Articles | Volume 22, issue 17
https://doi.org/10.5194/acp-22-11727-2022
https://doi.org/10.5194/acp-22-11727-2022
Research article
 | 
09 Sep 2022
Research article |  | 09 Sep 2022

Observing short-timescale cloud development to constrain aerosol–cloud interactions

Edward Gryspeerdt, Franziska Glassmeier, Graham Feingold, Fabian Hoffmann, and Rebecca J. Murray-Watson

Related authors

Evaluating simulations of ship tracks in a high-resolution model
Anna Tippett, Paul R. Field, and Edward Gryspeerdt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3877,https://doi.org/10.5194/egusphere-2025-3877, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
The ice supersaturation biases limiting contrail modelling are structured around extratropical depressions
Oliver G. A. Driver, Marc E. J. Stettler, and Edward Gryspeerdt
EGUsphere, https://doi.org/10.5194/egusphere-2025-2737,https://doi.org/10.5194/egusphere-2025-2737, 2025
Short summary
How does the lifetime of detrained cirrus impact the high-cloud radiative effect in the tropics?
George Horner and Edward Gryspeerdt
Atmos. Chem. Phys., 25, 5617–5631, https://doi.org/10.5194/acp-25-5617-2025,https://doi.org/10.5194/acp-25-5617-2025, 2025
Short summary
Factors limiting contrail detection in satellite imagery
Oliver G. A. Driver, Marc E. J. Stettler, and Edward Gryspeerdt
Atmos. Meas. Tech., 18, 1115–1134, https://doi.org/10.5194/amt-18-1115-2025,https://doi.org/10.5194/amt-18-1115-2025, 2025
Short summary
Model analysis of biases in the satellite-diagnosed aerosol effect on the cloud liquid water path
Harri Kokkola, Juha Tonttila, Silvia M. Calderón, Sami Romakkaniemi, Antti Lipponen, Aapo Peräkorpi, Tero Mielonen, Edward Gryspeerdt, Timo Henrik Virtanen, Pekka Kolmonen, and Antti Arola
Atmos. Chem. Phys., 25, 1533–1543, https://doi.org/10.5194/acp-25-1533-2025,https://doi.org/10.5194/acp-25-1533-2025, 2025
Short summary

Cited articles

Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014, https://doi.org/10.1038/nature03174, 2004. a
Adebiyi, A. A., Zuidema, P., and Abel, S. J.: The Convolution of Dynamics and Moisture with the Presence of Shortwave Absorbing Aerosols over the Southeast Atlantic, J. Climate, 28, 1997–2024, https://doi.org/10.1175/JCLI-D-14-00352.1, 2015. a
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a, b
Baker, M. B. and Charlson, R. J.: Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer, Nature, 345, 142–145, https://doi.org/10.1038/345142a0, 1990. a
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson‐Parris, D., Boucher, O., Carslaw, K., Christensen, M., Daniau, A., Dufresne, J., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.: Bounding global aerosol radiative forcing of climate change, Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019RG000660, 2020. a, b
Download
Short summary
The response of clouds to changes in aerosol remains a large uncertainty in our understanding of the climate. Studies typically look at aerosol and cloud processes in snapshot images, measuring all properties at the same time. Here we use multiple images to characterise how cloud temporal development responds to aerosol. We find a reduction in liquid water path with increasing aerosol, party due to feedbacks. This suggests the aerosol impact on cloud water may be weaker than in previous studies.
Share
Altmetrics
Final-revised paper
Preprint