Articles | Volume 21, issue 3
https://doi.org/10.5194/acp-21-1815-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-21-1815-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
PM2.5 surface concentrations in southern West African urban areas based on sun photometer and satellite observations
Jean-François Léon
CORRESPONDING AUTHOR
Laboratoire d'Aérologie, Université Paul Sabatier, CNRS, Toulouse, France
Aristide Barthélémy Akpo
Laboratoire de Physique du Rayonnement, Université d'Abomey Calavi, BP 526, Cotonou, Benin
Mouhamadou Bedou
Laboratoire de Physique de l'atmosphère, Université Félix-Houphouët-Boigny, Abidjan, Côte d'Ivoire
Julien Djossou
Laboratoire de Physique du Rayonnement, Université d'Abomey Calavi, BP 526, Cotonou, Benin
Marleine Bodjrenou
Laboratoire de Physique du Rayonnement, Université d'Abomey Calavi, BP 526, Cotonou, Benin
Véronique Yoboué
Laboratoire de Physique de l'atmosphère, Université Félix-Houphouët-Boigny, Abidjan, Côte d'Ivoire
Cathy Liousse
Laboratoire d'Aérologie, Université Paul Sabatier, CNRS, Toulouse, France
Related authors
Gabriel Calassou, Pierre-Yves Foucher, and Jean-François Léon
Atmos. Meas. Tech., 17, 57–71, https://doi.org/10.5194/amt-17-57-2024, https://doi.org/10.5194/amt-17-57-2024, 2024
Short summary
Short summary
We propose analyzing the aerosol composition of plumes emitted by different industrial stacks using PRISMA satellite hyperspectral observations. Three industrial sites have been observed: a coal-fired power plant in South Africa, a steel plant in China, and gas flaring at an oil extraction site in Algeria. Aerosol optical thickness and particle radius are retrieved within the plumes. The mass flow rate of particulate matter is estimated in the plume using the integrated mass enhancement method.
G. Calassou, P.-Y. Foucher, and J.-F. Leon
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 791–797, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-791-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-791-2020, 2020
Eric Martial Yao, Fabien Solmon, Marcellin Adon, Claire Delon, Corinne Galy-Lacaux, Graziano Giuliani, Bastien Sauvage, and Véronique Yoboue
EGUsphere, https://doi.org/10.5194/egusphere-2024-3179, https://doi.org/10.5194/egusphere-2024-3179, 2025
Short summary
Short summary
As climate change and human activities intensify in Africa, understanding how air pollution, climate, and natural cycles interact is crucial. This study explores how nitrogen oxide emissions from African soils, especially in dry regions, contribute to atmospheric pollution. By using a climate-chemistry model, we show that considering these emissions improves predictions of nitrogen dioxide, nitric acid and ozone, although some discrepancies remain compared to observations.
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 24, 13151–13182, https://doi.org/10.5194/acp-24-13151-2024, https://doi.org/10.5194/acp-24-13151-2024, 2024
Short summary
Short summary
Ozone is a secondary air pollutant that is detrimental to human and plant health. A better understanding of its chemical evolution is a challenge for Africa, where it is still undersampled. Out of 14 sites examined (1995–2020), high levels of O3 are reported in southern Africa. The dominant chemical processes leading to O3 formation are identified. A decrease in O3 is observed at Katibougou (Mali) and Banizoumbou (Niger), and an increase is found at Zoétélé (Cameroon) and Skukuza (South Africa).
Antonin Soulie, Claire Granier, Sabine Darras, Nicolas Zilbermann, Thierno Doumbia, Marc Guevara, Jukka-Pekka Jalkanen, Sekou Keita, Cathy Liousse, Monica Crippa, Diego Guizzardi, Rachel Hoesly, and Steven J. Smith
Earth Syst. Sci. Data, 16, 2261–2279, https://doi.org/10.5194/essd-16-2261-2024, https://doi.org/10.5194/essd-16-2261-2024, 2024
Short summary
Short summary
Anthropogenic emissions are the result of transportation, power generation, industrial, residential and commercial activities as well as waste treatment and agriculture practices. This work describes the new CAMS-GLOB-ANT gridded inventory of 2000–2023 anthropogenic emissions of air pollutants and greenhouse gases. The methodology to generate the emissions is explained and the datasets are analysed and compared with publicly available global and regional inventories for selected world regions.
Gabriel Calassou, Pierre-Yves Foucher, and Jean-François Léon
Atmos. Meas. Tech., 17, 57–71, https://doi.org/10.5194/amt-17-57-2024, https://doi.org/10.5194/amt-17-57-2024, 2024
Short summary
Short summary
We propose analyzing the aerosol composition of plumes emitted by different industrial stacks using PRISMA satellite hyperspectral observations. Three industrial sites have been observed: a coal-fired power plant in South Africa, a steel plant in China, and gas flaring at an oil extraction site in Algeria. Aerosol optical thickness and particle radius are retrieved within the plumes. The mass flow rate of particulate matter is estimated in the plume using the integrated mass enhancement method.
Money Ossohou, Jonathan Edward Hickman, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, Marcellin Adon, Véronique Yoboué, Eric Gardrat, Maria Dias Alvès, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 23, 9473–9494, https://doi.org/10.5194/acp-23-9473-2023, https://doi.org/10.5194/acp-23-9473-2023, 2023
Short summary
Short summary
The updated analyses of ground-based concentrations and satellite total vertical columns of atmospheric ammonia help us to better understand 21st century ammonia dynamics in sub-Saharan Africa. We conclude that the drivers of trends are agriculture in the dry savanna of Katibougou, Mali; air temperature and agriculture in the wet savanna of Djougou, Benin, and Lamto, Côte d'Ivoire; and leaf area index, air temperature, residential, and agriculture in forests of Bomassa, Republic of Congo.
Mohamed Lamine Kassamba-Diaby, Corinne Galy-Lacaux, Veronique Yoboué, Jonathan E. Hickman, Kerneels Jaars, Sylvain Gnamien, Richmond Konan, Eric Gardrat, and Siele Silué
EGUsphere, https://doi.org/10.5194/egusphere-2022-994, https://doi.org/10.5194/egusphere-2022-994, 2022
Preprint archived
Short summary
Short summary
This work presents the chemical composition of precipitation from 2018 to 2020 at three sites representative of a south-north transect in Côte d'Ivoire. It includes two urban sites (Abidjan and Korhogo) and one rural site (Lamto). Measured rain chemical content and wet deposition fluxes highlights different dominant sources contributions i.e anthropogenic sources (traffic, construction, industry) at urban sites and biomass burning at the rural site.
Constance K. Segakweng, Pieter G. van Zyl, Cathy Liousse, Johan P. Beukes, Jan-Stefan Swartz, Eric Gardrat, Maria Dias-Alves, Brigitte Language, Roelof P. Burger, and Stuart J. Piketh
Atmos. Chem. Phys., 22, 10291–10317, https://doi.org/10.5194/acp-22-10291-2022, https://doi.org/10.5194/acp-22-10291-2022, 2022
Short summary
Short summary
A detailed size-resolved assessment of the chemical characteristics of outdoor and indoor aerosols collected in low-income urban settlements in South Africa indicated the significance of household combustion for cooking and space heating – an important source of pollutants in the developing world – to atmospheric chemical composition. The regional impact of industrial sources in the highly industrialised and densely populated north-eastern interior of South Africa was also evident.
Sekou Keita, Catherine Liousse, Eric-Michel Assamoi, Thierno Doumbia, Evelyne Touré N'Datchoh, Sylvain Gnamien, Nellie Elguindi, Claire Granier, and Véronique Yoboué
Earth Syst. Sci. Data, 13, 3691–3705, https://doi.org/10.5194/essd-13-3691-2021, https://doi.org/10.5194/essd-13-3691-2021, 2021
Short summary
Short summary
This inventory fills the gap in African regional inventories, providing biofuel and fossil fuel emissions that take into account African specificities. It could be used for air quality modeling. We show that all pollutant emissions are globally increasing during the period 1990–2015. Also, West Africa and East Africa emissions are largely due to domestic fire and traffic activities, while southern Africa and northern Africa emissions are largely due to industrial and power plant sources.
Maurin Zouzoua, Fabienne Lohou, Paul Assamoi, Marie Lothon, Véronique Yoboue, Cheikh Dione, Norbert Kalthoff, Bianca Adler, Karmen Babić, Xabier Pedruzo-Bagazgoitia, and Solène Derrien
Atmos. Chem. Phys., 21, 2027–2051, https://doi.org/10.5194/acp-21-2027-2021, https://doi.org/10.5194/acp-21-2027-2021, 2021
Short summary
Short summary
Based on a field experiment conducted in June and July 2016, we analyzed the daytime breakup of continental low-level stratiform clouds over southern West Africa in order to provide complementary guidance for model evaluation during the monsoon season. Those clouds exhibit weaker temperature and moisture jumps at the top compared to marine stratiform clouds. Their lifetime and the transition towards shallow convective clouds during daytime hours depend on their coupling with the surface.
G. Calassou, P.-Y. Foucher, and J.-F. Leon
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 791–797, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-791-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-791-2020, 2020
Cited articles
Adetunji, J., McGregor, J., and Ong, C. K.: Harmattan Haze, Weather, 34,
430–436, https://doi.org/10.1002/j.1477-8696.1979.tb03389.x, 1979. a
Adon, M., Galy-Lacaux, C., Yoboué, V., Delon, C., Lacaux, J. P., Castera, P., Gardrat, E., Pienaar, J., Al Ourabi, H., Laouali, D., Diop, B., Sigha-Nkamdjou, L., Akpo, A., Tathy, J. P., Lavenu, F., and Mougin, E.: Long term measurements of sulfur dioxide, nitrogen dioxide, ammonia, nitric acid and ozone in Africa using passive samplers, Atmos. Chem. Phys., 10, 7467–7487, https://doi.org/10.5194/acp-10-7467-2010, 2010. a
Ångström, A.: Techniques of Determinig the Turbidity of the Atmosphere, Tellus, 13, 214–223,
https://doi.org/10.1111/j.2153-3490.1961.tb00078.x, 1961. a
AntuÑa-Marrero, J. C., Cachorro Revilla, V., García Parrado, F., de Frutos Baraja, Á., Rodríguez Vega, A., Mateos, D., Estevan Arredondo, R., and Toledano, C.: Comparison of aerosol optical depth from satellite (MODIS), sun photometer and broadband pyrheliometer ground-based observations in Cuba, Atmos. Meas. Tech., 11, 2279–2293, https://doi.org/10.5194/amt-11-2279-2018, 2018. a
Basart, S., Pérez, C., Cuevas, E., Baldasano, J. M., and Gobbi, G. P.: Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations, Atmos. Chem. Phys., 9, 8265–8282, https://doi.org/10.5194/acp-9-8265-2009, 2009. a
Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R. J.,
Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S.,
Mangold, A., Razinger, M., Simmons, A. J., and Suttie, M.: Aerosol Analysis
and Forecast in the European Centre for Medium-Range Weather
Forecasts Integrated Forecast System: 2. Data Assimilation, J. Geophys.
Res., 114, DS13205, https://doi.org/10.1029/2008JD011115, 2009. a
Benkhalifa, J., Léon, J. F., and Chaabane, M.: Aerosol Optical Properties
of Western Mediterranean Basin from Multi-Year AERONET Data, J.
Atmos. Sol.-Terr. Phy., 164, 222–228, https://doi.org/10.1016/j.jastp.2017.08.029,
2017. a
Boers, R., van Weele, M., van
Meijgaard, E., Savenije, M., Siebesma, A. P., Bosveld, F., and Stammes, P.:
Observations and Projections of Visibility and Aerosol Optical
Thickness (1956–2100) in the Netherlands: Impacts of Time-Varying Aerosol Composition and Hygroscopicity, Environ.
Res. Lett., 10, 015003, https://doi.org/10.1088/1748-9326/10/1/015003, 2015. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S. C., Stevens, B., and Zhang, X.: Clouds and
Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 571–657, 2013. a, b
Boyouk, N., Léon, J. F., Delbarre, H., Podvin, T., and Deroo, C.: Impact of
the Mixing Boundary Layer on the Relationship between PM2.5 and Aerosol
Optical Thickness, Atmos. Environ., 44, 271–277,
https://doi.org/10.1016/j.atmosenv.2009.06.053, 2010. a
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J.-P., Diouf, A. A., Herrmann, S. M., Zhang, W., Kergoat, L., Mbow, C., Abel, C., Auda, Y.,
and Fensholt, R.: Changes in Rainfall Distribution Promote Woody Foliage
Production in the Sahel, Commun. Biol., 2, 133,
https://doi.org/10.1038/s42003-019-0383-9, 2019. a
Cazorla, A., Bahadur, R., Suski, K. J., Cahill, J. F., Chand, D., Schmid, B., Ramanathan, V., and Prather, K. A.: Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements, Atmos. Chem. Phys., 13, 9337–9350, https://doi.org/10.5194/acp-13-9337-2013, 2013. a
Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpenning, I.: STL: A
Seasonal-Trend Decomposition Procedure Based on Loess (with Discussion),
J. Off. Stat., 6, 3–73, 1990. a
Deetz, K. and Vogel, B.: Development of a new gas-flaring emission dataset for southern West Africa, Geosci. Model Dev., 10, 1607–1620, https://doi.org/10.5194/gmd-10-1607-2017, 2017. a
Djossou, J., Léon, J.-F., Akpo, A. B., Liousse, C., Yoboué, V., Bedou, M., Bodjrenou, M., Chiron, C., Galy-Lacaux, C., Gardrat, E., Abbey, M., Keita, S., Bahino, J., Touré N'Datchoh, E., Ossohou, M., and Awanou, C. N.: Mass concentration, optical depth and carbon composition of particulate matter in the major southern West African cities of Cotonou (Benin) and Abidjan (Côte d'Ivoire), Atmos. Chem. Phys., 18, 6275–6291, https://doi.org/10.5194/acp-18-6275-2018, 2018. a, b, c, d
Doumbia, E. H. T., Liousse, C., Keita, S., Granier, L., Granier, C., Elvidge, C. D., Elguindi, N., and Law, K.: Flaring Emissions in Africa: Distribution, Evolution and Comparison with Current Inventories,
Atmos. Environ., 199, 423–434, https://doi.org/10.1016/j.atmosenv.2018.11.006,
2019. a
Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill, N. T., Slutsker, I., and Kinne, S.: Wavelength Dependence of the Optical Depth of Biomass Burning, Urban, and Desert Dust
Aerosols, J. Geophys. Res., 104, 31333, https://doi.org/10.1029/1999JD900923, 1999. a
Eck, T. F., Holben, B. N., Ward, D. E., Mukelabai, M. M., Dubovik, O., Smirnov, A., Schafer, J. S., Hsu, N. C., Piketh, S. J., Queface, A., Roux, J. L.,
Swap, R. J., and Slutsker, I.: Variability of Biomass Burning Aerosol
Optical Characteristics in Southern Africa during the SAFARI 2000 Dry Season Campaign and a Comparison of Single Scattering Albedo
Estimates from Radiometric Measurements, J. Geophys. Res.-Atmos., 108, 8477, https://doi.org/10.1029/2002JD002321, 2003. a
Flamant, C., Deroubaix, A., Chazette, P., Brito, J., Gaetani, M., Knippertz, P., Fink, A. H., de Coetlogon, G., Menut, L., Colomb, A., Denjean, C., Meynadier, R., Rosenberg, P., Dupuy, R., Dominutti, P., Duplissy, J., Bourrianne, T., Schwarzenboeck, A., Ramonet, M., and Totems, J.: Aerosol distribution in the northern Gulf of Guinea: local anthropogenic sources, long-range transport, and the role of coastal shallow circulations, Atmos. Chem. Phys., 18, 12363–12389, https://doi.org/10.5194/acp-18-12363-2018, 2018. a
Giles, D. M., Holben, B. N., Eck, T. F., Sinyuk, A., Smirnov, A., Slutsker, I.,
Dickerson, R. R., Thompson, A. M., and Schafer, J. S.: An Analysis of AERONET Aerosol Absorption Properties and Classifications Representative
of Aerosol Source Regions, J. Geophys. Res.-Atmos., 117,
D17203, https://doi.org/10.1029/2012JD018127, 2012. a
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A.,
Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R.,
Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the
Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019. a
Gupta, P. and Christopher, S. A.: Particulate Matter Air Quality Assessment
Using Integrated Surface, Satellite, and Meteorological Products: Multiple Regression Approach, J. Geophys. Res., 114, D14205, https://doi.org/10.1029/2008JD011496, 2009. a, b
Hamill, P., Giordano, M., Ward, C., Giles, D., and Holben, B.: An AERONET-Based Aerosol Classification Using the Mahalanobis Distance,
Atmos. Environ., 140, 213–233, https://doi.org/10.1016/j.atmosenv.2016.06.002,
2016. a, b
Hamonou, E., Chazette, P., Balis, D., Dulac, F., Schneider, X., Galani, E.,
Ancellet, G., and Papayannis, A.: Characterization of the Vertical
Structure of Saharan Dust Export to the Mediterranean Basin, J.
Geophys. Res.-Atmos., 104, 22257–22270,
https://doi.org/10.1029/1999JD900257, 1999. a, b
Hirsch, R. M., Slack, J. R., and Smith, R. A.: Techniques of Trend Analysis for
Monthly Water Quality Data, Water Resour. Res., 18, 107–121,
https://doi.org/10.1029/WR018i001p00107, 1982. a
Hoff, R. M. and Christopher, S. A.: Remote Sensing of Particulate
Pollution from Space: Have We Reached the Promised Land?,
J. Air Waste Ma., 59, 645–675,
https://doi.org/10.3155/1047-3289.59.6.645, 2009. a
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET – A Federated Instrument Network and Data Archive for
Aerosol Characterization, Remote Sens. Environ., 66, 1–16, 1998. a, b, c
Holben, B. N., Tanré, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N., Newcomb, W. W., Schafer, J. S., Chatenet, B., Lavenu, F., Kaufman, Y. J., Vande Castle, J., Setzer, A., Markham, B., Clark, D., Frouin, R., Halthore, R., Karneli, A., O'Neill, N. T., Pietras, C., Pinker, R. T., Voss, K., and Zibordi, G.: An Emerging
Ground-Based Aerosol Climatology: Aerosol Optical Depth from AERONET, J. Geophys. Res.-Atmos., 106, 12067–12097,
2001. a, b
Huang, J., Zhang, C., and Prospero, J. M.: Large-Scale Effect of Aerosols on
Precipitation in the West African Monsoon Region, Q. J Roy. Meteor. Soc., 135, 581–594, https://doi.org/10.1002/qj.391, 2009. a
Ichoku, C., Chu, D. A., Mattoo, S., Kaufman, Y. J., Remer, L. A., Tanré, D., Slutsker, I., and Holben, B. N.: A Spatio-Temporal Approach for Global
Validation and Analysis of MODIS Aerosol Products, Geophys. Res.
Lett., 29, MOD1-1, https://doi.org/10.1029/2001GL013206, 2002. a
Janicot, S.: Spatiotemporal Variability of West African Rainfall. Part II: Associated Surface and Airmass Characteristics, J.
Climate, 5, 499–511, https://doi.org/10.1175/1520-0442(1992)005<0499:SVOWAR>2.0.CO;2,
1992. a
Kacenelenbogen, M., Léon, J.-F., Chiapello, I., and Tanré, D.: Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data, Atmos. Chem. Phys., 6, 4843–4849, https://doi.org/10.5194/acp-6-4843-2006, 2006. a, b
Kamarul Zaman, N. A. F., Kanniah, K. D., and Kaskaoutis, D. G.: Estimating Particulate Matter Using Satellite Based Aerosol Optical Depth and
Meteorological Variables in Malaysia, Atmos. Res., 193,
142–162, https://doi.org/10.1016/j.atmosres.2017.04.019, 2017. a
Kaskaoutis, D. G. and Kambezidis, H. D.: Comparison of the Ångström
Parameters Retrieval in Different Spectral Ranges with the Use of Different
Techniques, Meteorol. Atmos. Phys., 99, 233–246,
https://doi.org/10.1007/s00703-007-0279-y, 2008. a
Kaskaoutis, D. G., Badarinath, K. V. S., Kharol, S. K., Sharma, A. R., and
Kambezidis, H. D.: Variations in the Aerosol Optical Properties and Types over the Tropical Urban Site of Hyderabad, India, J.
Geophys. Res.-Atmos., 114, D22204, https://doi.org/10.1029/2009JD012423, 2009. a
Kaufman, Y. J., Tanré, D., Gordon, H. R., Nakajima, T., Lenoble, J., Frouin, R., Grassl, H., Herman, B. M., King, M. D., and Teillet, P. M.: Passive
Remote Sensing of Tropospheric Aerosol and Atmospheric Correction for the
Aerosol Effect, J. Geophys. Res.-Atmos., 102,
16815–16830, 1997. a
Kaufman, Y. J., Tanré, D., and Boucher, O.: A Satellite View of Aerosols in
the Climate System, Nature, 419, 215–223, https://doi.org/10.1038/nature01091, 2002. a
Kniffka, A., Knippertz, P., and Fink, A. H.: The role of low-level clouds in the West African monsoon system, Atmos. Chem. Phys., 19, 1623–1647, https://doi.org/10.5194/acp-19-1623-2019, 2019. a
Knippertz, P., Evans, M. J., Field, P. R., Fink, A. H., Liousse, C., and
Marsham, J. H.: The Possible Role of Local Air Pollution in Climate
Change in West Africa, Nat. Clim. Change, 5, 815–822,
https://doi.org/10.1038/nclimate2727, 2015. a
Koren, I., Kaufman, Y. J., Washington, R., Todd, M. C., Rudich, Y., Martins, J. V., and Rosenfeld, D.: The Bodele Depression: A Single Spot in the Sahara That Provides Most of the Mineral Dust to the Amazon
Forest, Environ. Res. Lett., 1, 014005,
https://doi.org/10.1088/1748-9326/1/1/014005, 2006. a
Lélé, M. I. and Lamb, P. J.: Variability of the Intertropical Front
(ITF) and Rainfall over the West African Sudan-Sahel Zone, J.
Climate, 23, 3984–4004, https://doi.org/10.1175/2010JCLI3277.1, 2010. a
Léon, J.-F., Chazette, P., and Dulac, F.: Retrieval and Monitoring of Aerosol Optical Thickness over an Urban Area by Spaceborne and Ground-Based Remote Sensing, Appl. Optics, 38, 6918–6926, 1999. a
Léon, J.-F., Derimian, Y., Chiapello, I., Tanré, D., Podvin, T., Chatenet, B., Diallo, A., and Deroo, C.: Aerosol vertical distribution and optical properties over M'Bour (16.96∘ W; 14.39∘ N), Senegal from 2006 to 2008, Atmos. Chem. Phys., 9, 9249–9261, https://doi.org/10.5194/acp-9-9249-2009, 2009. a
Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F.: Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmos. Chem. Phys., 10, 10399–10420, https://doi.org/10.5194/acp-10-10399-2010, 2010. a, b
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013. a
Li, Z., Lau, W. K.-M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J.,
Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y.,
Huang, J., Wang, B., Xu, X., Lee, S.-S., Cribb, M., Zhang, F., Yang, X.,
Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J., Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and Monsoon
Climate Interactions over Asia, Rev. Geophys., 54, 866–929,
https://doi.org/10.1002/2015RG000500, 2016. a
Liou, K.-N.: An Introduction to Atmospheric Radiation, Vol. 84,, 2nd edn., in:
International Geophysics Series, Academic Press, Amsterdam, Boston, 2002. a
Liousse, C., Guillaume, B., Grégoire, J. M., Mallet, M., Galy, C., Pont, V., Akpo, A., Bedou, M., Castéra, P., Dungall, L., Gardrat, E., Granier, C., Konaré, A., Malavelle, F., Mariscal, A., Mieville, A., Rosset, R., Serça, D., Solmon, F., Tummon, F., Assamoi, E., Yoboué, V., and Van Velthoven, P.: Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols, Atmos. Chem. Phys., 10, 9631–9646, https://doi.org/10.5194/acp-10-9631-2010, 2010. a
Liousse, C., Assamoi, E., Criqui, P., Granier, C., and Rosset, R.: Explosive
Growth in African Combustion Emissions from 2005 to 2030, Environ. Res.
Lett., 9, 035003, https://doi.org/10.1088/1748-9326/9/3/035003, 2014. a, b
Lynch, P., Reid, J. S., Westphal, D. L., Zhang, J., Hogan, T. F., Hyer, E. J., Curtis, C. A., Hegg, D. A., Shi, Y., Campbell, J. R., Rubin, J. I., Sessions, W. R., Turk, F. J., and Walker, A. L.: An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences, Geosci. Model Dev., 9, 1489–1522, https://doi.org/10.5194/gmd-9-1489-2016, 2016. a
Ma, Z., Hu, X., Sayer, A. M., Levy, R., Zhang, Q., Xue, Y., Tong, S., Bi, J.,
Huang, L., and Liu, Y.: Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004–2013, Environ.
Health Persp., 124, 2, https://doi.org/10.1289/ehp.1409481, 2015. a, b
Mallet, M., Pont, V., Liousse, C., Gomes, L., Pelon, J., Osborne, S., Haywood, J., Roger, J. C., Dubuisson, P., Mariscal, A., Thouret, V., and Goloub, P.:
Aerosol Direct Radiative Forcing over Djougou (Northern Benin) during
the African Monsoon Multidisciplinary Analysis Dry Season Experiment
(Special Observation Period-0), J. Geophys. Res., 113, D00C01, https://doi.org/10.1029/2007JD009419, 2008. a
Marais, E. A., Jacob, D. J., Wecht, K., Lerot, C., Zhang, L., Yu, K., Kurosu, T. P., Chance, K., and Sauvage, B.: Anthropogenic Emissions in Nigeria
and Implications for Atmospheric Ozone Pollution: A View from Space,
Atmos. Environ., 99, 32–40, https://doi.org/10.1016/j.atmosenv.2014.09.055,
2014. a
Mehta, M., Singh, N., and Anshumali: Global Trends of Columnar and Vertically
Distributed Properties of Aerosols with Emphasis on Dust, Polluted Dust and
Smoke – Inferences from 10-Year Long CALIOP Observations, Remote Sens.
Environ., 208, 120–132, https://doi.org/10.1016/j.rse.2018.02.017, 2018. a
Menut, L., Flamant, C., Turquety, S., Deroubaix, A., Chazette, P., and Meynadier, R.: Impact of biomass burning on pollutant surface concentrations in megacities of the Gulf of Guinea, Atmos. Chem. Phys., 18, 2687–2707, https://doi.org/10.5194/acp-18-2687-2018, 2018. a, b
Nakajima, T., Hayasaka, T., Higurashi, A., Hashida, G., Moharram-Nejad, N.,
Najafi, Y., and Valavi, H.: Aerosol Optical Properties in the Iranian
Region Obtained by Ground-Based Solar Radiation Measurements in the Summer Of 1991, J. Appl. Meteorol., 35, 1265–1278,
https://doi.org/10.1175/1520-0450(1996)035<1265:AOPITI>2.0.CO;2, 1996. a, b
Ologunorisa, T. E.: A Review of the Effects of Gas Flaring on the Niger
Delta Environment, Int. J. Sust. Dev. World, 8, 249–255, https://doi.org/10.1080/13504500109470082, 2001. a
O'Neill, N., Ignatov, A., Holben, B. N., and Eck, T. F.: The Lognormal
Distribution as a Reference for Reporting Aerosol Optical Depth
Statistics; Empirical Tests Using Multi-Year, Multi-Site
AERONET Sunphotometer Data, Geophys. Res. Lett., 27, 3333–3336,
https://doi.org/10.1029/2000GL011581, 2000. a
Ouafo-Leumbe, M.-R., Galy-Lacaux, C., Liousse, C., Pont, V., Akpo, A., Doumbia, T., Gardrat, E., Zouiten, C., Sigha-Nkamdjou, L., and Ekodeck, G. E.: Chemical Composition and Sources of Atmospheric Aerosols at Djougou (Benin), Meteorol. Atmos. Phys., 130, 591–609, https://doi.org/10.1007/s00703-017-0538-5, 2017. a
Perrone, M., Santese, M., Tafuro, A., Holben, B., and Smirnov, A.: Aerosol Load Characterization over South–East Italy for One
Year of AERONET Sun-Photometer Measurements, Atmos. Res., 75,
111–133, https://doi.org/10.1016/j.atmosres.2004.12.003, 2005. a
Porter, J. N., Miller, M., Pietras, C., and Motell, C.: Ship-Based Sun
Photometer Measurements Using Microtops Sun Photometers, J. Atmos.
Ocean. Tech., 18, 765–774, 2001. a
Prospero, J., Savoie, D., Carlson, T., and Nees, R.: Saharan Aerosol Transport
by Means of Atmospheric Turbidity Measurements, in: Saharan Dust
Mobilization, Transport, Deposition, vol. 14, chap. 8, John Wiley, San Diego, Calif., 171–186, 1979. a
Prospero, J. M. and Nees, R. T.: Dust Concentration in the Atmosphere
of the Equatorial North Atlantic: Possible Relationship to the Sahelian Drought, Science, 196, 1196–1198,
https://doi.org/10.1126/science.196.4295.1196, 1977. a
Redelsperger, J.-L., Thorncroft, C. D., Diedhiou, A., Lebel, T., Parker, D. J.,
and Polcher, J.: African Monsoon Multidisciplinary Analysis: An
International Research Project and Field Campaign, B. Am. Meteorol.
Soc., 87, 1739–1746, https://doi.org/10.1175/BAMS-87-12-1739, 2006. a
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R.-R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T. F.,
Vermote, E., and Holben, B. N.: The MODIS Aerosol Algorithm, Products, and Validation, J. Atmos. Sci., 62, 947–973,
https://doi.org/10.1175/JAS3385.1, 2005. a
Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D.,
Mattoo, S., Martins, J. V., Ichoku, C., Koren, I., Yu, H., and Holben, B. N.:
Global Aerosol Climatology from the MODIS Satellite Sensors, J.
Geophys. Res., 113, D14S07, https://doi.org/10.1029/2007JD009661, 2008. a, b
Remer, L. A., Levy, R. C., Mattoo, S., Tanré, D., Gupta, P., Shi, Y.,
Sawyer, V., Munchak, L. A., Zhou, Y., Kim, M., Ichoku, C., Patadia, F., Li, R.-R., Gassó, S., Kleidman, R. G., and Holben, B. N.: The Dark Target
Algorithm for Observing the Global Aerosol System: Past, Present, and Future, Remote Sens.-Basel, 12, 2900,
https://doi.org/10.3390/rs12182900, 2020. a
Ruiz-Arias, J. A., Dudhia, J., Gueymard, C. A., and Pozo-Vázquez, D.: Assessment of the Level-3 MODIS daily aerosol optical depth in the context of surface solar radiation and numerical weather modeling, Atmos. Chem. Phys., 13, 675–692, https://doi.org/10.5194/acp-13-675-2013, 2013. a
Sayer, A. M., Hsu, N. C., Bettenhausen, C., and Jeong, M.-J.: Validation and
Uncertainty Estimates for MODIS Collection 6 “Deep Blue” Aerosol
Data, J. Geophys. Res.-Atmos., 118, 7864–7872,
https://doi.org/10.1002/jgrd.50600, 2013. a, b, c
Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., and
Jeong, M.-J.: MODIS Collection 6 Aerosol Products: Comparison between Aqua's e-Deep Blue, Dark Target, and “Merged” Data Sets, and
Usage Recommendations, J. Geophys. Res.-Atmos., 119, 13965–13989,
https://doi.org/10.1002/2014JD022453, 2014. a, b, c
Sayer, A. M., Hsu, N. C., Hsiao, T.-C., Pantina, P., Kuo, F., Ou-Yang, C.-F.,
Tsay, S.-C., Holben, B. N., Janjai, S., Chantara, S., Wang, S.-H., Loftus, A. M., and Lin, N.-H.: In-Situ and Remotely-Sensed Observations
of Biomass Burning Aerosols at Doi Ang Khang, Thailand during
7-SEAS/BASELInE 2015, Aerosol Air Qual. Res., 16,
2786–2801, https://doi.org/10.4209/aaqr.2015.08.0500, 2016. a, b
Sayer, A. M., Hsu, N. C., Lee, J., Kim, W. V., and Dutcher, S. T.: Validation, Stability, and Consistency of MODIS Collection 6.1 and VIIRS
Version 1 Deep Blue Aerosol Data Over Land, J. Geophys.
Res.-Atmos., 124, 4658–4688, https://doi.org/10.1029/2018JD029598, 2019. a
Schepanski, K., Tegen, I., and Macke, A.: Saharan dust transport and deposition towards the tropical northern Atlantic, Atmos. Chem. Phys., 9, 1173–1189, https://doi.org/10.5194/acp-9-1173-2009, 2009. a
Schmid, B. and Wehrli, C.: Comparison of Sun Photometer Calibration by Use
of the Langley Technique and the Standard Lamp, Appl. Optics, 34, 4500,
https://doi.org/10.1364/AO.34.004500, 1995. a
Sharma, M., Kaskaoutis, D. G., Singh, R. P., and Singh, S.: Seasonal Variability of Atmospheric Aerosol Parameters over Greater Noida
Using Ground Sunphotometer Observations, Aerosol Air Qual. Res.,
14, 608–622, https://doi.org/10.4209/aaqr.2013.06.0219, 2014. a
Sinha, P. R., Gupta, P., Kaskaoutis, D. G., Sahu, L. K., Nagendra, N.,
Manchanda, R. K., Kumar, Y. B., and Sreenivasan, S.: Estimation of
Particulate Matter from Satellite- and Ground-Based Observations over Hyderabad, India, Int. J. Remote Sens., 36,
6192–6213, https://doi.org/10.1080/01431161.2015.1112929, 2015. a, b
Smirnov, A.: Diurnal Variability of Aerosol Optical Depth Observed at AERONET (Aerosol Robotic Network) Sites, Geophys. Res. Lett., 29, 2115, https://doi.org/10.1029/2002GL016305, 2002. a
Smirnov, A., Holben, B. N., Eck, T. F., Dubovik, O., and Slutsker, I.:
Cloud-Screening and Quality Control Algorithms for the AERONET
Database, Remote Sens. Environ., 73, 337–349,
https://doi.org/10.1016/S0034-4257(00)00109-7, 2000. a
Soufflet, V., Devaux, C., and Tanré, D.: Modified Langley Plot Method for
Measuring the Spectral Aerosol Optical Thickness and Its Daily Variations,
Appl. Optics, 31, 2154, https://doi.org/10.1364/AO.31.002154, 1992. a
Tanré, D., Deschamps, P. Y., Devaux, C., and Herman, M.: Estimation of Saharan Aerosol Optical Thickness from Blurring Effects in Thematic
Mapper Data, J. Geophys. Res.-Atmos., 93, 15955–15964,
https://doi.org/10.1029/JD093iD12p15955, 1988. a, b
Todd, M. C., Washington, R., Martins, J. V., Dubovik, O., Lizcano, G.,
M'Bainayel, S., and Engelstaedter, S.: Mineral Dust Emission from the
Bodélé Depression, Northern Chad, during BoDEx 2005, J.
Geophys. Res., 112, D06207, https://doi.org/10.1029/2006JD007170, 2007. a
Toledano, C., Cachorro, V. E., Berjon, A., de Frutos, A. M., Sorribas, M., de la Morena, B. A., and Goloub, P.: Aerosol Optical Depth and Ångström Exponent Climatology at El Arenosillo AERONET Site (Huelva, Spain), Q. J. Roy.
Meteor. Soc., 133, 795–807, https://doi.org/10.1002/qj.54, 2007. a
van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R.,
Levy, R., Verduzco, C., and Villeneuve, P. J.: Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based
Aerosol Optical Depth: Development and Application, Environ.
Health Persp., 118, 847–855, https://doi.org/10.1289/ehp.0901623, 2010. a
van Donkelaar, A., Martin, R. V., Brauer, M., Hsu, N. C., Kahn, R. A., Levy, R. C., Lyapustin, A., Sayer, A. M., and Winker, D. M.: Global Estimates of Fine Particulate Matter Using a Combined
Geophysical-Statistical Method with Information from Satellites, Models, and Monitors, Environ. Sci. Technol., 50, 3762–3772, https://doi.org/10.1021/acs.est.5b05833, 2016. a, b
Verma, S.: A New Classification of Aerosol Sources and Types as Measured over Jaipur, India, Aerosol Air Qual. Res., 15, 985–993, https://doi.org/10.4209/aaqr.2014.07.0143, 2015. a, b
Volz, F.: Photometer Mit Selen-Photoelement Zur Spektralen Messung
Der Sonnenstrahlung Und Zur Bestimmung Der
Wellenlängenabhängigkeit Der Dunsttrübung, Arch. Meteor. Geophy. B, 10, 100–131,
https://doi.org/10.1007/BF02243122, 1959. a, b
Volz, F. E.: Economical Multispectral Sun Photometer for Measurements of
Aerosol Extinction from 0.44 Mm to 1.6 Mm and Precipitable Water, Appl.
Optics, 13, 1732–1733, 1974.
a
Wagner, F. and Silva, A. M.: Some considerations about Ångström exponent distributions, Atmos. Chem. Phys., 8, 481–489, https://doi.org/10.5194/acp-8-481-2008, 2008. a, b
Washington, R.: Atmospheric Controls on Mineral Dust Emission from the
Bodélé Depression, Chad: The Role of the Low Level Jet,
Geophys. Res. Lett., 32, 17, https://doi.org/10.1029/2005GL023597, 2005. a
Wei, J., Peng, Y., Guo, J., and Sun, L.: Performance of MODIS Collection
6.1 Level 3 Aerosol Products in Spatial-Temporal Variations over Land,
Atmos. Environ., 206, 30–44, https://doi.org/10.1016/j.atmosenv.2019.03.001,
2019. a, b
Yahi, H., Marticorena, B., Thiria, S., Chatenet, B., Schmechtig, C., Rajot, J. L., and Crepon, M.: Statistical Relationship between Surface PM10
Concentration and Aerosol Optical Depth over the Sahel as a Function of Weather Type, Using Neural Network Methodology, J.
Geophys. Res.-Atmos., 118, 13265–13281,
https://doi.org/10.1002/2013JD019465, 2013. a
Yang, Q., Yuan, Q., Yue, L., Li, T., Shen, H., and Zhang, L.: The Relationships
between PM2.5 and Aerosol Optical Depth (AOD) in Mainland China: About and behind the Spatio-Temporal Variations, Environ. Pollut.,
248, 526–535, https://doi.org/10.1016/j.envpol.2019.02.071, 2019. a
Yoon, J.-H., Rasch, P. J., Wang, H., Vinoj, V., and Ganguly, D.: The Role of
Carbonaceous Aerosols on Short-Term Variations of Precipitation over North
Africa, Atmos. Sci. Lett., 17, 407–414, https://doi.org/10.1002/asl.672,
2016. a
Zheng, C., Zhao, C., Zhu, Y., Wang, Y., Shi, X., Wu, X., Chen, T., Wu, F., and Qiu, Y.: Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing, Atmos. Chem. Phys., 17, 13473–13489, https://doi.org/10.5194/acp-17-13473-2017, 2017. a
Short summary
We have investigated the aerosol optical depth (AOD) and its relation to PM2.5 surface concentrations in southern West Africa based on in situ observations (2015–2017 period) and MODIS satellite data (2003–2019). MODIS AODs are validated using a regional network of handheld and automatic sun photometers. Satellite-derived PM2.5 shows an increasing trend during the short dry period that is possibly linked to the increase in anthropogenic emission over this area.
We have investigated the aerosol optical depth (AOD) and its relation to PM2.5 surface...
Altmetrics
Final-revised paper
Preprint