Claire Miller, Oihana Fermond, Alizé Jeant, Mario Adani, Joaquim Arteta, Anna Benedictow, Robert Bergström, Dene Bowdalo, Jorgen Brandt, Gino Briganti, Ana C. Carvalho, Jesper Heile Christensen, Florian Couvidat, Ilia D’Elia, Massimo D’Isidoro, Hugo Denier van der Gon, Gaël Descombes, Enza Di Tomaso, John Douros, Jeronimo Escribano, Henk Eskes, Hilde Fagerli, Yalda Fatahi, Johannes Flemming, Elmar Friese, Lise Frohn, Michael Gauss, Camilla Geels, Guido Guarnieri, Marc Guevara, Antoine Guion, Jonathan Guth, Risto Hänninen, Kaj Hansen, Ulas Im, Ruud Janssen, Marine Jeoffrion, Mathieu Joly, Luke Jones, Oriol Jorba, Evgeni Kadantsev, Michael Kahnert, Jacek W. Kaminski, Rostislav Kouznetsov, Richard Kranenburg, Jeroen Kuenen, Anne Caroline Lange, Joachim Langner, Victor Lannuque, Francesca Macchia, Astrid Manders, Mihaela Mircea, Agnes Nyiri, Miriam Olid, Carlos Pérez García-Pando, Yuliia Palamarchuk, Antonio Piersanti, Blandine Raux, Miha Razinger, Lennard Robertson, Arjo Segers, Martijn Schaap, Pilvi Siljamo, David Simpson, Mikhail Sofiev, Anders Stangel, Joanna Struzewska, Carles Tena, Renske Timmermans, Thanos Tsikerdekis, Svetlana Tsyro, Svyatoslav Tyuryakov, Anthony Ung, Andreas Uppstu, Alvaro Valdebenito, Peter van Velthoven, Lina Vitali, Zhuyun Ye, Vincent-Henri Peuch, and Laurence Rouïl
EGUsphere, https://doi.org/10.5194/egusphere-2024-3744, https://doi.org/10.5194/egusphere-2024-3744, 2024
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service – Regional Production delivers daily forecasts, analyses, and reanalyses of air quality in Europe. The Service relies on a distributed modelling production by eleven leading European modelling teams following stringent requirements with an operational design which has no equivalent in the world. All the products are full, free, open and quality assured and disseminated with a high level of reliability.
Jieying Ding, Ronald van der A, Henk Eskes, Enrico Dammers, Mark Shephard, Roy Wichink Kruit, Marc Guevara, and Leonor Tarrason
Atmos. Chem. Phys., 24, 10583–10599, https://doi.org/10.5194/acp-24-10583-2024, https://doi.org/10.5194/acp-24-10583-2024, 2024
Short summary
Short summary
Here we applied the existing Daily Emissions Constrained by Satellite Observations (DECSO) inversion algorithm to NH3 observations from the CrIS satellite instrument to estimate NH3 emissions. As NH3 in the atmosphere is influenced by NOx, we implemented DECSO to estimate NOx and NH3 emissions simultaneously. The emissions are derived over Europe for 2020 at a spatial resolution of 0.2° using daily observations from CrIS and TROPOMI. Results are compared to bottom-up emission inventories.
Mengyao Liu, Ronald van der A, Michiel van Weele, Lotte Bryan, Henk Eskes, Pepijn Veefkind, Yongxue Liu, Xiaojuan Lin, Jos de Laat, and Jieying Ding
Atmos. Meas. Tech., 17, 5261–5277, https://doi.org/10.5194/amt-17-5261-2024, https://doi.org/10.5194/amt-17-5261-2024, 2024
Short summary
Short summary
A new divergence method was developed and applied to estimate methane emissions from TROPOMI observations over the Middle East, where it is typically challenging for a satellite to measure methane due to its complicated orography and surface albedo. Our results show the potential of TROPOMI to quantify methane emissions from various sources rather than big emitters from space after objectively excluding the artifacts in the retrieval.
Henk Eskes, Athanasios Tsikerdekis, Melanie Ades, Mihai Alexe, Anna Carlin Benedictow, Yasmine Bennouna, Lewis Blake, Idir Bouarar, Simon Chabrillat, Richard Engelen, Quentin Errera, Johannes Flemming, Sebastien Garrigues, Jan Griesfeller, Vincent Huijnen, Luka Ilić, Antje Inness, John Kapsomenakis, Zak Kipling, Bavo Langerock, Augustin Mortier, Mark Parrington, Isabelle Pison, Mikko Pitkänen, Samuel Remy, Andreas Richter, Anja Schoenhardt, Michael Schulz, Valerie Thouret, Thorsten Warneke, Christos Zerefos, and Vincent-Henri Peuch
Atmos. Chem. Phys., 24, 9475–9514, https://doi.org/10.5194/acp-24-9475-2024, https://doi.org/10.5194/acp-24-9475-2024, 2024
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service (CAMS) provides global analyses and forecasts of aerosols and trace gases in the atmosphere. On 27 June 2023 a major upgrade, Cy48R1, became operational. Comparisons with in situ, surface remote sensing, aircraft, and balloon and satellite observations show that the new CAMS system is a significant improvement. The results quantify the skill of CAMS to forecast impactful events, such as wildfires, dust storms and air pollution peaks.
Robin Plauchu, Audrey Fortems-Cheiney, Grégoire Broquet, Isabelle Pison, Antoine Berchet, Elise Potier, Gaëlle Dufour, Adriana Coman, Dilek Savas, Guillaume Siour, and Henk Eskes
Atmos. Chem. Phys., 24, 8139–8163, https://doi.org/10.5194/acp-24-8139-2024, https://doi.org/10.5194/acp-24-8139-2024, 2024
Short summary
Short summary
This study uses the Community Inversion Framework and CHIMERE model to assess the potential of TROPOMI-S5P PAL NO2 tropospheric column data to estimate NOx emissions in France (2019–2021). Results show a 3 % decrease in average emissions compared to the 2016 CAMS-REG/INS, lower than the 14 % decrease from CITEPA. The study highlights challenges in capturing emission anomalies due to limited data coverage and error levels but shows promise for local inventory improvements.
Ronald J. van der A, Jieying Ding, and Henk Eskes
Atmos. Chem. Phys., 24, 7523–7534, https://doi.org/10.5194/acp-24-7523-2024, https://doi.org/10.5194/acp-24-7523-2024, 2024
Short summary
Short summary
Using observations of the Sentinel-5P satellite and the latest version of the inversion algorithm DECSO, anthropogenic NOx emissions are derived for Europe for the years 2019–2022 with a spatial resolution of 0.2°. The results are compared with European emissions of the Copernicus Atmosphere Monitoring Service.
Enrico Dammers, Janot Tokaya, Christian Mielke, Kevin Hausmann, Debora Griffin, Chris McLinden, Henk Eskes, and Renske Timmermans
Geosci. Model Dev., 17, 4983–5007, https://doi.org/10.5194/gmd-17-4983-2024, https://doi.org/10.5194/gmd-17-4983-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NOx) is produced by sources such as industry and traffic and is directly linked to negative impacts on health and the environment. The current construction of emission inventories to keep track of NOx emissions is slow and time-consuming. Satellite measurements provide a way to quickly and independently estimate emissions. In this study, we apply a consistent methodology to derive NOx emissions over Germany and illustrate the value of having such a method for fast projections.
Andrés Yarce Botero, Michiel van Weele, Arjo Segers, Pier Siebesma, and Henk Eskes
Geosci. Model Dev., 17, 3765–3781, https://doi.org/10.5194/gmd-17-3765-2024, https://doi.org/10.5194/gmd-17-3765-2024, 2024
Short summary
Short summary
HARMONIE WINS50 reanalysis data with 0.025° × 0.025° resolution from 2019 to 2021 were coupled with the LOTOS-EUROS Chemical Transport Model. HARMONIE and ECMWF meteorology configurations against Cabauw observations (52.0° N, 4.9° W) were evaluated as simulated NO2 concentrations with ground-level sensors. Differences in crucial meteorological input parameters (boundary layer height, vertical diffusion coefficient) between the hydrostatic and non-hydrostatic models were analysed.
Adrianus de Laat, Jos van Geffen, Piet Stammes, Ronald van der A, Henk Eskes, and J. Pepijn Veefkind
Atmos. Chem. Phys., 24, 4511–4535, https://doi.org/10.5194/acp-24-4511-2024, https://doi.org/10.5194/acp-24-4511-2024, 2024
Short summary
Short summary
Removal of stratospheric nitrogen oxides is crucial for the formation of the ozone hole. TROPOMI satellite measurements of nitrogen dioxide reveal the presence of a not dissimilar "nitrogen hole" that largely coincides with the ozone hole. Three very distinct regimes were identified: inside and outside the ozone hole and the transition zone in between. Our results introduce a valuable and innovative application highly relevant for Antarctic ozone hole and ozone layer recovery.
Naifu Shao, Chunsong Lu, Xingcan Jia, Yuan Wang, Yubin Li, Yan Yin, Bin Zhu, Tianliang Zhao, Duanyang Liu, Shengjie Niu, Shuxian Fan, Shuqi Yan, and Jingjing Lv
Atmos. Chem. Phys., 23, 9873–9890, https://doi.org/10.5194/acp-23-9873-2023, https://doi.org/10.5194/acp-23-9873-2023, 2023
Short summary
Short summary
Fog is an important meteorological phenomenon that affects visibility. Aerosols and the planetary boundary layer (PBL) play critical roles in the fog life cycle. In this study, aerosol-induced changes in fog properties become more remarkable in the second fog (Fog2) than in the first fog (Fog1). The reason is that aerosol–cloud interaction (ACI) delays Fog1 dissipation, leading to the PBL meteorological conditions being more conducive to Fog2 formation and to stronger ACI in Fog2.
Bok H. Baek, Carlie Coats, Siqi Ma, Chi-Tsan Wang, Yunyao Li, Jia Xing, Daniel Tong, Soontae Kim, and Jung-Hun Woo
Geosci. Model Dev., 16, 4659–4676, https://doi.org/10.5194/gmd-16-4659-2023, https://doi.org/10.5194/gmd-16-4659-2023, 2023
Short summary
Short summary
To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system without any computational bottleneck, we have developed an inline meteorology-induced emissions coupler module within the U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system to dynamically model the complex MOtor Vehicle Emission Simulator (MOVES) on-road mobile emissions inline without a separate dedicated emissions processing model like SMOKE.
Xiaojuan Lin, Ronald van der A, Jos de Laat, Henk Eskes, Frédéric Chevallier, Philippe Ciais, Zhu Deng, Yuanhao Geng, Xuanren Song, Xiliang Ni, Da Huo, Xinyu Dou, and Zhu Liu
Atmos. Chem. Phys., 23, 6599–6611, https://doi.org/10.5194/acp-23-6599-2023, https://doi.org/10.5194/acp-23-6599-2023, 2023
Short summary
Short summary
Satellite observations provide evidence for CO2 emission signals from isolated power plants. We use these satellite observations to quantify emissions. We found that for power plants with multiple observations, the correlation of estimated and reported emissions is significantly improved compared to a single observation case. This demonstrates that accurate estimation of power plant emissions can be achieved by monitoring from future satellite missions with more frequent observations.
Xiumei Zhang, Ronald van der A, Jieying Ding, Xin Zhang, and Yan Yin
Atmos. Chem. Phys., 23, 5587–5604, https://doi.org/10.5194/acp-23-5587-2023, https://doi.org/10.5194/acp-23-5587-2023, 2023
Short summary
Short summary
We compiled a ship emission inventory based on automatic identification system (AIS) signals in the Jiangsu section of the Yangtze River. This ship emission inventory was compared with Chinese bottom-up inventories and the satellite-derived emissions from TROPOMI. The result shows a consistent spatial distribution, with riverine cities having high NOx emissions. Inland ship emissions of NOx are shown to contribute at least 40 % to air pollution along the river.
Anna Agustí-Panareda, Jérôme Barré, Sébastien Massart, Antje Inness, Ilse Aben, Melanie Ades, Bianca C. Baier, Gianpaolo Balsamo, Tobias Borsdorff, Nicolas Bousserez, Souhail Boussetta, Michael Buchwitz, Luca Cantarello, Cyril Crevoisier, Richard Engelen, Henk Eskes, Johannes Flemming, Sébastien Garrigues, Otto Hasekamp, Vincent Huijnen, Luke Jones, Zak Kipling, Bavo Langerock, Joe McNorton, Nicolas Meilhac, Stefan Noël, Mark Parrington, Vincent-Henri Peuch, Michel Ramonet, Miha Razinger, Maximilian Reuter, Roberto Ribas, Martin Suttie, Colm Sweeney, Jérôme Tarniewicz, and Lianghai Wu
Atmos. Chem. Phys., 23, 3829–3859, https://doi.org/10.5194/acp-23-3829-2023, https://doi.org/10.5194/acp-23-3829-2023, 2023
Short summary
Short summary
We present a global dataset of atmospheric CO2 and CH4, the two most important human-made greenhouse gases, which covers almost 2 decades (2003–2020). It is produced by combining satellite data of CO2 and CH4 with a weather and air composition prediction model, and it has been carefully evaluated against independent observations to ensure validity and point out deficiencies to the user. This dataset can be used for scientific studies in the field of climate change and the global carbon cycle.
Kezia Lange, Andreas Richter, Anja Schönhardt, Andreas C. Meier, Tim Bösch, André Seyler, Kai Krause, Lisa K. Behrens, Folkard Wittrock, Alexis Merlaud, Frederik Tack, Caroline Fayt, Martina M. Friedrich, Ermioni Dimitropoulou, Michel Van Roozendael, Vinod Kumar, Sebastian Donner, Steffen Dörner, Bianca Lauster, Maria Razi, Christian Borger, Katharina Uhlmannsiek, Thomas Wagner, Thomas Ruhtz, Henk Eskes, Birger Bohn, Daniel Santana Diaz, Nader Abuhassan, Dirk Schüttemeyer, and John P. Burrows
Atmos. Meas. Tech., 16, 1357–1389, https://doi.org/10.5194/amt-16-1357-2023, https://doi.org/10.5194/amt-16-1357-2023, 2023
Short summary
Short summary
We present airborne imaging DOAS and ground-based stationary and car DOAS measurements conducted during the S5P-VAL-DE-Ruhr campaign in the Rhine-Ruhr region. The measurements are used to validate spaceborne NO2 data products from the Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI). Auxiliary data of the TROPOMI NO2 retrieval, such as spatially higher resolved a priori NO2 vertical profiles, surface reflectivity, and cloud treatment are investigated to evaluate their impact.
Yunyao Li, Daniel Tong, Siqi Ma, Saulo R. Freitas, Ravan Ahmadov, Mikhail Sofiev, Xiaoyang Zhang, Shobha Kondragunta, Ralph Kahn, Youhua Tang, Barry Baker, Patrick Campbell, Rick Saylor, Georg Grell, and Fangjun Li
Atmos. Chem. Phys., 23, 3083–3101, https://doi.org/10.5194/acp-23-3083-2023, https://doi.org/10.5194/acp-23-3083-2023, 2023
Short summary
Short summary
Plume height is important in wildfire smoke dispersion and affects air quality and human health. We assess the impact of plume height on wildfire smoke dispersion and the exceedances of the National Ambient Air Quality Standards. A higher plume height predicts lower pollution near the source region, but higher pollution in downwind regions, due to the faster spread of the smoke once ejected, affects pollution exceedance forecasts and the early warning of extreme air pollution events.
John Douros, Henk Eskes, Jos van Geffen, K. Folkert Boersma, Steven Compernolle, Gaia Pinardi, Anne-Marlene Blechschmidt, Vincent-Henri Peuch, Augustin Colette, and Pepijn Veefkind
Geosci. Model Dev., 16, 509–534, https://doi.org/10.5194/gmd-16-509-2023, https://doi.org/10.5194/gmd-16-509-2023, 2023
Short summary
Short summary
We focus on the challenges associated with comparing atmospheric composition models with satellite products such as tropospheric NO2 columns. The aim is to highlight the methodological difficulties and propose sound ways of doing such comparisons. Building on the comparisons, a new satellite product is proposed and made available, which takes advantage of higher-resolution, regional atmospheric modelling to improve estimates of troposheric NO2 columns over Europe.
Qianqian Zhang, K. Folkert Boersma, Bin Zhao, Henk Eskes, Cuihong Chen, Haotian Zheng, and Xingying Zhang
Atmos. Chem. Phys., 23, 551–563, https://doi.org/10.5194/acp-23-551-2023, https://doi.org/10.5194/acp-23-551-2023, 2023
Short summary
Short summary
We developed an improved superposition column model and used the latest released (v2.3.1) TROPOMI satellite NO2 observations to estimate daily city-scale NOx and CO2 emissions. The results are verified against bottom-up emissions and OCO-2 XCO2 observations. We obtained the day-to-day variation of city NOx and CO2 emissions, allowing policymakers to gain real-time information on spatial–temporal emission patterns and the effectiveness of carbon and nitrogen regulation in urban environments.
Miriam Latsch, Andreas Richter, Henk Eskes, Maarten Sneep, Ping Wang, Pepijn Veefkind, Ronny Lutz, Diego Loyola, Athina Argyrouli, Pieter Valks, Thomas Wagner, Holger Sihler, Michel van Roozendael, Nicolas Theys, Huan Yu, Richard Siddans, and John P. Burrows
Atmos. Meas. Tech., 15, 6257–6283, https://doi.org/10.5194/amt-15-6257-2022, https://doi.org/10.5194/amt-15-6257-2022, 2022
Short summary
Short summary
The article investigates different S5P TROPOMI cloud retrieval algorithms for tropospheric trace gas retrievals. The cloud products show differences primarily over snow and ice and for scenes under sun glint. Some issues regarding across-track dependence are found for the cloud fractions as well as for the cloud heights.
Hanqing Kang, Bin Zhu, Gerrit de Leeuw, Bu Yu, Ronald J. van der A, and Wen Lu
Atmos. Chem. Phys., 22, 10623–10634, https://doi.org/10.5194/acp-22-10623-2022, https://doi.org/10.5194/acp-22-10623-2022, 2022
Short summary
Short summary
This study quantified the contribution of each urban-induced meteorological effect (temperature, humidity, and circulation) to aerosol concentration. We found that the urban heat island (UHI) circulation dominates the UHI effects on aerosol. The UHI circulation transports aerosol and its precursor gases from the warmer lower boundary layer to the colder lower free troposphere and promotes the secondary formation of ammonium nitrate aerosol in the cold atmosphere.
Pieternel F. Levelt, Deborah C. Stein Zweers, Ilse Aben, Maite Bauwens, Tobias Borsdorff, Isabelle De Smedt, Henk J. Eskes, Christophe Lerot, Diego G. Loyola, Fabian Romahn, Trissevgeni Stavrakou, Nicolas Theys, Michel Van Roozendael, J. Pepijn Veefkind, and Tijl Verhoelst
Atmos. Chem. Phys., 22, 10319–10351, https://doi.org/10.5194/acp-22-10319-2022, https://doi.org/10.5194/acp-22-10319-2022, 2022
Short summary
Short summary
Using the COVID-19 lockdown periods as an example, we show how Sentinel-5P/TROPOMI trace gas data (NO2, SO2, CO, HCHO and CHOCHO) can be used to understand impacts on air quality for regions and cities around the globe. We also provide information for both experienced and inexperienced users about how we created the data using state-of-the-art algorithms, where to get the data, methods taking meteorological and seasonal variability into consideration, and insights for future studies.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Thilo Erbertseder, Diego Loyola, Pieter Valks, Song Liu, Dale J. Allen, Kenneth E. Pickering, Eric J. Bucsela, Patrick Jöckel, Jos van Geffen, Henk Eskes, Sergio Soler, Francisco J. Gordillo-Vázquez, and Jeff Lapierre
Atmos. Meas. Tech., 15, 3329–3351, https://doi.org/10.5194/amt-15-3329-2022, https://doi.org/10.5194/amt-15-3329-2022, 2022
Short summary
Short summary
Lightning, one of the major sources of nitrogen oxides in the atmosphere, contributes to the tropospheric concentration of ozone and to the oxidizing capacity of the atmosphere. In this work, we contribute to improving the estimation of lightning-produced nitrogen oxides in the Ebro Valley and the Pyrenees by using two different TROPOMI products and comparing the results.
Jos van Geffen, Henk Eskes, Steven Compernolle, Gaia Pinardi, Tijl Verhoelst, Jean-Christopher Lambert, Maarten Sneep, Mark ter Linden, Antje Ludewig, K. Folkert Boersma, and J. Pepijn Veefkind
Atmos. Meas. Tech., 15, 2037–2060, https://doi.org/10.5194/amt-15-2037-2022, https://doi.org/10.5194/amt-15-2037-2022, 2022
Short summary
Short summary
Nitrogen dioxide (NO2) is one of the main data products measured by the Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite. This study describes improvements in the TROPOMI NO2 retrieval leading to version v2.2, operational since 1 July 2021. It compares results with previous versions v1.2–v1.4 and with Ozone Monitoring Instrument (OMI) and ground-based measurements.
Vitali Fioletov, Chris A. McLinden, Debora Griffin, Nickolay Krotkov, Fei Liu, and Henk Eskes
Atmos. Chem. Phys., 22, 4201–4236, https://doi.org/10.5194/acp-22-4201-2022, https://doi.org/10.5194/acp-22-4201-2022, 2022
Short summary
Short summary
The COVID-19 lockdown had a large impact on anthropogenic emissions and particularly on nitrogen dioxide (NO2). A new method of isolation of background, urban, and industrial components in NO2 is applied to estimate the lockdown impact on each of them. From 16 March to 15 June 2020, urban NO2 declined by −18 % to −28 % in most regions of the world, while background NO2 typically declined by less than −10 %.
Takashi Sekiya, Kazuyuki Miyazaki, Henk Eskes, Kengo Sudo, Masayuki Takigawa, and Yugo Kanaya
Atmos. Meas. Tech., 15, 1703–1728, https://doi.org/10.5194/amt-15-1703-2022, https://doi.org/10.5194/amt-15-1703-2022, 2022
Short summary
Short summary
This study gives a systematic comparison of TROPOMI version 1.2 and OMI QA4ECV tropospheric NO2 column through global chemical data assimilation (DA) integration for April–May 2018. DA performance is controlled by measurement sensitivities, retrieval errors, and coverage. Due to reduced errors in TROPOMI, agreements against assimilated and independent observations were improved by TROPOMI DA compared to OMI DA. These results demonstrate that TROPOMI DA improves global analyses of NO2 and ozone.
Tobias Christoph Valentin Werner Riess, Klaas Folkert Boersma, Jasper van Vliet, Wouter Peters, Maarten Sneep, Henk Eskes, and Jos van Geffen
Atmos. Meas. Tech., 15, 1415–1438, https://doi.org/10.5194/amt-15-1415-2022, https://doi.org/10.5194/amt-15-1415-2022, 2022
Short summary
Short summary
This paper reports on improved monitoring of ship nitrogen oxide emissions by TROPOMI. With its fantastic resolution we can identify lanes of ship nitrogen dioxide (NO2) pollution not detected from space before. The quality of TROPOMI NO2 data over sea is improved further by recent upgrades in cloud retrievals and the use of sun glint scenes. Lastly, we study the impact of COVID-19 on ship NO2 in European seas and compare the found reductions to emission estimates gained from ship-specific data.
Steffen Beirle, Christian Borger, Steffen Dörner, Henk Eskes, Vinod Kumar, Adrianus de Laat, and Thomas Wagner
Earth Syst. Sci. Data, 13, 2995–3012, https://doi.org/10.5194/essd-13-2995-2021, https://doi.org/10.5194/essd-13-2995-2021, 2021
Short summary
Short summary
A catalog of point sources of nitrogen oxides was created using satellite observations of NO2. Key for the identification of point sources was the divergence, i.e., the difference between upwind and downwind levels of NO2.
The catalog lists 451 locations, of which 242 could be automatically matched to power plants. Other point sources are metal smelters, cement plants, or industrial areas. The catalog thus allows checking and improving of existing emission inventories.
Shizuo Fu, Richard Rotunno, Jinghua Chen, Xin Deng, and Huiwen Xue
Atmos. Chem. Phys., 21, 9289–9308, https://doi.org/10.5194/acp-21-9289-2021, https://doi.org/10.5194/acp-21-9289-2021, 2021
Short summary
Short summary
Deep-convection initiation (DCI) determines when and where deep convection develops and hence affects both weather and climate. However, our understanding of DCI is still limited. Here, we simulate DCI over a peninsula using large-eddy simulation and high-output frequency. We find that DCI is accomplished through the development of multiple generations of convection, and the earlier generation affects the later generation by producing downdrafts and cold pools.
Cheng Fan, Zhengqiang Li, Ying Li, Jiantao Dong, Ronald van der A, and Gerrit de Leeuw
Atmos. Chem. Phys., 21, 7723–7748, https://doi.org/10.5194/acp-21-7723-2021, https://doi.org/10.5194/acp-21-7723-2021, 2021
Short summary
Short summary
Emission control policy in China has resulted in the decrease of nitrogen dioxide concentrations, which however leveled off and stabilized in recent years, as shown from satellite data. The effects of the further emission reduction during the COVID-19 lockdown in 2020 resulted in an initial improvement of air quality, which, however, was offset by chemical and meteorological effects. The study shows the regional dependence over east China, and results have a wider application than China only.
Wannan Wang, Ronald van der A, Jieying Ding, Michiel van Weele, and Tianhai Cheng
Atmos. Chem. Phys., 21, 7253–7269, https://doi.org/10.5194/acp-21-7253-2021, https://doi.org/10.5194/acp-21-7253-2021, 2021
Short summary
Short summary
We developed a method to determine the type of photochemical regime of ozone formation by using only satellite observations of formaldehyde and nitrogen dioxide as well as ozone measurements on the ground. It was found that many cities in China, because of their high level of air pollution, are in the so-called VOC-limited photochemical regime. This means that the current reductions of nitrogen dioxide resulted in higher levels of photochemical smog in these cities.
Ioanna Skoulidou, Maria-Elissavet Koukouli, Astrid Manders, Arjo Segers, Dimitris Karagkiozidis, Myrto Gratsea, Dimitris Balis, Alkiviadis Bais, Evangelos Gerasopoulos, Trisevgeni Stavrakou, Jos van Geffen, Henk Eskes, and Andreas Richter
Atmos. Chem. Phys., 21, 5269–5288, https://doi.org/10.5194/acp-21-5269-2021, https://doi.org/10.5194/acp-21-5269-2021, 2021
Short summary
Short summary
The performance of LOTOS-EUROS v2.2.001 regional chemical transport model NO2 simulations is investigated over Greece from June to December 2018. Comparison with in situ NO2 measurements shows a spatial correlation coefficient of 0.86, while the model underestimates the concentrations mostly during daytime (12 to 15:00 local time). Further, the simulated tropospheric NO2 columns are evaluated against ground-based MAX-DOAS NO2 measurements and S5P/TROPOMI observations for July and December 2018.
Eloise A. Marais, John F. Roberts, Robert G. Ryan, Henk Eskes, K. Folkert Boersma, Sungyeon Choi, Joanna Joiner, Nader Abuhassan, Alberto Redondas, Michel Grutter, Alexander Cede, Laura Gomez, and Monica Navarro-Comas
Atmos. Meas. Tech., 14, 2389–2408, https://doi.org/10.5194/amt-14-2389-2021, https://doi.org/10.5194/amt-14-2389-2021, 2021
Short summary
Short summary
Nitrogen oxides in the upper troposphere have a profound influence on the global troposphere, but routine reliable observations there are exceedingly rare. We apply cloud-slicing to TROPOMI total columns of nitrogen dioxide (NO2) at high spatial resolution to derive near-global observations of NO2 in the upper troposphere and show consistency with existing datasets. These data offer tremendous potential to address knowledge gaps in this oft underappreciated portion of the atmosphere.
Nicola Zoppetti, Simone Ceccherini, Bruno Carli, Samuele Del Bianco, Marco Gai, Cecilia Tirelli, Flavio Barbara, Rossana Dragani, Antti Arola, Jukka Kujanpää, Jacob C. A. van Peet, Ronald van der A, and Ugo Cortesi
Atmos. Meas. Tech., 14, 2041–2053, https://doi.org/10.5194/amt-14-2041-2021, https://doi.org/10.5194/amt-14-2041-2021, 2021
Short summary
Short summary
The new platforms for Earth observation from space will provide an enormous amount of data that can be hard to exploit as a whole. The Complete Data Fusion algorithm can reduce the data volume while retaining the information of the full dataset. In this work, we applied the Complete Data Fusion algorithm to simulated ozone profiles, and the results show that the fused products are characterized by higher information content compared to individual L2 products.
Wannan Wang, Tianhai Cheng, Ronald J. van der A, Jos de Laat, and Jason E. Williams
Atmos. Meas. Tech., 14, 1673–1687, https://doi.org/10.5194/amt-14-1673-2021, https://doi.org/10.5194/amt-14-1673-2021, 2021
Short summary
Short summary
This paper is an evaluation of the AIRS and MLS ozone (O3) algorithms via comparison with daytime and night-time O3 datasets. Results show that further refinements of the AIRS O3 algorithm are required for better surface emissivity retrievals and that cloud cover is another problem that needs to be solved. An inconsistency is found in the
AscDescModeflag of the MLS v4.20 standard O3 product for 90–60° S and 60–90° N, resulting in inconsistent O3 profiles in these regions before May 2015.
Maria-Elissavet Koukouli, Ioanna Skoulidou, Andreas Karavias, Isaak Parcharidis, Dimitris Balis, Astrid Manders, Arjo Segers, Henk Eskes, and Jos van Geffen
Atmos. Chem. Phys., 21, 1759–1774, https://doi.org/10.5194/acp-21-1759-2021, https://doi.org/10.5194/acp-21-1759-2021, 2021
Short summary
Short summary
In recent years, satellite observations have contributed to monitoring air quality. During the first COVID-19 lockdown, lower levels of nitrogen dioxide were observed over Greece by S5P/TROPOMI for March and April 2020 (than the preceding year) due to decreased transport emissions. Taking meteorology into account, using LOTOS-EUROS CTM simulations, the resulting decline due to the lockdown was estimated to range between 0 % and −37 % for the five largest Greek cities, with an average of ~ −10 %.
Frederik Tack, Alexis Merlaud, Marian-Daniel Iordache, Gaia Pinardi, Ermioni Dimitropoulou, Henk Eskes, Bart Bomans, Pepijn Veefkind, and Michel Van Roozendael
Atmos. Meas. Tech., 14, 615–646, https://doi.org/10.5194/amt-14-615-2021, https://doi.org/10.5194/amt-14-615-2021, 2021
Short summary
Short summary
We assess the TROPOMI tropospheric NO2 product (OFFL v1.03.01; 3.5 km × 7 km at nadir observations) based on coinciding airborne APEX reference observations (~75 m × 120 m), acquired over polluted regions in Belgium. The TROPOMI NO2 product meets the mission requirements in terms of precision and accuracy. However, we show that TROPOMI is biased low over polluted areas, mainly due to the limited spatial resolution of a priori input for the AMF computation.
Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Jean-Christopher Lambert, Henk J. Eskes, Kai-Uwe Eichmann, Ann Mari Fjæraa, José Granville, Sander Niemeijer, Alexander Cede, Martin Tiefengraber, François Hendrick, Andrea Pazmiño, Alkiviadis Bais, Ariane Bazureau, K. Folkert Boersma, Kristof Bognar, Angelika Dehn, Sebastian Donner, Aleksandr Elokhov, Manuel Gebetsberger, Florence Goutail, Michel Grutter de la Mora, Aleksandr Gruzdev, Myrto Gratsea, Georg H. Hansen, Hitoshi Irie, Nis Jepsen, Yugo Kanaya, Dimitris Karagkiozidis, Rigel Kivi, Karin Kreher, Pieternel F. Levelt, Cheng Liu, Moritz Müller, Monica Navarro Comas, Ankie J. M. Piters, Jean-Pierre Pommereau, Thierry Portafaix, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Julia Remmers, Andreas Richter, John Rimmer, Claudia Rivera Cárdenas, Lidia Saavedra de Miguel, Valery P. Sinyakov, Wolfgang Stremme, Kimberly Strong, Michel Van Roozendael, J. Pepijn Veefkind, Thomas Wagner, Folkard Wittrock, Margarita Yela González, and Claus Zehner
Atmos. Meas. Tech., 14, 481–510, https://doi.org/10.5194/amt-14-481-2021, https://doi.org/10.5194/amt-14-481-2021, 2021
Short summary
Short summary
This paper reports on the ground-based validation of the NO2 data produced operationally by the TROPOMI instrument on board the Sentinel-5 Precursor satellite. Tropospheric, stratospheric, and total NO2 columns are compared to measurements collected from MAX-DOAS, ZSL-DOAS, and PGN/Pandora instruments respectively. The products are found to satisfy mission requirements in general, though negative mean differences are found at sites with high pollution levels. Potential causes are discussed.
Ivar R. van der Velde, Guido R. van der Werf, Sander Houweling, Henk J. Eskes, J. Pepijn Veefkind, Tobias Borsdorff, and Ilse Aben
Atmos. Chem. Phys., 21, 597–616, https://doi.org/10.5194/acp-21-597-2021, https://doi.org/10.5194/acp-21-597-2021, 2021
Short summary
Short summary
This paper compares the relative atmospheric enhancements of CO and NO2 measured by the space-based instrument TROPOMI over different fire-prone ecosystems around the world. We find distinct spatial and temporal patterns in the ΔNO2 / ΔCO ratio that correspond to regional differences in combustion efficiency. This joint analysis provides a better understanding of regional-scale combustion characteristics and can help the fire modeling community to improve existing global emission inventories.
Gaia Pinardi, Michel Van Roozendael, François Hendrick, Nicolas Theys, Nader Abuhassan, Alkiviadis Bais, Folkert Boersma, Alexander Cede, Jihyo Chong, Sebastian Donner, Theano Drosoglou, Anatoly Dzhola, Henk Eskes, Udo Frieß, José Granville, Jay R. Herman, Robert Holla, Jari Hovila, Hitoshi Irie, Yugo Kanaya, Dimitris Karagkiozidis, Natalia Kouremeti, Jean-Christopher Lambert, Jianzhong Ma, Enno Peters, Ankie Piters, Oleg Postylyakov, Andreas Richter, Julia Remmers, Hisahiro Takashima, Martin Tiefengraber, Pieter Valks, Tim Vlemmix, Thomas Wagner, and Folkard Wittrock
Atmos. Meas. Tech., 13, 6141–6174, https://doi.org/10.5194/amt-13-6141-2020, https://doi.org/10.5194/amt-13-6141-2020, 2020
Short summary
Short summary
We validate several GOME-2 and OMI tropospheric NO2 products with 23 MAX-DOAS and 16 direct sun instruments distributed worldwide, highlighting large horizontal inhomogeneities at several sites affecting the validation results. We propose a method for quantification and correction. We show the application of such correction reduces the satellite underestimation in almost all heterogeneous cases, but a negative bias remains over the MAX-DOAS and direct sun network ensemble for both satellites.
Laura M. Judd, Jassim A. Al-Saadi, James J. Szykman, Lukas C. Valin, Scott J. Janz, Matthew G. Kowalewski, Henk J. Eskes, J. Pepijn Veefkind, Alexander Cede, Moritz Mueller, Manuel Gebetsberger, Robert Swap, R. Bradley Pierce, Caroline R. Nowlan, Gonzalo González Abad, Amin Nehrir, and David Williams
Atmos. Meas. Tech., 13, 6113–6140, https://doi.org/10.5194/amt-13-6113-2020, https://doi.org/10.5194/amt-13-6113-2020, 2020
Short summary
Short summary
This paper evaluates Sentinel-5P TROPOMI v1.2 NO2 tropospheric columns over New York City using data from airborne mapping spectrometers and a network of ground-based spectrometers (Pandora) collected in 2018. These evaluations consider impacts due to cloud parameters, a priori profile assumptions, and spatial and temporal variability. Overall, TROPOMI tropospheric NO2 columns appear to have a low bias in this region.
Dimitris Akritidis, Eleni Katragkou, Aristeidis K. Georgoulias, Prodromos Zanis, Stergios Kartsios, Johannes Flemming, Antje Inness, John Douros, and Henk Eskes
Atmos. Chem. Phys., 20, 13557–13578, https://doi.org/10.5194/acp-20-13557-2020, https://doi.org/10.5194/acp-20-13557-2020, 2020
Short summary
Short summary
We assess the Copernicus Atmosphere Monitoring Service (CAMS) global and regional forecasts performance during a complex aerosol transport event over Europe induced by the passage of Storm Ophelia in mid-October 2017. Comparison with satellite observations reveals a satisfactory performance of CAMS global forecast assisted by data assimilation, while comparison with ground-based measurements indicates that the CAMS regional system over-performs compared to the global one in terms of air quality.
Kazuyuki Miyazaki, Kevin Bowman, Takashi Sekiya, Henk Eskes, Folkert Boersma, Helen Worden, Nathaniel Livesey, Vivienne H. Payne, Kengo Sudo, Yugo Kanaya, Masayuki Takigawa, and Koji Ogochi
Earth Syst. Sci. Data, 12, 2223–2259, https://doi.org/10.5194/essd-12-2223-2020, https://doi.org/10.5194/essd-12-2223-2020, 2020
Short summary
Short summary
This study presents the results from the Tropospheric Chemistry Reanalysis version 2 (TCR-2) for 2005–2018 obtained from the assimilation of multiple satellite measurements of ozone, CO, NO2, HNO3, and SO2 from the OMI, SCIAMACHY, GOME-2, TES, MLS, and MOPITT instruments. The evaluation results demonstrate the capability of the reanalysis products to improve understanding of the processes controlling variations in atmospheric composition, including long-term changes in air quality and emissions.
Srijana Lama, Sander Houweling, K. Folkert Boersma, Henk Eskes, Ilse Aben, Hugo A. C. Denier van der Gon, Maarten C. Krol, Han Dolman, Tobias Borsdorff, and Alba Lorente
Atmos. Chem. Phys., 20, 10295–10310, https://doi.org/10.5194/acp-20-10295-2020, https://doi.org/10.5194/acp-20-10295-2020, 2020
Short summary
Short summary
Rapid urbanization has increased the consumption of fossil fuel, contributing the degradation of urban air quality. Burning efficiency is a major factor determining the impact of fuel burning on the environment. We quantify the burning efficiency of fossil fuel use over six megacities using satellite remote sensing data. City governance can use these results to understand air pollution scenarios and to formulate effective air pollution control strategies.
Cited articles
Allen, D. J., Pickering, K. E., Duncan, B. N., and Damon, M.: Impact of
Lightning NO Emissions on North American Photochemistry as Determined
Using the Global Modeling Initiative (GMI) Model, J. Geophys. Res.-Atmos., 115, 4711, https://doi.org/10.1029/2010jd014062, 2010. a
Allen, D. J., Pickering, K. E., Bucsela, E., Krotkov, N., and Holzworth, R.:
Lightning NOx Production in the Tropics as
Determined Using OMI NO2 Retrievals and WWLLN
Stroke Data, J. Geophys. Res.-Atmos., 124, 13498–13518,
https://doi.org/10.1029/2018JD029824, 2019. a, b, c, d
Bandholnopparat, K., Sato, M., Adachi, T., Ushio, T., and Takahashi, Y.:
Estimation of the IC to CG Ratio Using JEM-GLIMS and Ground-Based
Lightning Network Data, J. Geophys. Res.-Atmos., 125, e2019JD032195,
https://doi.org/10.1029/2019jd032195, 2020. a
Barth, M. C., Rutledge, S. A., Brune, W. H., and Cantrell, C. A.: Introduction
to the Deep Convective Clouds and Chemistry (DC3) 2012
Studies, J. Geophys. Res.-Atmos., 124, 8095–8103,
https://doi.org/10.1029/2019jd030944, 2019. a, b
Beirle, S., Salzmann, M., Lawrence, M. G., and Wagner, T.: Sensitivity of
Satellite Observations for Freshly Produced Lightning
NOx, Atmos. Chem. Phys., 9, 1077–1094,
https://doi.org/10.5194/acp-9-1077-2009, 2009. a, b, c, d
Bozem, H., Fischer, H., Gurk, C., Schiller, C. L., Parchatka, U., Koenigstedt,
R., Stickler, A., Martinez, M., Harder, H., Kubistin, D., Williams, J.,
Eerdekens, G., and Lelieveld, J.: Influence of Corona Discharge on the Ozone
Budget in the Tropical Free Troposphere: A Case Study of Deep Convection
during GABRIEL, Atmos. Chem. Phys., 14, 8917–8931,
https://doi.org/10.5194/acp-14-8917-2014, 2014. a
Bozem, H., Pozzer, A., Harder, H., Martinez, M., Williams, J., Lelieveld, J.,
and Fischer, H.: The Influence of Deep Convection on HCHO and
H2O2 in the Upper Troposphere
over Europe, Atmos. Chem. Phys., 17, 11835–11848,
https://doi.org/10.5194/acp-17-11835-2017, 2017. a
Bucsela, E., Pickering, K. E., Allen, D., Holzworth, R., and Krotkov, N.:
Midlatitude Lightning NOx Production Efficiency
Inferred from OMI and WWLLN Data, J. Geophys. Res.-Atmos., 124,
13475–13497, https://doi.org/10.1029/2019jd030561, 2019. a, b
Chance, K., Liu, X., Miller, C. C., González Abad, G., Huang, G., Nowlan,
C., Souri, A., Suleiman, R., Sun, K., Wang, H., Zhu, L., Zoogman, P.,
Al-Saadi, J., Antuña-Marrero, J. C., Carr, J., Chatfield, R., Chin,
M., Cohen, R., Edwards, D., Fishman, J., Flittner, D., Geddes, J., Grutter,
M., Herman, J. R., Jacob, D. J., Janz, S., Joiner, J., Kim, J., Krotkov,
N. A., Lefer, B., Martin, R. V., Mayol-Bracero, O. L., Naeger, A.,
Newchurch, M., Pfister, G. G., Pickering, K., Pierce, R. B.,
Rivera Cárdenas, C., Saiz-Lopez, A., Simpson, W., Spinei, E., Spurr, R.
J. D., Szykman, J. J., Torres, O., and Wang, J.: TEMPO Green Paper:
Chemistry, Physics, and Meteorology Experiments with the Tropospheric
Emissions: Monitoring of Pollution Instrument, in: Sensors, Systems,
and Next-Generation Satellites XXIII, edited by: Neeck, S. P., Kimura, T.,
and Martimort, P., p. 10, SPIE, Strasbourg, France,
https://doi.org/10.1117/12.2534883, 2019. a
Chen, Y., Romps, D. M., Seeley, J. T., Veraverbeke, S., Riley, W. J., Mekonnen,
Z. A., and Randerson, J. T.: Future Increases in Arctic Lightning and
Fire Risk for Permafrost Carbon, Nat. Clim. Change, 11, 404–410,
https://doi.org/10.1038/s41558-021-01011-y, 2021. a
Davis, L. L. B.: ProPlot, Zenodo, https://doi.org/10.5281/ZENODO.3873878, 2021. a
DeCaria, A. J., Pickering, K. E., Stenchikov, G. L., and Ott, L. E.:
Lightning-Generated NOx and Its Impact on Tropospheric
Ozone Production: A Three-Dimensional Modeling Study of a
Stratosphere-Troposphere Experiment: Radiation, Aerosols and
Ozone (STERAO-A) Thunderstorm, J. Geophys. Res.-Atmos., 110, D14,
https://doi.org/10.1029/2004JD005556, 2005. a
Dickerson, R. R., Huffman, G. J., Luke, W. T., Nunnermacker, L. J., Pickering,
K. E., Leslie, A. C., Lindsey, C. G., Slinn, W. G., Kelly, T. J., Daum,
P. H., Delany, A. C., Greenberg, J. P., Zimmerman, P. R., Boatman, J. F.,
Ray, J. D., and Stedman, D. H.: Thunderstorms: An Important Mechanism in the
Transport of Air Pollutants, Science, 235, 460–465,
https://doi.org/10.1126/science.235.4787.460, 1987. a
Fierro, A. O., Mansell, E. R., Ziegler, C. L., and MacGorman, D. R.:
Application of a Lightning Data Assimilation Technique in the WRF-ARW
Model at Cloud-Resolving Scales for the Tornado Outbreak of 24
May 2011, Mon. Weather Rev., 140, 2609–2627,
https://doi.org/10.1175/MWR-D-11-00299.1, 2012. a, b
Finney, D. L., Doherty, R. M., Wild, O., and Abraham, N. L.: The Impact of
Lightning on Tropospheric Ozone Chemistry Using a New Global Lightning
Parametrisation, Atmos. Chem. Phys., 16, 7507–7522,
https://doi.org/10.5194/acp-16-7507-2016, 2016. a, b
Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., Tilmes, S., Vitt, F., Bardeen, C. G., McInerny, J., Liu, H.-L., Solomon, S. C., Polvani, L. M., Emmons, L. K., Lamarque, J.-F., Richter, J. H., Glanville, A. S., Bacmeister, J. T., Phillips, A. S., Neale, R. B., Simpson, I. R., DuVivier, A. K., Hodzic, A., and Randel, W. J.: The whole atmosphere community climate model version 6 (WACCM6), J. Geophys. Res.-Atmos., 124, 12380–12403, https://doi.org/10.1029/2019JD030943, 2019 (data available at: https://www.acom.ucar.edu/waccm/download.shtml). a
Gordillo-Vázquez, F. J., Pérez-Invernón, F. J., Huntrieser, H., and
Smith, A. K.: Comparison of Six Lightning Parameterizations in CAM5 and
the Impact on Global Atmospheric Chemistry, Earth Space Sci., 6, 2317–2346,
https://doi.org/10.1029/2019ea000873, 2019. a
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron,
C.: Estimates of Global Terrestrial Isoprene Emissions Using MEGAN
(Model of Emissions of Gases and Aerosols from Nature),
Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006. a
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012 (data available at: https://www.acom.ucar.edu/wrf-chem/download.shtml). a
Guo, F., Ju, X., Bao, M., Lu, G., Liu, Z., Li, Y., and Mu, Y.: Relationship
between Lightning Activity and Tropospheric Nitrogen Dioxide and the
Estimation of Lightning-Produced Nitrogen Oxides over China, Adv. Atmos.
Sci., 34, 235–245, https://doi.org/10.1007/s00376-016-6087-x, 2017. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
Global Reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020. a
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B.,
and Pfister, L.: Stratosphere-Troposphere Exchange, Rev. Geophys., 33, 403,
https://doi.org/10.1029/95RG02097, 1995. a
Hong, S. and Lim, J.: The WRF Single-Moment 6-Class Microphysics Scheme
(WSM6), Asia-Pac. J. Atmospheric Sci., 42, 129–151, 2006. a
Hong, S.-Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with
an Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 134,
2318–2341, https://doi.org/10.1175/MWR3199.1, 2006. a
Huntrieser, H., Lichtenstern, M., Scheibe, M., Aufmhoff, H., Schlager, H.,
Pucik, T., Minikin, A., Weinzierl, B., Heimerl, K., Fütterer, D.,
Rappenglück, B., Ackermann, L., Pickering, K. E., Cummings, K. A.,
Biggerstaff, M. I., Betten, D. P., Honomichl, S., and Barth, M. C.: On the
Origin of Pronounced O3 Gradients in the Thunderstorm
Outflow Region during DC3, J. Geophys. Res.-Atmos., 121, 6600–6637,
https://doi.org/10.1002/2015JD024279, 2016. a, b
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative Forcing by Long-Lived Greenhouse Gases:
Calculations with the AER Radiative Transfer Models, J. Geophys. Res.-Atmos., 113, D13, https://doi.org/10.1029/2008JD009944, 2008. a
Kang, D., Foley, K. M., Mathur, R., Roselle, S. J., Pickering, K. E., and
Allen, D. J.: Simulating Lightning NO Production in CMAQv5.2:
Performance Evaluations, Geosci. Model Dev., 12, 4409–4424,
https://doi.org/10.5194/gmd-12-4409-2019, 2019a. a
Kang, D., Pickering, K. E., Allen, D. J., Foley, K. M., Wong, D. C., Mathur,
R., and Roselle, S. J.: Simulating Lightning NO Production in
CMAQv5.2: Evolution of Scientific Updates, Geosci. Model Dev., 12,
3071–3083, https://doi.org/10.5194/gmd-12-3071-2019, 2019b. a
Kang, D., Mathur, R., Pouliot, G. A., Gilliam, R. C., and Wong, D. C.:
Significant Ground-Level Ozone Attributed to Lightning-Induced Nitrogen
Oxides during Summertime over the Mountain West States, npj Clim. Atmos.
Sci., 3, 1–7, https://doi.org/10.1038/s41612-020-0108-2, 2020. a
Koren, I., Martins, J. V., Remer, L. A., and Afargan, H.: Smoke Invigoration
Versus Inhibition of Clouds over the Amazon, Science, 321,
946–949, https://doi.org/10.1126/science.1159185, 2008. a
Koren, V., Schaake, J., Mitchell, K., Duan, Q.-Y., Chen, F., and Baker, J. M.:
A Parameterization of Snowpack and Frozen Ground Intended for NCEP
Weather and Climate Models, J. Geophys. Res.-Atmos., 104, 19569–19585,
https://doi.org/10.1029/1999JD900232, 1999. a
Lapierre, J. L., Laughner, J. L., Geddes, J. A., Koshak, W., Cohen, R. C., and
Pusede, S. E.: Observing U.S. Regional Variability in Lightning
NO2 Production Rates, J. Geophys. Res.-Atmos., 125,
e2019JD031362, https://doi.org/10.1029/2019JD031362, 2020. a
Laughner, J. L. and Cohen, R. C.: Quantification of the Effect of Modeled
Lightning NO2 on UV – Visible Air Mass
Factors, Atmos. Meas. Tech., 10, 4403–4419, https://doi.org/10.5194/amt-10-4403-2017,
2017. a, b, c
Lawrence, M. G., Kuhlmann, R., Salzmann, M., and Rasch, P. J.: The Balance of
Effects of Deep Convective Mixing on Tropospheric Ozone, Geophys. Res. Lett.,
30, 18, https://doi.org/10.1029/2003GL017644, 2003. a
Li, F., Wu, L., and Li, Y.: Lightning Data Analysis of the CMA Network in China, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2016-380, 2017a. a
Li, Y., Pickering, K. E., Allen, D. J., Barth, M. C., Bela, M. M., Cummings,
K. A., Carey, L. D., Mecikalski, R. M., Fierro, A. O., Campos, T. L.,
Weinheimer, A. J., Diskin, G. S., and Biggerstaff, M. I.: Evaluation of Deep
Convective Transport in Storms from Different Convective Regimes during the
DC3 Field Campaign Using WRF-Chem with Lightning Data Assimilation,
J. Geophys. Res.-Atmos., 122, 7140–7163, https://doi.org/10.1002/2017JD026461,
2017b. a, b, c, d
Liaskos, C. E., Allen, D. J., and Pickering, K. E.: Sensitivity of Tropical
Tropospheric Composition to Lightning NOx Production as
Determined by Replay Simulations with GEOS-5, J. Geophys. Res.-Atmos.,
120, 8512–8534, https://doi.org/10.1002/2014JD022987, 2015. a
Lorente, A., Folkert Boersma, K., Yu, H., Dörner, S., Hilboll, A., Richter,
A., Liu, M., Lamsal, L. N., Barkley, M., Smedt, I., van Roozendael, M.,
Wang, Y., Wagner, T., Beirle, S., Lin, J.-T., Krotkov, N., Stammes, P., Wang,
P., Eskes, H. J., and Krol, M.: Structural Uncertainty in Air Mass Factor
Calculation for NO2 and HCHO Satellite Retrievals,
Atmos. Meas. Tech., 10, 759–782, https://doi.org/10.5194/amt-10-759-2017, 2017. a, b
Ludewig, A., Kleipool, Q., Bartstra, R., Landzaat, R., Leloux, J., Loots, E.,
Meijering, P., van der Plas, E., Rozemeijer, N., Vonk, F., and Veefkind,
P.: In-Flight Calibration Results of the TROPOMI Payload on Board the
Sentinel-5 Precursor Satellite, Atmos. Meas. Tech., 13, 3561–3580,
https://doi.org/10.5194/amt-13-3561-2020, 2020. a
Luhar, A. K., Galbally, I. E., Woodhouse, M. T., and Abraham, N. L.: Assessing
and Improving Cloud-Height-Based Parameterisations of Global Lightning Flash
Rate, and Their Impact on Lightning-Produced
NOx and Tropospheric Composition in a
Chemistry – Climate Model, Atmos. Chem. Phys., 21, 7053–7082,
https://doi.org/10.5194/acp-21-7053-2021, 2021. a
Marchand, M., Hilburn, K., and Miller, S. D.: Geostationary Lightning
Mapper and Earth Networks Lightning Detection Over the Contiguous
United States and Dependence on Flash Characteristics, J. Geophys.
Res.-Atmos., 124, 11552–11567, https://doi.org/10.1029/2019JD031039, 2019. a
Marchand, M. R. and Fuelberg, H. E.: Assimilation of Lightning Data Using a
Nudging Method Involving Low-Level Warming, Mon. Weather Rev., 142,
4850–4871, https://doi.org/10.1175/MWR-D-14-00076.1, 2014. a
Morris, G. A., Thompson, A. M., Pickering, K. E., Chen, S., Bucsela, E. J., and
Kucera, P. A.: Observations of Ozone Production in a Dissipating Tropical
Convective Cell during TC4, Atmos. Chem. Phys., 10, 11189–11208,
https://doi.org/10.5194/acp-10-11189-2010, 2010. a
Murray, L. T.: Lightning NOx and Impacts on Air
Quality, Curr. Pollution. Rep., 2, 134–134,
https://doi.org/10.1007/s40726-016-0038-0, 2016. a, b
Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C., and Koshak, W. J.:
Optimized Regional and Interannual Variability of Lightning in a Global
Chemical Transport Model Constrained by LIS/OTD Satellite Data, J.
Geophys. Res.-Atmos., 117, D20, https://doi.org/10.1029/2012JD017934, 2012. a
Nault, B. A., Garland, C., Wooldridge, P. J., Brune, W. H., Campuzano-Jost,
P., Crounse, J. D., Day, D. A., Dibb, J., Hall, S. R., Huey, L. G., Jimenez,
J. L., Liu, X., Mao, J., Mikoviny, T., Peischl, J., Pollack, I. B., Ren, X.,
Ryerson, T. B., Scheuer, E., Ullmann, K., Wennberg, P. O., Wisthaler, A.,
Zhang, L., and Cohen, R. C.: Observational Constraints on the
Oxidation of NOx in the Upper Troposphere, J.
Phys. Chem. A, 120, 1468–1478, https://doi.org/10.1021/acs.jpca.5b07824, 2016. a
Ott, L. E., Pickering, K. E., Stenchikov, G. L., Huntrieser, H., and Schumann,
U.: Effects of Lightning NOx Production during the 21
July European Lightning Nitrogen Oxides Project Storm Studied with a
Three-Dimensional Cloud-Scale Chemical Transport Model, J. Geophys. Res.-Atmos., 112, D5, https://doi.org/10.1029/2006JD007365, 2007. a
Ott, L. E., Pickering, K. E., Stenchikov, G. L., Allen, D. J., DeCaria, A. J.,
Ridley, B., Lin, R.-F., Lang, S., and Tao, W.-K.: Production of Lightning
NOx and Its Vertical Distribution Calculated from
Three-Dimensional Cloud-Scale Chemical Transport Model Simulations, J.
Geophys. Res.-Atmos., 115, 4711, https://doi.org/10.1029/2009JD011880, 2010. a, b
Pan, L. L., Homeyer, C. R., Honomichl, S., Ridley, B. A., Weisman, M., Barth,
M. C., Hair, J. W., Fenn, M. A., Butler, C., Diskin, G. S., Crawford, J. H.,
Ryerson, T. B., Pollack, I., Peischl, J., and Huntrieser, H.: Thunderstorms
Enhance Tropospheric Ozone by Wrapping and Shedding Stratospheric Air,
Geophys. Res. Lett., 41, 7785–7790, https://doi.org/10.1002/2014GL061921, 2014. a
Pérez-Invernón, F. J., Huntrieser, H., Gordillo-Vázquez, F. J.,
and Soler, S.: Influence of the COVID-19 Lockdown on Lightning Activity
in the Po Valley, Atmos. Res., 263, 105808,
https://doi.org/10.1016/j.atmosres.2021.105808, 2021. a
Pfister, G. G., Avise, J., Wiedinmyer, C., Edwards, D. P., Emmons, L. K.,
Diskin, G. D., Podolske, J., and Wisthaler, A.: CO Source Contribution
Analysis for California during ARCTAS-CARB, Atmos. Chem. Phys., 11,
7515–7532, https://doi.org/10.5194/acp-11-7515-2011, 2011. a
Phoenix, D. B., Homeyer, C. R., Barth, M. C., and Trier, S. B.: Mechanisms
Responsible for Stratosphere-to-Troposphere Transport Around a
Mesoscale Convective System Anvil, J. Geophys. Res.-Atmos., 125,
e2019JD032016, https://doi.org/10.1029/2019JD032016, 2020. a, b
Pickering, K. E., Thompson, A. M., Dickerson, R. R., Luke, W. T., McNamara,
D. P., Greenberg, J. P., and Zimmerman, P. R.: Model Calculations of
Tropospheric Ozone Production Potential Following Observed Convective Events,
J. Geophys. Res., 95, 14049, https://doi.org/10.1029/JD095iD09p14049, 1990. a
Pickering, K. E., Thompson, A. M., Wang, Y., Tao, W.-K., McNamara, D. P.,
Kirchhoff, V. W. J. H., Heikes, B. G., Sachse, G. W., Bradshaw, J. D.,
Gregory, G. L., and Blake, D. R.: Convective Transport of Biomass Burning
Emissions over Brazil during TRACE A, J. Geophys. Res., 101,
23993–24012, https://doi.org/10.1029/96JD00346, 1996. a
Pickering, K. E., Bucsela, E., Allen, D., Ring, A., Holzworth, R., and Krotkov,
N.: Estimates of Lightning NOx Production Based on
OMI NO2 Observations over the Gulf of Mexico,
J. Geophys. Res.-Atmos., 121, 8668–8691, https://doi.org/10.1002/2015JD024179, 2016. a, b, c
Poelman, D. R. and Schulz, W.: Comparing Lightning Observations of the
Ground-Based European Lightning Location System EUCLID and the
Space-Based Lightning Imaging Sensor (LIS) on the International
Space Station (ISS), Atmos. Meas. Tech., 13, 2965–2977,
https://doi.org/10.5194/amt-13-2965-2020, 2020. a
Raspaud, M., Hoese, D., Dybbroe, A., Lahtinen, P., Devasthale, A., Itkin, M.,
Hamann, U., Rasmussen, L. Ø., Nielsen, E. S., Leppelt, T., Maul, A.,
Kliche, C., and Thorsteinsson, H.: PyTroll: An Open-Source,
Community-Driven Python Framework to Process Earth Observation
Satellite Data, Bull. Am. Meteorol. Soc., 99, 1329–1336,
https://doi.org/10.1175/bams-d-17-0277.1, 2018. a
Raspaud, M., Hoese, D., Lahtinen, P., Finkensieper, S., Holl, G., Dybbroe, A.,
Proud, S., Meraner, A., Zhang, X., Joro, S., Roberts, W., Rasmussen,
L. Ø., Joleenf, Méndez, J. H. B., Zhu, Y., Daruwala, R., Strandgren,
BENR0, Jasmin, T., Barnie, T., Sigurðsson, E., R.K.Garcia, Leppelt, T.,
ColinDuff, Egede, U., LTMeyer, Itkin, M., Goodson, R., Radar, Satellite
and Nowcasting Division, and Jkotro: Pytroll/Satpy: Version 0.25.1,
Zenodo, https://doi.org/10.5281/ZENODO.4422120, 2021. a
Ridley, B., Atlas, E., Selkirk, H., Pfister, L., Montzka, D., Walega, J.,
Donnelly, S., Stroud, V., Richard, E., Kelly, K., Tuck, A., Thompson, T.,
Reeves, J., Baumgardner, D., Rawlins, W. T., Mahoney, M., Herman, R., Friedl,
R., Moore, F., Ray, E., and Elkins, J.: Convective Transport of Reactive
Constituents to the Tropical and Mid-Latitude Tropopause Region: I.
Observations, Atmos. Environ., 38, 1259–1274,
https://doi.org/10.1016/j.atmosenv.2003.11.038, 2004. a
Ripoll, J.-F., Zinn, J., Jeffery, C. A., and Colestock, P. L.: On the Dynamics
of Hot Air Plasmas Related to Lightning Discharges: 1. Gas Dynamics, J.
Geophys. Res.-Atmos., 119, 9196–9217, https://doi.org/10.1002/2013JD020067, 2014. a
Rodger, C. J., Brundell, J. B., Dowden, R. L., and Thomson, N. R.: Location
Accuracy of Long Distance VLF Lightning Locationnetwork, Ann. Geophys.,
22, 747–758, https://doi.org/10.5194/angeo-22-747-2004, 2004. a
Rodger, C. J., Werner, S., Brundell, J. B., Lay, E. H., Thomson, N. R.,
Holzworth, R. H., and Dowden, R. L.: Detection Efficiency of the VLF
World-Wide Lightning Location Network (WWLLN): Initial Case Study, Ann.
Geophys., 24, 3197–3214, https://doi.org/10.5194/angeo-24-3197-2006, 2006. a
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S.,
Reissell, A., and Andreae, M. O.: Flood or Drought: How Do Aerosols
Affect Precipitation?, Science, 321, 1309–1313,
https://doi.org/10.1126/science.1160606, 2008. a
Rudlosky, S. D. and Shea, D. T.: Evaluating WWLLN Performance Relative to
TRMM/LIS, Geophys. Res. Lett., 40, 2344–2348,
https://doi.org/10.1002/grl.50428, 2013. a
Rudlosky, S. D., Goodman, S. J., Virts, K. S., and Bruning, E. C.: Initial
Geostationary Lightning Mapper Observations, Geophys. Res. Lett., 46,
1097–1104, https://doi.org/10.1029/2018GL081052, 2019. a
Schumann, U. and Huntrieser, H.: The Global Lightning-Induced Nitrogen Oxides
Source, Atmos. Chem. Phys., 7, 3823–3907, https://doi.org/10.5194/acp-7-3823-2007,
2007. a
Smit, H. G. J., Straeter, W., Johnson, B. J., Oltmans, S. J., Davies, J.,
Tarasick, D. W., Hoegger, B., Stubi, R., Schmidlin, F. J., Northam, T.,
Thompson, A. M., Witte, J. C., Boyd, I., and Posny, F.: Assessment of the
Performance of ECC-ozonesondes under Quasi-Flight Conditions in the
Environmental Simulation Chamber: Insights from the Juelich Ozone Sonde
Intercomparison Experiment (JOSIE), J. Geophys. Res.-Atmos., 112, D19,
https://doi.org/10.1029/2006JD007308, 2007. a
Srivastava, A., Tian, Y., Qie, X., Wang, D., Sun, Z., Yuan, S., Wang, Y., Chen,
Z., Xu, W., Zhang, H., Jiang, R., and Su, D.: Performance Assessment of
Beijing Lightning Network (BLNET) and Comparison with Other Lightning
Location Networks across Beijing, Atmos. Res., 197, 76–83,
https://doi.org/10.1016/j.atmosres.2017.06.026, 2017. a
Stohl, A.: Stratosphere-Troposphere Exchange: A Review, and What We Have
Learned from STACCATO, J. Geophys. Res.-Atmos., 108, D12,
https://doi.org/10.1029/2002JD002490, 2003. a
Sukoriansky, S., Galperin, B., and Perov, V.: Application of a New Spectral
Theory of Stably Stratified Turbulence to the Atmospheric Boundary
Layer over Sea Ice, Bound. Lay. Meteorol., 117, 231–257,
https://doi.org/10.1007/s10546-004-6848-4, 2005. a
Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., and Zhang, C.: Impact of Aerosols on
Convective Clouds and Precipitation, Rev. Geophys., 50, 2,
https://doi.org/10.1029/2011RG000369, 2012. a
van Geffen, J., Eskes, H., Compernolle, S., Pinardi, G., Verhoelst, T.,
Lambert, J.-C., Sneep, M., ter Linden, M., Ludewig, A., Boersma, K. F., and
Veefkind, J. P.: Sentinel-5P TROPOMI NO2 Retrieval:
Impact of Version v2.2 Improvements and Comparisons with OMI and
Ground-Based Data, Atmos. Meas. Tech., 15, 2037–2060,
https://doi.org/10.5194/amt-15-2037-2022, 2022. a, b, c
van Geffen, J. H. G. M., Boersma, K. F., van Roozendael, M., Hendrick, F.,
Mahieu, E., Smedt, I., Sneep, M., and Veefkind, J. P.: Improved Spectral
Fitting of Nitrogen Dioxide from OMI in the 405–465 Nm Window,
Atmos. Meas. Tech., 8, 1685–1699, https://doi.org/10.5194/amt-8-1685-2015, 2015. a
Vaughan, G., Schiller, C., MacKenzie, A. R., Bower, K., Peter, T., Schlager,
H., Harris, N. R. P., and May, P. T.: SCOUT-O3/ACTIVE:
High-altitude Aircraft Measurements around Deep Tropical Convection,
Bull. Am. Meteorol. Soc., 89, 647–662, https://doi.org/10.1175/BAMS-89-5-647, 2008. a
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., Vries, J., Otter, G.,
Claas, J., Eskes, H. J., Haan, J. F., Kleipool, Q., van Weele, M.,
Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P.,
Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.:
TROPOMI on the ESA Sentinel-5 Precursor: A GMES Mission for
Global Observations of the Atmospheric Composition for Climate, Air Quality
and Ozone Layer Applications, Remote Sens. Environ., 120, 70–83,
https://doi.org/10.1016/j.rse.2011.09.027, 2012. a, b
Virts, K. S. and Goodman, S. J.: Prolific Lightning and Thunderstorm
Initiation over the Lake Victoria Basin in East Africa, Mon. Weather
Rev., 148, 1971–1985, https://doi.org/10.1175/MWR-D-19-0260.1, 2020. a
Williams, J. E., Boersma, K. F., Le Sager, P., and Verstraeten, W. W.: The
High-Resolution Version of TM5-MP for Optimized Satellite Retrievals:
Description and Validation, Geosci. Model Dev., 10, 721–750,
https://doi.org/10.5194/gmd-10-721-2017, 2017. a
Wu, F., Cui, X., Zhang, D.-L., Liu, D., and Zheng, D.: SAFIR-3000 Lightning
Statistics over the Beijing Metropolitan Region during 2005–07, J. Appl. Meteorol. Climatol., 55, 2613–2633,
https://doi.org/10.1175/jamc-d-16-0030.1, 2016. a
Yang, J., Zhang, Z., Wei, C., Lu, F., and Guo, Q.: Introducing the New
Generation of Chinese Geostationary Weather Satellites, Fengyun-4,
Bull. Am. Meteorol. Soc., 98, 1637–1658, https://doi.org/10.1175/BAMS-D-16-0065.1,
2017. a
Yang, X. and Li, Z.: Increases in Thunderstorm Activity and Relationships with
Air Pollution in Southeast China, J. Geophys. Res.-Atmos., 119,
1835–1844, https://doi.org/10.1002/2013JD021224, 2014. a
Yang, X., Sun, J., and Li, W.: An Analysis of Cloud-to-Ground Lightning
in China during 2010–13, Weather Forecast., 30, 1537–1550,
https://doi.org/10.1175/WAF-D-14-00132.1, 2015. a
Zhang, J., Xuan, Y., Yan, X., Liu, M., Tian, H., Xia, X., Pang, L., and Zheng,
X.: Development and Preliminary Evaluation of a Double-Cell Ozonesonde, Adv.
Atmos. Sci., 31, 938–947, https://doi.org/10.1007/s00376-013-3104-1, 2014. a
Zhang, X.: Zxdawn/Xin_ACP_2021_Convection_Effect:
Version 1.1, Zenodo, https://doi.org/10.5281/ZENODO.4945560, 2021a. a
Zhang, X.: Xin_ACP_2021_Convection_Effect_data,
https://doi.org/10.5281/ZENODO.5154798, 2021b. a
Zhang, X.: WRF-Chem-LDA-LFR, Zenodo, https://doi.org/10.5281/ZENODO.4682331,
2021c. a
Zhang, X.: S5P-WRFChem, Zenodo, https://doi.org/10.5281/ZENODO.4682636,
2021d. a
Zhang, X., Yin, Y., van der A, R., Lapierre, J. L., Chen, Q., Kuang, X., Yan,
S., Chen, J., He, C., and Shi, R.: Estimates of Lightning
NOx Production Based on High-Resolution OMI
NO2 Retrievals over the Continental US, Atmos. Meas.
Tech., 13, 1709–1734, https://doi.org/10.5194/amt-13-1709-2020, 2020. a, b, c, d
Zhao, P., Li, Z., Xiao, H., Wu, F., Zheng, Y., Cribb, M. C., Jin, X., and Zhou,
Y.: Distinct Aerosol Effects on Cloud-to-Ground Lightning in the Plateau and
Basin Regions of Sichuan, Southwest China, Atmos. Chem. Phys., 20,
13379–13397, https://doi.org/10.5194/acp-20-13379-2020, 2020. a
Zhu, Q., Laughner, J. L., and Cohen, R. C.: Lightning NO2
Simulation over the Contiguous US and Its Effects on Satellite
NO2 Retrievals, Atmos. Chem. Phys., 19,
13067–13078, https://doi.org/10.5194/acp-19-13067-2019, 2019. a
Short summary
The importance of convection to the ozone and nitrogen oxides (NOx) produced from lightning has long been an open question. We utilize the high-resolution chemistry model with ozonesondes and space observations to discuss the effects of convection over southeastern China, where few studies have been conducted. Our results show the transport and chemistry contributions for various storms and demonstrate the ability of TROPOMI to estimate the lightning NOx production over small-scale convection.
The importance of convection to the ozone and nitrogen oxides (NOx) produced from lightning has...
Altmetrics
Final-revised paper
Preprint