Articles | Volume 21, issue 21
https://doi.org/10.5194/acp-21-16531-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-16531-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improving predictability of high-ozone episodes through dynamic boundary conditions, emission refresh and chemical data assimilation during the Long Island Sound Tropospheric Ozone Study (LISTOS) field campaign
Siqi Ma
Department of Atmospheric, Oceanic and Earth Sciences, George Mason
University, Fairfax, VA 22030, USA
National Research Council, hosted by the National Oceanic and
Atmospheric Administration Air Resources Lab, College Park, MD 20740, USA
Department of Atmospheric, Oceanic and Earth Sciences, George Mason
University, Fairfax, VA 22030, USA
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA 22030, USA
Lok Lamsal
Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space
Flight Center, MD 20771, USA
Universities Space Research Association, Columbia, MD 21046, USA
Julian Wang
CORRESPONDING AUTHOR
National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory, College Park, MD 22030, USA
Xuelei Zhang
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA 22030, USA
Youhua Tang
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA 22030, USA
National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory, College Park, MD 22030, USA
Rick Saylor
National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory, College Park, MD 22030, USA
Tianfeng Chai
Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space
Flight Center, MD 20771, USA
Pius Lee
National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory, College Park, MD 22030, USA
Patrick Campbell
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA 22030, USA
National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory, College Park, MD 22030, USA
Barry Baker
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA 22030, USA
National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory, College Park, MD 22030, USA
Shobha Kondragunta
NOAA National Environmental Satellite Data and Information Service,
College Park, MD 20740, USA
Laura Judd
NASA Langley Research Center, Hampton, VA 23681, USA
Timothy A. Berkoff
NASA Langley Research Center, Hampton, VA 23681, USA
Scott J. Janz
Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space
Flight Center, MD 20771, USA
Ivanka Stajner
NOAA National Weather Service National Centers for Environmental
Prediction, College Park, MD 20740, USA
Related authors
Chi-Tsan Wang, Patrick C. Campbell, Paul Makar, Siqi Ma, Irena Ivanova, Bok H. Baek, Wei-Ting Hung, Zachary Moon, Youhua Tang, Barry Baker, Rick Saylor, and Daniel Tong
EGUsphere, https://doi.org/10.5194/egusphere-2025-485, https://doi.org/10.5194/egusphere-2025-485, 2025
Short summary
Short summary
Forests influence air quality by altering ozone levels, but most air pollution models overlook canopy effects. Our study improves ozone predictions by incorporating forest canopy shading and turbulence into a widely used model. We found that tree cover reduces near-surface ozone by decreasing photolysis rates and diffusion inside canopy, resulting in lower ozone concentrations in densely forested areas. These findings enhance ozone surface prediction accuracy and improve air quality modeling.
Fei Liu, Steffen Beirle, Joanna Joiner, Sungyeon Choi, Zhining Tao, K. Emma Knowland, Steven J. Smith, Daniel Q. Tong, Siqi Ma, Zachary T. Fasnacht, and Thomas Wagner
Atmos. Chem. Phys., 24, 3717–3728, https://doi.org/10.5194/acp-24-3717-2024, https://doi.org/10.5194/acp-24-3717-2024, 2024
Short summary
Short summary
Using satellite data, we developed a coupled method independent of the chemical transport model to map NOx emissions across US cities. After validating our technique with synthetic data, we charted NOx emissions from 2018–2021 in 39 cities. Our results closely matched EPA estimates but also highlighted some inconsistencies in both magnitude and spatial distribution. This research can help refine strategies for monitoring and managing air quality.
Bok H. Baek, Carlie Coats, Siqi Ma, Chi-Tsan Wang, Yunyao Li, Jia Xing, Daniel Tong, Soontae Kim, and Jung-Hun Woo
Geosci. Model Dev., 16, 4659–4676, https://doi.org/10.5194/gmd-16-4659-2023, https://doi.org/10.5194/gmd-16-4659-2023, 2023
Short summary
Short summary
To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system without any computational bottleneck, we have developed an inline meteorology-induced emissions coupler module within the U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system to dynamically model the complex MOtor Vehicle Emission Simulator (MOVES) on-road mobile emissions inline without a separate dedicated emissions processing model like SMOKE.
Yunyao Li, Daniel Tong, Siqi Ma, Saulo R. Freitas, Ravan Ahmadov, Mikhail Sofiev, Xiaoyang Zhang, Shobha Kondragunta, Ralph Kahn, Youhua Tang, Barry Baker, Patrick Campbell, Rick Saylor, Georg Grell, and Fangjun Li
Atmos. Chem. Phys., 23, 3083–3101, https://doi.org/10.5194/acp-23-3083-2023, https://doi.org/10.5194/acp-23-3083-2023, 2023
Short summary
Short summary
Plume height is important in wildfire smoke dispersion and affects air quality and human health. We assess the impact of plume height on wildfire smoke dispersion and the exceedances of the National Ambient Air Quality Standards. A higher plume height predicts lower pollution near the source region, but higher pollution in downwind regions, due to the faster spread of the smoke once ejected, affects pollution exceedance forecasts and the early warning of extreme air pollution events.
Carley D. Fredrickson, Scott J. Janz, Lok N. Lamsal, Ursula A. Jongebloed, Joshua L. Laughner, and Joel A. Thornton
Atmos. Meas. Tech., 18, 3669–3689, https://doi.org/10.5194/amt-18-3669-2025, https://doi.org/10.5194/amt-18-3669-2025, 2025
Short summary
Short summary
We present an analysis of high-resolution remote sensing measurements of nitrogen-containing trace gases emitted by wildfires. The measurements were made using an instrument on the NASA ER-2 aircraft in the summer of 2019. We find that time-resolved fire intensity is critical to quantify trace gas emissions over a fire's entire lifespan. These findings have implications for improving air pollution forecasts downwind of wildfires using computer models of atmospheric chemistry and meteorology.
Prajjwal Rawat, James H. Crawford, Katherine R. Travis, Laura M. Judd, Mary Angelique G. Demetillo, Lukas C. Valin, James J. Szykman, Andrew Whitehill, Eric Baumann, and Thomas F. Hanisco
Atmos. Meas. Tech., 18, 2899–2917, https://doi.org/10.5194/amt-18-2899-2025, https://doi.org/10.5194/amt-18-2899-2025, 2025
Short summary
Short summary
The Pandonia Global Network (PGN) consists of Pandora spectrometers that observe trace gases at a high time resolution to validate satellite observations and understand local air quality. To aid users, PGN assigns quality flags that assure scientifically valid data but eliminate large amounts of data appropriate for scientific applications. A new method based on contemporaneous data in two independent observation modes is proven using complementary ground-based and airborne observations.
Christopher D. Holmes, Joshua P. Schwarz, Charles H. Fite, Anxhelo Agastra, Holly K. Nowell, Katherine Ball, T. Paul Bui, Johnathan Dean-Day, Zachary C. J. Decker, Joshua P. DiGagni, Glenn S. Diskin, Emily M. Gargulinski, Hannah Halliday, Shobha Kondragunta, John B. Nowak, David A. Peterson, Michael A. Robinson, Amber J. Soja, Rebecca A. Washenfelder, Chuanyu Xu, and Robert J. Yokelson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-307, https://doi.org/10.5194/essd-2025-307, 2025
Preprint under review for ESSD
Short summary
Short summary
Smoke age is an important factor in the chemical and physical evolution of smoke. Two methods for determining the age of smoke are applied to the NASA-NOAA FIREX-AQ field campaign: one based on wind speed and distance, and another using an ensemble of modeled air parcel trajectories. Both methods are evaluated, with the trajectory method, which includes plume rise and uncertainty estimates, proving more accurate.
Chris A. McLinden, Debora Griffin, Vitali Fioletov, Junhua Zhang, Enrico Dammers, Cristen Adams, Mallory Loria, Nickolay Krotkov, and Lok N. Lamsal
Atmos. Chem. Phys., 25, 6093–6120, https://doi.org/10.5194/acp-25-6093-2025, https://doi.org/10.5194/acp-25-6093-2025, 2025
Short summary
Short summary
The Ozone Monitoring Instrument (OMI) was used to understand the evolution of NOx emissions from the Canadian oil sands. OMI NO2 combined with winds and reported stack emissions found emissions from the heavy-hauler mine fleet have remained flat since 2005, whereas the total oil sands mined have more than doubled. This difference is a result of emissions standards that limit NOx emissions becoming more stringent over this period, confirming the efficacy of the policy enacting these standards.
Chi-Tsan Wang, Patrick C. Campbell, Paul Makar, Siqi Ma, Irena Ivanova, Bok H. Baek, Wei-Ting Hung, Zachary Moon, Youhua Tang, Barry Baker, Rick Saylor, and Daniel Tong
EGUsphere, https://doi.org/10.5194/egusphere-2025-485, https://doi.org/10.5194/egusphere-2025-485, 2025
Short summary
Short summary
Forests influence air quality by altering ozone levels, but most air pollution models overlook canopy effects. Our study improves ozone predictions by incorporating forest canopy shading and turbulence into a widely used model. We found that tree cover reduces near-surface ozone by decreasing photolysis rates and diffusion inside canopy, resulting in lower ozone concentrations in densely forested areas. These findings enhance ozone surface prediction accuracy and improve air quality modeling.
Chao Gao, Xuelei Zhang, Hu Yang, Ling Huang, Hongmei Zhao, Shichun Zhang, and Aijun Xiu
EGUsphere, https://doi.org/10.5194/egusphere-2025-611, https://doi.org/10.5194/egusphere-2025-611, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Mineral dust impacts climate and air quality, varying by composition. This study examined its effects on radiation and pollution during a North China dust storm using WRF-CHIMERE and three dust atlases. Bulk dust had a shortwave radiative forcing of -5.72 W/m², while mineral-specific effects increased it by +0.10 W/m². Aerosol-radiation interactions raised PM₁₀ to 1189.48 μg/m³. Accurate mineral data is essential for improving dust-related climate and air quality simulations.
Daniel L. Goldberg, M. Omar Nawaz, Congmeng Lyu, Jian He, Annmarie G. Carlton, Shobha Kondragunta, and Susan C. Anenberg
EGUsphere, https://doi.org/10.5194/egusphere-2025-1350, https://doi.org/10.5194/egusphere-2025-1350, 2025
Short summary
Short summary
This research investigates how air quality, specifically NO2 concentrations, is different under clear and cloudy skies. We find that in situ surface NO2 is, on average, +36 % larger during cloudy days versus clear sky days, with a wide distribution based on geographic region and roadway proximity: largest in the Northeast U.S. and smallest in the Southwest U.S. and near major roadways. This has implications for satellite data applications, which only use measurements in the absence of clouds.
Sina Voshtani, Dylan B. A. Jones, Debra Wunch, Drew C. Pendergrass, Paul O. Wennberg, David F. Pollard, Isamu Morino, Hirofumi Ohyama, Nicholas M. Deutscher, Frank Hase, Ralf Sussmann, Damien Weidmann, Rigel Kivi, Omaira García, Yao Té, Jack Chen, Kerry Anderson, Robin Stevens, Shobha Kondragunta, Aihua Zhu, Douglas Worthy, Senen Racki, Kathryn McKain, Maria V. Makarova, Nicholas Jones, Emmanuel Mahieu, Andrea Cadena-Caicedo, Paolo Cristofanelli, Casper Labuschagne, Elena Kozlova, Thomas Seitz, Martin Steinbacher, Reza Mahdi, and Isao Murata
EGUsphere, https://doi.org/10.5194/egusphere-2025-858, https://doi.org/10.5194/egusphere-2025-858, 2025
Short summary
Short summary
We assess the complementarity of the greater temporal coverage provided by ground-based remote sensing data with the spatial coverage of satellite observations when these data are used together to quantify CO emissions from extreme wildfires in 2023. Our results reveal that the commonly used biomass burning emission inventories significantly underestimate the fire emissions and emphasize the importance of the ground-based remote sensing data in reducing uncertainties in the estimated emissions.
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, and Raffaele Montuoro
Geosci. Model Dev., 18, 1635–1660, https://doi.org/10.5194/gmd-18-1635-2025, https://doi.org/10.5194/gmd-18-1635-2025, 2025
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during the summer of 2023 shows that the updated model overall improves the simulation of MDA8 O3 by reducing the bias by 8%–12% in the contiguous US. PM2.5 predictions have mixed results due to wildfire, highlighting the need for future refinements.
Noribeth Mariscal, Louisa K. Emmons, Duseong S. Jo, Ying Xiong, Laura M. Judd, Scott J. Janz, Jiajue Chai, and Yaoxian Huang
EGUsphere, https://doi.org/10.5194/egusphere-2025-228, https://doi.org/10.5194/egusphere-2025-228, 2025
Short summary
Short summary
The distribution of ozone (O3) and its precursors (NOx, VOCs) is explored using the chemistry-climate model, MUSICAv0, and evaluated using measurements from the Michigan-Ontario Ozone Source Experiment. A custom grid of ~7 km was created over Michigan. A sector-based diurnal cycle for anthropogenic nitric oxide was included in the model. This work shows that grid resolution played a more important role for O3 precursors, and the diurnal cycle significantly impacted nighttime O3 formation.
Min Huang, Gregory R. Carmichael, Kevin W. Bowman, Isabelle De Smedt, Andreas Colliander, Michael H. Cosh, Sujay V. Kumar, Alex B. Guenther, Scott J. Janz, Ryan M. Stauffer, Anne M. Thompson, Niko M. Fedkin, Robert J. Swap, John D. Bolten, and Alicia T. Joseph
Atmos. Chem. Phys., 25, 1449–1476, https://doi.org/10.5194/acp-25-1449-2025, https://doi.org/10.5194/acp-25-1449-2025, 2025
Short summary
Short summary
We use model simulations along with multiplatform, multidisciplinary observations and a range of analysis methods to estimate and understand the distributions, temporal changes, and impacts of reactive nitrogen and ozone over the most populous US region that has undergone significant environmental changes. Deposition, biogenic emissions, and extra-regional sources have been playing increasingly important roles in controlling pollutant budgets in this area as local anthropogenic emissions drop.
Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede
Atmos. Chem. Phys., 24, 12687–12706, https://doi.org/10.5194/acp-24-12687-2024, https://doi.org/10.5194/acp-24-12687-2024, 2024
Short summary
Short summary
We investigate the hourly variation of NO2 columns and surface concentrations by applying the GEOS-Chem model to interpret aircraft and ground-based measurements over the US and Pandora sun photometer measurements over the US, Europe, and Asia. Corrections to the Pandora columns and finer model resolution improve the modeled representation of the summertime hourly variation of total NO2 columns to explain the weaker hourly variation in NO2 columns than at the surface.
M. Omar Nawaz, Jeremiah Johnson, Greg Yarwood, Benjamin de Foy, Laura Judd, and Daniel L. Goldberg
Atmos. Chem. Phys., 24, 6719–6741, https://doi.org/10.5194/acp-24-6719-2024, https://doi.org/10.5194/acp-24-6719-2024, 2024
Short summary
Short summary
NO2 is a gas with implications for air pollution. A campaign conducted in Houston provided an opportunity to compare NO2 from different instruments and a model. Aircraft and satellite observations agreed well with measurements on the ground; however, the latter estimated lower values. We find that model-simulated NO2 was lower than observations, especially downtown, suggesting that NO2 sources associated with the urban core of Houston, such as vehicle emissions, may be underestimated.
Qindan Zhu, Rebecca H. Schwantes, Matthew Coggon, Colin Harkins, Jordan Schnell, Jian He, Havala O. T. Pye, Meng Li, Barry Baker, Zachary Moon, Ravan Ahmadov, Eva Y. Pfannerstill, Bryan Place, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Carsten Warneke, Chelsea E. Stockwell, Lu Xu, Kristen Zuraski, Michael A. Robinson, J. Andrew Neuman, Patrick R. Veres, Jeff Peischl, Steven S. Brown, Allen H. Goldstein, Ronald C. Cohen, and Brian C. McDonald
Atmos. Chem. Phys., 24, 5265–5286, https://doi.org/10.5194/acp-24-5265-2024, https://doi.org/10.5194/acp-24-5265-2024, 2024
Short summary
Short summary
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and particulate matter. The representation of VOC chemistry remains challenging due to its complexity in speciation and reactions. Here, we develop a chemical mechanism, RACM2B-VCP, that better represents VOC chemistry in urban areas such as Los Angeles. We also discuss the contribution of VOCs emitted from volatile chemical products and other anthropogenic sources to total VOC reactivity and O3.
Matthew S. Johnson, Alexei Rozanov, Mark Weber, Nora Mettig, John Sullivan, Michael J. Newchurch, Shi Kuang, Thierry Leblanc, Fernando Chouza, Timothy A. Berkoff, Guillaume Gronoff, Kevin B. Strawbridge, Raul J. Alvarez, Andrew O. Langford, Christoph J. Senff, Guillaume Kirgis, Brandi McCarty, and Larry Twigg
Atmos. Meas. Tech., 17, 2559–2582, https://doi.org/10.5194/amt-17-2559-2024, https://doi.org/10.5194/amt-17-2559-2024, 2024
Short summary
Short summary
Monitoring tropospheric ozone (O3), a harmful pollutant negatively impacting human health, is primarily done using ground-based measurements and ozonesondes. However, these observation types lack the coverage to fully understand tropospheric O3. Satellites can retrieve tropospheric ozone with near-daily global coverage; however, they are known to have biases and errors. This study uses ground-based lidars to validate multiple satellites' ability to observe tropospheric O3.
Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, Mengduo Zhang, and Shengjin Xie
Geosci. Model Dev., 17, 2471–2492, https://doi.org/10.5194/gmd-17-2471-2024, https://doi.org/10.5194/gmd-17-2471-2024, 2024
Short summary
Short summary
A comprehensive comparison study is conducted targeting the performances of three two-way coupled meteorology and air quality models (WRF-CMAQ, WRF-Chem, and WRF-CHIMERE) for eastern China during 2017. The impacts of aerosol–radiation–cloud interactions on these models’ results are evaluated against satellite and surface observations. Further improvements to the calculation of aerosol–cloud interactions in these models are crucial to ensure more accurate and timely air quality forecasts.
Fei Liu, Steffen Beirle, Joanna Joiner, Sungyeon Choi, Zhining Tao, K. Emma Knowland, Steven J. Smith, Daniel Q. Tong, Siqi Ma, Zachary T. Fasnacht, and Thomas Wagner
Atmos. Chem. Phys., 24, 3717–3728, https://doi.org/10.5194/acp-24-3717-2024, https://doi.org/10.5194/acp-24-3717-2024, 2024
Short summary
Short summary
Using satellite data, we developed a coupled method independent of the chemical transport model to map NOx emissions across US cities. After validating our technique with synthetic data, we charted NOx emissions from 2018–2021 in 39 cities. Our results closely matched EPA estimates but also highlighted some inconsistencies in both magnitude and spatial distribution. This research can help refine strategies for monitoring and managing air quality.
Li Pan, Partha S. Bhattacharjee, Li Zhang, Raffaele Montuoro, Barry Baker, Jeff McQueen, Georg A. Grell, Stuart A. McKeen, Shobha Kondragunta, Xiaoyang Zhang, Gregory J. Frost, Fanglin Yang, and Ivanka Stajner
Geosci. Model Dev., 17, 431–447, https://doi.org/10.5194/gmd-17-431-2024, https://doi.org/10.5194/gmd-17-431-2024, 2024
Short summary
Short summary
A GEFS-Aerosols simulation was conducted from 1 September 2019 to 30 September 2020 to evaluate the model performance of GEFS-Aerosols. The purpose of this study was to understand how aerosol chemical and physical processes affect ambient aerosol concentrations by placing aerosol wet deposition, dry deposition, reactions, gravitational deposition, and emissions into the aerosol mass balance equation.
Tianle Yuan, Fei Liu, Lok N. Lamsal, and Hua Song
EGUsphere, https://doi.org/10.22541/essoar.168771101.14987378/v1, https://doi.org/10.22541/essoar.168771101.14987378/v1, 2023
Preprint archived
Short summary
Short summary
We train and apply a state-of-the-art deep learning model to detect NO2 plumes emitted by ships using NO2 retrievals from TROPOMI. By applying the model, we can detect individual plumes with excellent fidelity. The aggregated data show major shipping routes, but miss other routes. The missing routes are due to high cloudiness. Our method can be potentially useful for monitoring ship emissions of NOx and verifying compliance of emission standards.
Tianfeng Chai, Xinrong Ren, Fong Ngan, Mark Cohen, and Alice Crawford
Atmos. Chem. Phys., 23, 12907–12933, https://doi.org/10.5194/acp-23-12907-2023, https://doi.org/10.5194/acp-23-12907-2023, 2023
Short summary
Short summary
The SO2 emissions of three power plants are estimated using aircraft observations and an ensemble of HYSPLIT dispersion simulations with different plume rise parameters. The emission estimates using the runs with the lowest root mean square errors (RMSEs) and the runs with the best correlation coefficients between the predicted and observed mixing ratios both agree well with the Continuous Emissions Monitoring Systems (CEMS) data. The RMSE-based plume rise appears to be more reasonable.
Xueying Liu, Yuxuan Wang, Shailaja Wasti, Wei Li, Ehsan Soleimanian, James Flynn, Travis Griggs, Sergio Alvarez, John T. Sullivan, Maurice Roots, Laurence Twigg, Guillaume Gronoff, Timothy Berkoff, Paul Walter, Mark Estes, Johnathan W. Hair, Taylor Shingler, Amy Jo Scarino, Marta Fenn, and Laura Judd
Geosci. Model Dev., 16, 5493–5514, https://doi.org/10.5194/gmd-16-5493-2023, https://doi.org/10.5194/gmd-16-5493-2023, 2023
Short summary
Short summary
With a comprehensive suite of ground-based and airborne remote sensing measurements during the 2021 TRacking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign in Houston, this study evaluates the simulation of the planetary boundary layer (PBL) height and the ozone vertical profile by a high-resolution (1.33 km) 3-D photochemical model Weather Research and Forecasting-driven GEOS-Chem (WRF-GC).
Bok H. Baek, Carlie Coats, Siqi Ma, Chi-Tsan Wang, Yunyao Li, Jia Xing, Daniel Tong, Soontae Kim, and Jung-Hun Woo
Geosci. Model Dev., 16, 4659–4676, https://doi.org/10.5194/gmd-16-4659-2023, https://doi.org/10.5194/gmd-16-4659-2023, 2023
Short summary
Short summary
To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system without any computational bottleneck, we have developed an inline meteorology-induced emissions coupler module within the U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system to dynamically model the complex MOtor Vehicle Emission Simulator (MOVES) on-road mobile emissions inline without a separate dedicated emissions processing model like SMOKE.
Matthew S. Johnson, Amir H. Souri, Sajeev Philip, Rajesh Kumar, Aaron Naeger, Jeffrey Geddes, Laura Judd, Scott Janz, Heesung Chong, and John Sullivan
Atmos. Meas. Tech., 16, 2431–2454, https://doi.org/10.5194/amt-16-2431-2023, https://doi.org/10.5194/amt-16-2431-2023, 2023
Short summary
Short summary
Satellites provide vital information for studying the processes controlling ozone formation. Based on the abundance of particular gases in the atmosphere, ozone formation is sensitive to specific human-induced and natural emission sources. However, errors and biases in satellite retrievals hinder this data source’s application for studying ozone formation sensitivity. We conducted a thorough statistical evaluation of two commonly applied satellites for investigating ozone formation sensitivity.
Yunyao Li, Daniel Tong, Siqi Ma, Saulo R. Freitas, Ravan Ahmadov, Mikhail Sofiev, Xiaoyang Zhang, Shobha Kondragunta, Ralph Kahn, Youhua Tang, Barry Baker, Patrick Campbell, Rick Saylor, Georg Grell, and Fangjun Li
Atmos. Chem. Phys., 23, 3083–3101, https://doi.org/10.5194/acp-23-3083-2023, https://doi.org/10.5194/acp-23-3083-2023, 2023
Short summary
Short summary
Plume height is important in wildfire smoke dispersion and affects air quality and human health. We assess the impact of plume height on wildfire smoke dispersion and the exceedances of the National Ambient Air Quality Standards. A higher plume height predicts lower pollution near the source region, but higher pollution in downwind regions, due to the faster spread of the smoke once ejected, affects pollution exceedance forecasts and the early warning of extreme air pollution events.
Laura Hyesung Yang, Daniel J. Jacob, Nadia K. Colombi, Shixian Zhai, Kelvin H. Bates, Viral Shah, Ellie Beaudry, Robert M. Yantosca, Haipeng Lin, Jared F. Brewer, Heesung Chong, Katherine R. Travis, James H. Crawford, Lok N. Lamsal, Ja-Ho Koo, and Jhoon Kim
Atmos. Chem. Phys., 23, 2465–2481, https://doi.org/10.5194/acp-23-2465-2023, https://doi.org/10.5194/acp-23-2465-2023, 2023
Short summary
Short summary
A geostationary satellite can now provide hourly NO2 vertical columns, and obtaining the NO2 vertical columns from space relies on NO2 vertical distribution from the chemical transport model (CTM). In this work, we update the CTM to better represent the chemistry environment so that the CTM can accurately provide NO2 vertical distribution. We also find that the changes in NO2 vertical distribution driven by a change in mixing depth play an important role in the NO2 column's diurnal variation.
Amir H. Souri, Matthew S. Johnson, Glenn M. Wolfe, James H. Crawford, Alan Fried, Armin Wisthaler, William H. Brune, Donald R. Blake, Andrew J. Weinheimer, Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Corinne Vigouroux, Bavo Langerock, Sungyeon Choi, Lok Lamsal, Lei Zhu, Shuai Sun, Ronald C. Cohen, Kyung-Eun Min, Changmin Cho, Sajeev Philip, Xiong Liu, and Kelly Chance
Atmos. Chem. Phys., 23, 1963–1986, https://doi.org/10.5194/acp-23-1963-2023, https://doi.org/10.5194/acp-23-1963-2023, 2023
Short summary
Short summary
We have rigorously characterized different sources of error in satellite-based HCHO / NO2 tropospheric columns, a widely used metric for diagnosing near-surface ozone sensitivity. Specifically, the errors were categorized/quantified into (i) an inherent chemistry error, (ii) the decoupled relationship between columns and the near-surface concentration, (iii) the spatial representativeness error of ground satellite pixels, and (iv) the satellite retrieval errors.
Gyo-Hwang Choo, Kyunghwa Lee, Hyunkee Hong, Ukkyo Jeong, Wonei Choi, and Scott J. Janz
Atmos. Meas. Tech., 16, 625–644, https://doi.org/10.5194/amt-16-625-2023, https://doi.org/10.5194/amt-16-625-2023, 2023
Short summary
Short summary
This study discusses the morning and afternoon distribution of NO2 emissions in large cities and industrial areas in South Korea, one of the largest NO2 emitters around the world, using GeoTASO, an airborne remote sensing instrument developed to support geostationary satellite missions. NO2 measurements from GeoTASO were compared with those from ground-based remote sensing instruments including Pandora and in situ sensors.
Joanna Joiner, Sergey Marchenko, Zachary Fasnacht, Lok Lamsal, Can Li, Alexander Vasilkov, and Nickolay Krotkov
Atmos. Meas. Tech., 16, 481–500, https://doi.org/10.5194/amt-16-481-2023, https://doi.org/10.5194/amt-16-481-2023, 2023
Short summary
Short summary
Nitrogen dioxide (NO2) is an important trace gas for both air quality and climate. NO2 affects satellite ocean color products. A new ocean color instrument – OCI (Ocean Color Instrument) – will be launched in 2024 on a NASA satellite. We show that it will be possible to measure NO2 from OCI even though it was not designed for this. The techniques developed here, based on machine learning, can also be applied to instruments already in space to speed up algorithms and reduce the effects of noise.
Viral Shah, Daniel J. Jacob, Ruijun Dang, Lok N. Lamsal, Sarah A. Strode, Stephen D. Steenrod, K. Folkert Boersma, Sebastian D. Eastham, Thibaud M. Fritz, Chelsea Thompson, Jeff Peischl, Ilann Bourgeois, Ilana B. Pollack, Benjamin A. Nault, Ronald C. Cohen, Pedro Campuzano-Jost, Jose L. Jimenez, Simone T. Andersen, Lucy J. Carpenter, Tomás Sherwen, and Mat J. Evans
Atmos. Chem. Phys., 23, 1227–1257, https://doi.org/10.5194/acp-23-1227-2023, https://doi.org/10.5194/acp-23-1227-2023, 2023
Short summary
Short summary
NOx in the free troposphere (above 2 km) affects global tropospheric chemistry and the retrieval and interpretation of satellite NO2 measurements. We evaluate free tropospheric NOx in global atmospheric chemistry models and find that recycling NOx from its reservoirs over the oceans is faster than that simulated in the models, resulting in increases in simulated tropospheric ozone and OH. Over the U.S., free tropospheric NO2 contributes the majority of the tropospheric NO2 column in summer.
James D. East, Barron H. Henderson, Sergey L. Napelenok, Shannon N. Koplitz, Golam Sarwar, Robert Gilliam, Allen Lenzen, Daniel Q. Tong, R. Bradley Pierce, and Fernando Garcia-Menendez
Atmos. Chem. Phys., 22, 15981–16001, https://doi.org/10.5194/acp-22-15981-2022, https://doi.org/10.5194/acp-22-15981-2022, 2022
Short summary
Short summary
We present a framework that uses a computer model of air quality, along with air pollution data from satellite instruments, to estimate emissions of nitrogen oxides (NOx) across the Northern Hemisphere. The framework, which advances current methods to infer emissions from satellite observations, provides observationally constrained NOx estimates, including in regions of the world where emissions are highly uncertain, and can improve simulations of air pollutants relevant for health and policy.
Claudia Bernier, Yuxuan Wang, Guillaume Gronoff, Timothy Berkoff, K. Emma Knowland, John T. Sullivan, Ruben Delgado, Vanessa Caicedo, and Brian Carroll
Atmos. Chem. Phys., 22, 15313–15331, https://doi.org/10.5194/acp-22-15313-2022, https://doi.org/10.5194/acp-22-15313-2022, 2022
Short summary
Short summary
Coastal regions are susceptible to variable and high ozone which is difficult to simulate. We developed a method to characterize large datasets of multi-dimensional measurements from lidar instruments taken in coastal regions. Using the clustered ozone groups, we evaluated model performance in simulating the coastal ozone variability vertically and diurnally. The approach allowed us to pinpoint areas where the models succeed in simulating coastal ozone and areas where there are still gaps.
Sebastien Garrigues, Samuel Remy, Julien Chimot, Melanie Ades, Antje Inness, Johannes Flemming, Zak Kipling, Istvan Laszlo, Angela Benedetti, Roberto Ribas, Soheila Jafariserajehlou, Bertrand Fougnie, Shobha Kondragunta, Richard Engelen, Vincent-Henri Peuch, Mark Parrington, Nicolas Bousserez, Margarita Vazquez Navarro, and Anna Agusti-Panareda
Atmos. Chem. Phys., 22, 14657–14692, https://doi.org/10.5194/acp-22-14657-2022, https://doi.org/10.5194/acp-22-14657-2022, 2022
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service (CAMS) provides global monitoring of aerosols using the ECMWF forecast model constrained by the assimilation of satellite aerosol optical depth (AOD). This work aims at evaluating two new satellite AODs to enhance the CAMS aerosol global forecast. It highlights the spatial and temporal differences between the satellite AOD products at the model spatial resolution, which is essential information to design multi-satellite AOD data assimilation schemes.
Youhua Tang, Patrick C. Campbell, Pius Lee, Rick Saylor, Fanglin Yang, Barry Baker, Daniel Tong, Ariel Stein, Jianping Huang, Ho-Chun Huang, Li Pan, Jeff McQueen, Ivanka Stajner, Jose Tirado-Delgado, Youngsun Jung, Melissa Yang, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Donald Blake, Joshua Schwarz, Jose-Luis Jimenez, James Crawford, Glenn Diskin, Richard Moore, Johnathan Hair, Greg Huey, Andrew Rollins, Jack Dibb, and Xiaoyang Zhang
Geosci. Model Dev., 15, 7977–7999, https://doi.org/10.5194/gmd-15-7977-2022, https://doi.org/10.5194/gmd-15-7977-2022, 2022
Short summary
Short summary
This paper compares two meteorological datasets for driving a regional air quality model: a regional meteorological model using WRF (WRF-CMAQ) and direct interpolation from an operational global model (GFS-CMAQ). In the comparison with surface measurements and aircraft data in summer 2019, these two methods show mixed performance depending on the corresponding meteorological settings. Direct interpolation is found to be a viable method to drive air quality models.
Alice Crawford, Tianfeng Chai, Binyu Wang, Allison Ring, Barbara Stunder, Christopher P. Loughner, Michael Pavolonis, and Justin Sieglaff
Atmos. Chem. Phys., 22, 13967–13996, https://doi.org/10.5194/acp-22-13967-2022, https://doi.org/10.5194/acp-22-13967-2022, 2022
Short summary
Short summary
This study describes the development of a workflow which produces probabilistic and quantitative forecasts of volcanic ash in the atmosphere. The workflow includes methods of incorporating satellite observations of the ash cloud into a modeling framework as well as verification statistics that can be used to guide further model development and provide information for risk-based approaches to flight planning.
Daniel L. Goldberg, Monica Harkey, Benjamin de Foy, Laura Judd, Jeremiah Johnson, Greg Yarwood, and Tracey Holloway
Atmos. Chem. Phys., 22, 10875–10900, https://doi.org/10.5194/acp-22-10875-2022, https://doi.org/10.5194/acp-22-10875-2022, 2022
Short summary
Short summary
TROPOMI measurements offer a valuable means to validate emissions inventories and ozone formation regimes, with important limitations. Lightning NOx is important to account for in Texas and can contribute up to 24 % of the column NO2 in rural areas and 8 % in urban areas. Modeled NO2 in urban areas agrees with TROPOMI NO2 to within 20 % in most circumstances, with a small underestimate in Dallas (−13 %) and Houston (−20 %). Near Texas power plants, the satellite appears to underrepresent NO2.
Aaron Pearlman, Monica Cook, Boryana Efremova, Francis Padula, Lok Lamsal, Joel McCorkel, and Joanna Joiner
Atmos. Meas. Tech., 15, 4489–4501, https://doi.org/10.5194/amt-15-4489-2022, https://doi.org/10.5194/amt-15-4489-2022, 2022
Short summary
Short summary
NOAA’s Geostationary Extended Observations (GeoXO) constellation is planned to consist of an atmospheric composition instrument (ACX) to support air quality forecasting and monitoring. As design trade-offs are being studied, we investigated one parameter, the polarization sensitivity, which has yet to be fully documented for NO2 retrievals. Our simulation study explores these impacts to inform the ACX’s development and better understand polarization’s role in trace gas retrievals.
Li Zhang, Raffaele Montuoro, Stuart A. McKeen, Barry Baker, Partha S. Bhattacharjee, Georg A. Grell, Judy Henderson, Li Pan, Gregory J. Frost, Jeff McQueen, Rick Saylor, Haiqin Li, Ravan Ahmadov, Jun Wang, Ivanka Stajner, Shobha Kondragunta, Xiaoyang Zhang, and Fangjun Li
Geosci. Model Dev., 15, 5337–5369, https://doi.org/10.5194/gmd-15-5337-2022, https://doi.org/10.5194/gmd-15-5337-2022, 2022
Short summary
Short summary
The NOAA’s air quality predictions contribute to protecting lives and health in the US, which requires sustainable development and improvement of forecast systems. GEFS-Aerosols v1 has been developed in a collaboration between the NOAA research laboratories for operational forecast since September 2020 in the NCEP. The predictions demonstrate substantial improvements for both composition and variability of aerosol distributions over those from the former operational system.
Liqiao Lei, Timothy A. Berkoff, Guillaume Gronoff, Jia Su, Amin R. Nehrir, Yonghua Wu, Fred Moshary, and Shi Kuang
Atmos. Meas. Tech., 15, 2465–2478, https://doi.org/10.5194/amt-15-2465-2022, https://doi.org/10.5194/amt-15-2465-2022, 2022
Short summary
Short summary
Aerosol extinction in the UVB (280–315 nm) is difficult to retrieve using simple lidar techniques due to the lack of lidar ratios at those wavelengths. The 2018 Long Island Sound Tropospheric Ozone Study (LISTOS) in the New York City region provided the opportunity to characterize the lidar ratio for UVB aerosol retrieval for the Langley Mobile Ozone Lidar (LMOL). A 292 nm aerosol product comparison between the NASA Langley High Altitude Lidar Observatory (HALO) and LMOL was also carried out.
Chao Gao, Aijun Xiu, Xuelei Zhang, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, and Mengduo Zhang
Atmos. Chem. Phys., 22, 5265–5329, https://doi.org/10.5194/acp-22-5265-2022, https://doi.org/10.5194/acp-22-5265-2022, 2022
Short summary
Short summary
With ever-growing applications of two-way coupled meteorology and air quality models in Asia over the past decade, this paper summarizes the current status and research focuses, as well as how aerosol effects impact model performance, meteorology, and air quality. These models enable investigations of ARI and ACI effects induced by natural and anthropogenic aerosols in Asia, which has serious air pollution problems. The current gaps and perspectives are also presented and discussed.
Patrick C. Campbell, Youhua Tang, Pius Lee, Barry Baker, Daniel Tong, Rick Saylor, Ariel Stein, Jianping Huang, Ho-Chun Huang, Edward Strobach, Jeff McQueen, Li Pan, Ivanka Stajner, Jamese Sims, Jose Tirado-Delgado, Youngsun Jung, Fanglin Yang, Tanya L. Spero, and Robert C. Gilliam
Geosci. Model Dev., 15, 3281–3313, https://doi.org/10.5194/gmd-15-3281-2022, https://doi.org/10.5194/gmd-15-3281-2022, 2022
Short summary
Short summary
NOAA's National Air Quality Forecast Capability (NAQFC) continues to protect Americans from the harmful effects of air pollution, while saving billions of dollars per year. Here we describe and evaluate the development of the most advanced version of the NAQFC to date, which became operational at NOAA on 20 July 2021. The new NAQFC is based on a coupling of NOAA's operational Global Forecast System (GFS) version 16 with the Community Multiscale Air Quality (CMAQ) model version 5.3.1.
Adrian Chappell, Nicholas Webb, Mark Hennen, Charles Zender, Philippe Ciais, Kerstin Schepanski, Brandon Edwards, Nancy Ziegler, Sandra Jones, Yves Balkanski, Daniel Tong, John Leys, Stephan Heidenreich, Robert Hynes, David Fuchs, Zhenzhong Zeng, Marie Ekström, Matthew Baddock, Jeffrey Lee, and Tarek Kandakji
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-337, https://doi.org/10.5194/gmd-2021-337, 2021
Revised manuscript not accepted
Short summary
Short summary
Dust emissions influence global climate while simultaneously reducing the productive potential and resilience of landscapes to climate stressors, together impacting food security and human health. Our results indicate that tuning dust emission models to dust in the atmosphere has hidden dust emission modelling weaknesses and its poor performance. Our new approach will reduce uncertainty and driven by prognostic albedo improve Earth System Models of aerosol effects on future environmental change.
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
Haipeng Lin, Daniel J. Jacob, Elizabeth W. Lundgren, Melissa P. Sulprizio, Christoph A. Keller, Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Patrick C. Campbell, Barry Baker, Rick D. Saylor, and Raffaele Montuoro
Geosci. Model Dev., 14, 5487–5506, https://doi.org/10.5194/gmd-14-5487-2021, https://doi.org/10.5194/gmd-14-5487-2021, 2021
Short summary
Short summary
Emissions are a central component of atmospheric chemistry models. The Harmonized Emissions Component (HEMCO) is a software component for computing emissions from a user-selected ensemble of emission inventories and algorithms. It allows users to select, add, and scale emissions from different sources through a configuration file with no change to the model source code. We demonstrate the implementation of HEMCO in several models, all sharing the same HEMCO core code and database library.
Jianfeng Li, Yuhang Wang, Ruixiong Zhang, Charles Smeltzer, Andrew Weinheimer, Jay Herman, K. Folkert Boersma, Edward A. Celarier, Russell W. Long, James J. Szykman, Ruben Delgado, Anne M. Thompson, Travis N. Knepp, Lok N. Lamsal, Scott J. Janz, Matthew G. Kowalewski, Xiong Liu, and Caroline R. Nowlan
Atmos. Chem. Phys., 21, 11133–11160, https://doi.org/10.5194/acp-21-11133-2021, https://doi.org/10.5194/acp-21-11133-2021, 2021
Short summary
Short summary
Comprehensive evaluations of simulated diurnal cycles of NO2 and NOy concentrations, vertical profiles, and tropospheric vertical column densities at two different resolutions with various measurements during the DISCOVER-AQ 2011 campaign show potential distribution biases of NOx emissions in the National Emissions Inventory 2011 at both 36 and 4 km resolutions, providing another possible explanation for the overestimation of model results.
Hyun Cheol Kim, Soontae Kim, Mark Cohen, Changhan Bae, Dasom Lee, Rick Saylor, Minah Bae, Eunhye Kim, Byeong-Uk Kim, Jin-Ho Yoon, and Ariel Stein
Atmos. Chem. Phys., 21, 10065–10080, https://doi.org/10.5194/acp-21-10065-2021, https://doi.org/10.5194/acp-21-10065-2021, 2021
Short summary
Short summary
Global outbreaks of COVID-19 offer rare opportunities of natural experiments in emission control and corresponding responses of tropospheric chemistry. This study's novel approach investigates (1) isolating the pandemic's impact from natural and anthropogenic variations, (2) emission adjustment to reproduce real-time emissions, and (3) brute-force modeling to investigate Chinese economic activities. Results provide characteristics of the region's chemistry and emissions.
Xiaoyang Chen, Yang Zhang, Kai Wang, Daniel Tong, Pius Lee, Youhua Tang, Jianping Huang, Patrick C. Campbell, Jeff Mcqueen, Havala O. T. Pye, Benjamin N. Murphy, and Daiwen Kang
Geosci. Model Dev., 14, 3969–3993, https://doi.org/10.5194/gmd-14-3969-2021, https://doi.org/10.5194/gmd-14-3969-2021, 2021
Short summary
Short summary
The continuously updated National Air Quality Forecast Capability (NAQFC) provides air quality forecasts. To support the development of the next-generation NAQFC, we evaluate a prototype of GFSv15-CMAQv5.0.2. The performance and the potential improvements for the system are discussed. This study can provide a scientific basis for further development of NAQFC and help it to provide more accurate air quality forecasts to the public over the contiguous United States.
Wenfu Tang, David P. Edwards, Louisa K. Emmons, Helen M. Worden, Laura M. Judd, Lok N. Lamsal, Jassim A. Al-Saadi, Scott J. Janz, James H. Crawford, Merritt N. Deeter, Gabriele Pfister, Rebecca R. Buchholz, Benjamin Gaubert, and Caroline R. Nowlan
Atmos. Meas. Tech., 14, 4639–4655, https://doi.org/10.5194/amt-14-4639-2021, https://doi.org/10.5194/amt-14-4639-2021, 2021
Short summary
Short summary
We use high-resolution airborne mapping spectrometer measurements to assess sub-grid variability within satellite pixels over urban regions. The sub-grid variability within satellite pixels increases with increasing satellite pixel sizes. Temporal variability within satellite pixels decreases with increasing satellite pixel sizes. This work is particularly relevant and useful for future satellite design, satellite data interpretation, and point-grid data comparisons.
Jia Su, M. Patrick McCormick, Matthew S. Johnson, John T. Sullivan, Michael J. Newchurch, Timothy A. Berkoff, Shi Kuang, and Guillaume P. Gronoff
Atmos. Meas. Tech., 14, 4069–4082, https://doi.org/10.5194/amt-14-4069-2021, https://doi.org/10.5194/amt-14-4069-2021, 2021
Short summary
Short summary
A new technique using a three-wavelength differential absorption lidar (DIAL) technique based on an optical parametric oscillator (OPO) laser is proposed to obtain more accurate measurements of NO2. The retrieval uncertainties in aerosol extinction using the three-wavelength DIAL technique are reduced to less than 2 % of those when using the two-wavelength DIAL technique. Hampton University (HU) lidar NO2 profiles are compared with simulated data from the WRF-Chem model, and they agree well.
Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, Wei Pu, Xuanye Xu, Quanliang Chen, Xuelei Zhang, and Xin Wang
Atmos. Chem. Phys., 21, 6035–6051, https://doi.org/10.5194/acp-21-6035-2021, https://doi.org/10.5194/acp-21-6035-2021, 2021
Short summary
Short summary
We assess the effect of dust external and internal mixing with snow grains on the absorption coefficient and albedo of snowpack. The results suggest that dust–snow internal mixing strongly enhances snow absorption coefficient and albedo reduction relative to external mixing. Meanwhile, the possible non-uniform distribution of dust in snow grains may lead to significantly different values of absorption coefficient and albedo of snowpack in the visible spectral range.
Alexander Vasilkov, Nickolay Krotkov, Eun-Su Yang, Lok Lamsal, Joanna Joiner, Patricia Castellanos, Zachary Fasnacht, and Robert Spurr
Atmos. Meas. Tech., 14, 2857–2871, https://doi.org/10.5194/amt-14-2857-2021, https://doi.org/10.5194/amt-14-2857-2021, 2021
Short summary
Short summary
To explicitly account for aerosol effects in the OMI cloud and nitrogen dioxide algorithms, we use a model of aerosol optical properties from a global aerosol assimilation system and radiative transfer computations. Accounting for anisotropic reflection of Earth's surface is an important feature of the approach. Comparisons of the cloud and tropospheric nitrogen dioxide retrievals with implicit and explicit aerosol corrections are carried out for a selected area with high pollution.
Youhua Tang, Huisheng Bian, Zhining Tao, Luke D. Oman, Daniel Tong, Pius Lee, Patrick C. Campbell, Barry Baker, Cheng-Hsuan Lu, Li Pan, Jun Wang, Jeffery McQueen, and Ivanka Stajner
Atmos. Chem. Phys., 21, 2527–2550, https://doi.org/10.5194/acp-21-2527-2021, https://doi.org/10.5194/acp-21-2527-2021, 2021
Short summary
Short summary
Chemical lateral boundary condition (CLBC) impact is essential for regional air quality prediction during intrusion events. We present a model mapping Goddard Earth Observing System (GEOS) to Community Multi-scale Air Quality (CMAQ) CB05–AERO6 (Carbon Bond 5; version 6 of the aerosol module) species. Influence depends on distance from the inflow boundary and species and their regional characteristics. We use aerosol optical thickness to derive CLBCs, achieving reasonable prediction.
Yilin Chen, Huizhong Shen, Jennifer Kaiser, Yongtao Hu, Shannon L. Capps, Shunliu Zhao, Amir Hakami, Jhih-Shyang Shih, Gertrude K. Pavur, Matthew D. Turner, Daven K. Henze, Jaroslav Resler, Athanasios Nenes, Sergey L. Napelenok, Jesse O. Bash, Kathleen M. Fahey, Gregory R. Carmichael, Tianfeng Chai, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, and Armistead G. Russell
Atmos. Chem. Phys., 21, 2067–2082, https://doi.org/10.5194/acp-21-2067-2021, https://doi.org/10.5194/acp-21-2067-2021, 2021
Short summary
Short summary
Ammonia (NH3) emissions can exert adverse impacts on air quality and ecosystem well-being. NH3 emission inventories are viewed as highly uncertain. Here we optimize the NH3 emission estimates in the US using an air quality model and NH3 measurements from the IASI satellite instruments. The optimized NH3 emissions are much higher than the National Emissions Inventory estimates in April. The optimized NH3 emissions improved model performance when evaluated against independent observation.
Lok N. Lamsal, Nickolay A. Krotkov, Alexander Vasilkov, Sergey Marchenko, Wenhan Qin, Eun-Su Yang, Zachary Fasnacht, Joanna Joiner, Sungyeon Choi, David Haffner, William H. Swartz, Bradford Fisher, and Eric Bucsela
Atmos. Meas. Tech., 14, 455–479, https://doi.org/10.5194/amt-14-455-2021, https://doi.org/10.5194/amt-14-455-2021, 2021
Short summary
Short summary
The NASA standard nitrogen dioxide (NO2) version 4.0 product for OMI Aura incorporates the most salient improvements. It represents the first global satellite trace gas retrieval with OMI–MODIS synergy accounting for surface reflectance anisotropy in cloud and NO2 retrievals. Improved spectral fitting procedures for NO2 and oxygen dimer (for cloud) retrievals and reliance on high-resolution field-of-view-specific input information for NO2 and cloud retrievals help enhance the NO2 data quality.
Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14787–14800, https://doi.org/10.5194/acp-20-14787-2020, https://doi.org/10.5194/acp-20-14787-2020, 2020
Short summary
Short summary
The Chinese government has made major strides in curbing anthropogenic emissions. In this study, we constrain a state-of-the-art CTM by a reliable data assimilation method with extensive chemical and meteorological observations. This comprehensive technical design provides a crucial advance in isolating the influences of emission changes and meteorological perturbations over the Yangtze River Delta (YRD) from 2016 to 2019, thus establishing the first map of the PM2.5 mitigation across the YRD.
Laura M. Judd, Jassim A. Al-Saadi, James J. Szykman, Lukas C. Valin, Scott J. Janz, Matthew G. Kowalewski, Henk J. Eskes, J. Pepijn Veefkind, Alexander Cede, Moritz Mueller, Manuel Gebetsberger, Robert Swap, R. Bradley Pierce, Caroline R. Nowlan, Gonzalo González Abad, Amin Nehrir, and David Williams
Atmos. Meas. Tech., 13, 6113–6140, https://doi.org/10.5194/amt-13-6113-2020, https://doi.org/10.5194/amt-13-6113-2020, 2020
Short summary
Short summary
This paper evaluates Sentinel-5P TROPOMI v1.2 NO2 tropospheric columns over New York City using data from airborne mapping spectrometers and a network of ground-based spectrometers (Pandora) collected in 2018. These evaluations consider impacts due to cloud parameters, a priori profile assumptions, and spatial and temporal variability. Overall, TROPOMI tropospheric NO2 columns appear to have a low bias in this region.
Hai Zhang, Shobha Kondragunta, Istvan Laszlo, and Mi Zhou
Atmos. Meas. Tech., 13, 5955–5975, https://doi.org/10.5194/amt-13-5955-2020, https://doi.org/10.5194/amt-13-5955-2020, 2020
Short summary
Short summary
Geostationary Operational Environmental Satellites (GOES) retrieve high temporal resolution aerosol optical depth, which is a measure of the aerosol quantity within the atmospheric column. This work introduces an algorithm that improves the accuracy of the aerosol optical depth retrievals from GOES. The resulting data product can be used in monitoring the air quality and climate change research.
Shi Kuang, Bo Wang, Michael J. Newchurch, Kevin Knupp, Paula Tucker, Edwin W. Eloranta, Joseph P. Garcia, Ilya Razenkov, John T. Sullivan, Timothy A. Berkoff, Guillaume Gronoff, Liqiao Lei, Christoph J. Senff, Andrew O. Langford, Thierry Leblanc, and Vijay Natraj
Atmos. Meas. Tech., 13, 5277–5292, https://doi.org/10.5194/amt-13-5277-2020, https://doi.org/10.5194/amt-13-5277-2020, 2020
Short summary
Short summary
Ozone lidar is a state-of-the-art remote-sensing instrument to measure atmospheric ozone concentrations with high spatiotemporal resolution. In this study, we show that an ozone lidar can also provide reliable aerosol measurements through intercomparison with colocated aerosol lidar observations.
Hyun Cheol Kim, Tianfeng Chai, Ariel Stein, and Shobha Kondragunta
Atmos. Chem. Phys., 20, 10259–10277, https://doi.org/10.5194/acp-20-10259-2020, https://doi.org/10.5194/acp-20-10259-2020, 2020
Short summary
Short summary
Smoke forecasts have been challenged by high uncertainty in fire emission estimates. We develop an inverse modeling system, the HYSPLIT-based Emissions Inverse Modeling System for wildfires, that estimates wildfire emissions from the transport and dispersion of smoke plumes as measured by satellite observations. Using NOAA HYSPLIT and GOES Aerosol/Smoke Product (GASP), the system resolves smoke source strength as a function of time and vertical level and outperforms current operational system.
Cited articles
Adhikary, B., Kulkarni, S., Dallura, A., Tang, Y., Chai, T., Leung, L. R.,
Qian, Y., Chung, C. E., Ramanathan, V., and Carmichael, G. R.: A regional
scale chemical transport modeling of Asian aerosols with data assimilation
of AOD observations using optimal interpolation technique, Atmos. Environ.,
42, 8600–8615, https://doi.org/10.1016/j.atmosenv.2008.08.031, 2008.
Baker, K. R., Liljegren, J., Valin, L., Judd, L. M., Henderson, B. H.,
Szykman, J., Al-Saadi, J. A., Janz, S. J., Sareen, N., and Possiel, N.:
Model-Measurement Comparison of Ozone and Precursors Along Land-Water
Interfaces during the 2017 LMOS and 2018 LISTOS Field Campaigns, AGUFM, A21E-06, 2019.
Berkoff, T., Gronoff, G., Baker, B., Lee, P., Dreessen, J., and Sullivan, J.:
Comparison of tropospheric ozone vertical profiles between NASA ozone lidars
and NOAA's National Air Quality Forecasting Capability (NAQFC) model, AGUFM,
2019, A21E-02, https://doi.org/10.1016/j.atmosenv.2010.04.044, 2019.
Borge, R., López, J., Lumbreras, J., Narros, A., and Rodríguez, E.:
Influence of boundary conditions on CMAQ simulations over the Iberian
Peninsula, Atmos. Environ., 44, 2681–2695,
https://doi.org/10.1016/j.atmosenv.2010.04.044, 2010.
Brunekreef, B. and Holgate, S. T.: Air pollution and health, Lancet,
360, 1233–1242, https://doi.org/10.1016/S0140-6736(02)11274-8, 2002.
Byun, D. and Schere, K. L.: Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51-77, https://doi.org/10.1115/1.2128636, 2006.
Candiani, G., Carnevale, C., Finzi, G., Pisoni, E., and Volta, M.: A
comparison of reanalysis techniques: Applying optimal interpolation and
Ensemble Kalman Filtering to improve air quality monitoring at mesoscale,
Sci. Total Environ., 458, 7–14,
https://doi.org/10.1016/j.scitotenv.2013.03.089, 2013.
Chai, T., Kim, H., Pan, L., Lee, P., and Tong, D.: Impact of Moderate
Resolution Imaging Spectroradiometer aerosol optical depth and AirNow PM2.5 assimilation on Community Multi-scale Air Quality aerosol predictions over the contiguous United States, J. Geophys. Res.-Atmos., 122, 5399–5415, https://doi.org/10.1002/2016JD026295, 2017.
Chameides, W. L., Fehsenfeld, F., Rodgers, M. O., Cardelino, C., Martinez,
J., Parrish, D., Lonneman, W., Lawson, D. R., Rasmussen, R. A., and
Zimmerman, P.: Ozone precursor relationships in the ambient atmosphere, J.
Geophys. Res.-Atmos., 97, 6037–6055, 1992.
Community Modeling and Analysis System (CMAS) Center: Community Multiscale Air Quality (CMAQ) Model Version 5.3.1, CMAS [code], available at: https://www.cmascenter.org/download/software/cmaq/cmaq_5-3-1.cfm?DB=TRUE, last access: 1 November 2021, 2021a.
Community Modeling and Analysis System (CMAS) Center: Sparse Matrix Operator Kerner Emissions (SMOKE) Modeling System Version 4.7, CMAS [code], available at: https://www.cmascenter.org/download/software/smoke/smoke_4-7.cfm?DB=TRUE, last access: 1 November 2021, 2021b.
Davidson, P., Schere, K., Draxler, R., Kondragunta, S., Wayland, R. A.,
Meagher, J. F., and Mathur, R.: Toward a US National Air Quality Forecast
Capability: Current and Planned Capabilities, in: Air Pollution Modeling and
Its Application XIX, edited by: Borrego, C. and Miranda, A., 226–234,
Springer, Dordrecht, The Netherlands, ISBN 978 1 4020 8452 2, 2008.
De Young, R., Carrion, W., Ganoe, R., Pliutau, D., Gronoff, G., Berkoff, T.,
and Kuang, S.: Langley mobile ozone lidar: ozone and aerosol atmospheric
profiling for air quality research, Appl. Opt., 56, 721–730,
https://doi.org/10.1364/AO.56.000721, 2017.
Dix, B., de Bruin, J., Roosenbrand, E., Vlemmix, T., Francoeur, C.,
Gorchov-Negron, A., McDonald, B., Zhizhin, M., Elvidge, C., and Veefkind, P.:
Nitrogen Oxide Emissions from US Oil and Gas Production: Recent Trends and
Source Attribution, Geophys. Res. Lett., 47, e2019GL085866,
https://doi.org/10.1029/2019GL085866, 2020.
Dunlea, E. J., Herndon, S. C., Nelson, D. D., Volkamer, R. M., San Martini, F., Sheehy, P. M., Zahniser, M. S., Shorter, J. H., Wormhoudt, J. C., Lamb, B. K., Allwine, E. J., Gaffney, J. S., Marley, N. A., Grutter, M., Marquez, C., Blanco, S., Cardenas, B., Retama, A., Ramos Villegas, C. R., Kolb, C. E., Molina, L. T., and Molina, M. J.: Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment, Atmos. Chem. Phys., 7, 2691–2704, https://doi.org/10.5194/acp-7-2691-2007, 2007.
Eder, B., Kang, D., Rao, S. T., Mathur, R., Yu, S. C., Otte, T., Schere, K.,
Wayland, R., Jackson, S., Davidson, P., and McQueen, J.: A demonstration of
the use of national air quality forecast guidance for developing local air
quality index forecasts, B. Am. Meteorol. Soc., 91, 313–326,
https://doi.org/10.1175/2009BAMS2734.1, 2010.
Elbern, H., Strunk, A., Schmidt, H., and Talagrand, O.: Emission rate and chemical state estimation by 4-dimensional variational inversion, Atmos. Chem. Phys., 7, 3749–3769, https://doi.org/10.5194/acp-7-3749-2007, 2007.
Feng, J., Chan, E., and Vet, R.: Air quality in the eastern United States and Eastern Canada for 1990–2015: 25 years of change in response to emission reductions of SO2 and NOx in the region, Atmos. Chem. Phys., 20, 3107–3134, https://doi.org/10.5194/acp-20-3107-2020, 2020.
Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess, P., Textor, C., Schulz, M., Doherty, R. M., Horowitz, L. W., MacKenzie, I. A., Sanderson, M. G., Shindell, D. T., Stevenson, D. S., Szopa, S., Van Dingenen, R., Zeng, G., Atherton, C., Bergmann, D., Bey, I., Carmichael, G., Collins, W. J., Duncan, B. N., Faluvegi, G., Folberth, G., Gauss, M., Gong, S., Hauglustaine, D., Holloway, T., Isaksen, I. S. A., Jacob, D. J., Jonson, J. E., Kaminski, J. W., Keating, T. J., Lupu, A., Marmer, E., Montanaro, V., Park, R. J., Pitari, G., Pringle, K. J., Pyle, J. A., Schroeder, S., Vivanco, M. G., Wind, P., Wojcik, G., Wu, S., and Zuber, A.: Multimodel estimates of intercontinental source-receptor relationships for ozone pollution, J. Geophys. Res.-Atmos., 114, D04301, https://doi.org/10.1029/2008jd010816, 2009.
Gantt, B., Kelly, J. T., and Bash, J. O.: Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2, Geosci. Model Dev., 8, 3733–3746, https://doi.org/10.5194/gmd-8-3733-2015, 2015.
Gong, S. L.: A parameterization of sea-salt aerosol source function for
sub- and super- micron particles, Global Biogeochem. Cycles, 17, 1097,
https://doi.org/10.1029/2003GB002079, 2003.
Gronoff, G., Robinson, J., Berkoff, T., Swap, R., Farris, B., Schroeder, J.,
Halliday, H. S., Knepp, T., Spinei, E., and Carrion, W.: A method for
quantifying near range point source induced O3 titration events using
Co-located Lidar and Pandora measurements, Atmos. Environ., 204, 43–52,
https://doi.org/10.1016/j.atmosenv.2019.01.052, 2019.
He, H., Liang, X.-Z., Sun, C., Tao, Z., and Tong, D. Q.: The long-term trend and production sensitivity change in the US ozone pollution from observations and model simulations, Atmos. Chem. Phys., 20, 3191–3208, https://doi.org/10.5194/acp-20-3191-2020, 2020.
Henderson, B. H., Akhtar, F., Pye, H. O. T., Napelenok, S. L., and Hutzell, W. T.: A database and tool for boundary conditions for regional air quality modeling: description and evaluation, Geosci. Model Dev., 7, 339–360, https://doi.org/10.5194/gmd-7-339-2014, 2014.
Héroux, M.-E., Anderson, H. R., Atkinson, R., Brunekreef, B., Cohen, A.,
Forastiere, F., Hurley, F., Katsouyanni, K., Krewski, D., and Krzyzanowski,
M.: Quantifying the health impacts of ambient air pollutants:
recommendations of a WHO/Europe project, Int. J. Public Health, 60,
619–627, https://doi.org/10.1007/s00038-015-0690-y, 2015.
Hogrefe, C., Hao, W., Civerolo, K., Ku, J.-Y., Sistla, G., Gaza, R. S.,
Sedefian, L., Schere, K., Gilliland, A., and Mathur, R.: Daily simulation of
ozone and fine particulates over New York State: findings and challenges, J.
Appl. Meteorol. Climatol., 46, 961–979, 2007.
Hogrefe, C., Hao, W., Zalewsky, E. E., Ku, J.-Y., Lynn, B., Rosenzweig, C., Schultz, M. G., Rast, S., Newchurch, M. J., Wang, L., Kinney, P. L., and Sistla, G.: An analysis of long-term regional-scale ozone simulations over the Northeastern United States: variability and trends, Atmos. Chem. Phys., 11, 567–582, https://doi.org/10.5194/acp-11-567-2011, 2011.
Houyoux, M., Vukovich, J., Brandmeyer, J. E., Seppanen, C., and Holland, A.:
Sparse matrix operator kernel emissions modeling system-SMOKE User manual,
Prep. by MCNC-North Carolina Supercomputing Center, Environ. Programs Res.,
Triangle Park, NC, 2000.
Jerrett, M., Arain, M. A., Kanaroglou, P., Beckerman, B., Crouse, D.,
Gilbert, N. L., Brook, J. R., Finkelstein, N., and Finkelstein, M. M.:
Modeling the intraurban variability of ambient traffic pollution in Toronto,
Canada, J. Toxicol. Environ. Heal., Part A, 70, 200–212,
https://doi.org/10.1080/15287390600883018, 2007.
Judd, L. M., Al-Saadi, J. A., Szykman, J. J., Valin, L. C., Janz, S. J., Kowalewski, M. G., Eskes, H. J., Veefkind, J. P., Cede, A., Mueller, M., Gebetsberger, M., Swap, R., Pierce, R. B., Nowlan, C. R., Abad, G. G., Nehrir, A., and Williams, D.: Evaluating Sentinel-5P TROPOMI tropospheric NO2 column densities with airborne and Pandora spectrometers near New York City and Long Island Sound, Atmos. Meas. Tech., 13, 6113–6140, https://doi.org/10.5194/amt-13-6113-2020, 2020.
Kim, J. Y., Burnett, R. T., Neas, L., Thurston, G. D., Schwartz, J.,
Tolbert, P. E., Brunekreef, B., Goldberg, M. S., and Romieu, I.: Panel
discussion review: session two–interpretation of observed associations
between multiple ambient air pollutants and health effects in epidemiologic
analyses, Panel discussion review: session two–interpretation of observed associations between multiple ambient air pollutants and health effects in epidemiologic analyses, J. Expo. Sci. Environ. Epidemiol., 17, S83–S89, 2007.
Kowalewski, M. G. and Janz, S. J.: Remote sensing capabilities of the
GeoCAPE Airborne Simulator, Earth Observing Systems XIX,
International Society for Optics and Photonics., 9218, 92181I,
https://doi.org/10.1117/12.2062058, 2014.
Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan, B. N., Boersma, K. F., Veefkind, J. P., Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., and Streets, D. G.: Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605–4629, https://doi.org/10.5194/acp-16-4605-2016, 2016.
Khan, A. W. and Kumar, P.: Impact of chemical initial and lateral boundary
conditions on air quality prediction, Adv. Sp. Res., 64, 1331–1342,
https://doi.org/10.1016/j.asr.2019.06.028, 2019.
Lamsal, L. N., Martin, R. V., Padmanabhan, A., van Donkelaar, A., Zhang, Q., Sioris, C. E., Chance, K., Kurosu, T. P., and Newchurch, M. J.: Application of satellite observations for timely updates to global anthropogenic NOx emission inventories, Geophys. Res. Lett., 38, L05810,
https://doi.org/10.1029/2010GL046476, 2011.
Lamsal, L. N., Krotkov, N. A., Vasilkov, A., Marchenko, S., Qin, W., Yang, E.-S., Fasnacht, Z., Joiner, J., Choi, S., Haffner, D., Swartz, W. H., Fisher, B., and Bucsela, E.: Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard product version 4.0 with improved surface and cloud treatments, Atmos. Meas. Tech., 14, 455–479, https://doi.org/10.5194/amt-14-455-2021, 2021.
Lee, P., McQueen, J., Stajner, I., Huang, J., Pan, L., Tong, D., Kim, H.,
Tang, Y., Kondragunta, S., and Ruminski, M.: NAQFC developmental forecast
guidance for fine particulate matter (PM2.5), Weather Forecast., 32,
343–360, https://doi.org/10.1175/WAF-D-15-0163.1, 2017.
Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Malkki, A., Visser,
H., de Vries, J., Stammes, P., Lundell, J. O. V., and Saari, H.: The ozone
monitoring instrument, IEEE Trans. Geosci. Remote Sens., 44, 1093–1101,
https://doi.org/10.1109/TGRS.2006.872333, 2006.
Liu, T.-H., Jeng, F.-T., Huang, H.-C., Berge, E., and Chang, J. S.:
Influences of initial conditions and boundary conditions on regional and
urban scale Eulerian air quality transport model simulations,
Chemosphere-Global Chang. Sci., 3, 175–183,
https://doi.org/10.1016/S1465-9972(00)00048-9, 2001.
Long, R., Hall, E., Beaver, M., Duvall, R., Kaushik, S., Kronmiller, K.,
Wheeler, M., Garvey, S., Drake, Z., and McElroy, F.: Performance of the
Proposed New Federal Reference Methods for Measuring Ozone Concentrations in
Ambient Air, US Environmental Protection Agency, Washington, DC,
EPA/600/R-14/432 (NTIS PB2015e101240), 2014.
Lu, Z., Streets, D. G., de Foy, B., Lamsal, L. N., Duncan, B. N., and Xing, J.: Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005–2014, Atmos. Chem. Phys., 15, 10367–10383, https://doi.org/10.5194/acp-15-10367-2015, 2015.
Luecken, D. J., Yarwood, G., and Hutzell, W. T.: Multipollutant modeling of
ozone, reactive nitrogen and HAPs across the continental US with CMAQ-CB6,
Atmos. Environ., 201, 62–72,
https://doi.org/10.1016/j.atmosenv.2018.11.060, 2019.
Makar, P. A., Gong, W., Mooney, C., Zhang, J., Davignon, D., Samaali, M., Moran, M. D., He, H., Tarasick, D. W., Sills, D., and Chen, J.: Dynamic adjustment of climatological ozone boundary conditions for air-quality forecasts, Atmos. Chem. Phys., 10, 8997–9015, https://doi.org/10.5194/acp-10-8997-2010, 2010.
Mathur, R., Hogrefe, C., Hakami, A., Zhao, S., Szykman, J., and Hagler, G.: A
call for an aloft air quality monitoring network: need, feasibility, and
potential value, Environ. Sci. Technol., 52, 10903–10908,
https://doi.org/10.1021/acs.est.8b02496, 2018.
McClenny, W. A., Williams, E. J., Cohen, R. C., and Stutz, J.: Preparing to
measure the effects of the NOX SIP Call–methods for ambient air monitoring
of NO, NO2, NOY, and individual NOZ species, J. Air Waste Manage.
Assoc., 52, 542–562, https://doi.org/10.1080/10473289.2002.10470801,
2002.
McDonald, B. C., de Gouw, J. A., Gilman, J. B., Jathar, S. H., Akherati, A.,
Cappa, C. D., Jimenez, J. L., Lee-Taylor, J., Hayes, P. L., McKeen, S. A.,
Cui, Y. Y., Kim, S.-W., Gentner, D. R., Isaacman-VanWertz, G., Goldstein, A.
H., Harley, R. A., Frost, G. J., Roberts, J. M., Ryerson, T. B., and
Trainer, M.: Volatile chemical products emerging as largest petrochemical
source of urban organic emissions, Science, 359, 760–764,
https://doi.org/10.1126/science.aaq0524, 2018.
Miyazaki, K., Eskes, H. J., and Sudo, K.: Global NOx emission estimates derived from an assimilation of OMI tropospheric NO2 columns, Atmos. Chem. Phys., 12, 2263–2288, https://doi.org/10.5194/acp-12-2263-2012, 2012.
Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y.: Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation, Atmos. Chem. Phys., 17, 807–837, https://doi.org/10.5194/acp-17-807-2017, 2017.
NASA: LISTOS – Long Island Sound Tropospheric Ozone Study, National Aeronautics and Space Administration (NASA) [data set],
https://www-air.larc.nasa.gov/cgi-bin/ArcView/listos (last access: 1 November 2021), 2018.
NASA and GSFC: Chemistry and Dynamics Branch, National Aeronautics and Space Administration (NASA), Goddard Space Flight Center (GSFC) [data set], available at https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI, last access: 31 July 2021.
NRC (National Research Council): Rethinking the Ozone Problem in Urban and Regional Air Pollution, Chapter 6, Natl. Acad. Press, Washington, D. C., USA, 163–176, https://doi.org/10.17226/1889, 1991.
Nowlan, C. R., Liu, X., Janz, S. J., Kowalewski, M. G., Chance, K., Follette-Cook, M. B., Fried, A., González Abad, G., Herman, J. R., Judd, L. M., Kwon, H.-A., Loughner, C. P., Pickering, K. E., Richter, D., Spinei, E., Walega, J., Weibring, P., and Weinheimer, A. J.: Nitrogen dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator over Houston, Texas, Atmos. Meas. Tech., 11, 5941–5964, https://doi.org/10.5194/amt-11-5941-2018, 2018.
Oliveri Conti, G., Heibati, B., Kloog, I., Fiore, M., and Ferrante, M.: A review of AirQ Models and their applications for forecasting the air pollution health outcomes, Environ. Sci. Pollut. R., 24, 6426–6445, https://doi.org/10.1007/s11356-016-8180-1, 2017.
Pan, L., Tong, D., Lee, P., Kim, H.-C., and Chai, T.: Assessment of NOx
and O3 forecasting performances in the US National Air Quality
Forecasting Capability before and after the 2012 major emissions updates,
Atmos. Environ., 95, 610–619,
https://doi.org/10.1016/j.atmosenv.2014.06.020, 2014.
Pan, S., Choi, Y., Jeon, W., Roy, A., Westenbarger, D. A., and Kim, H. C.:
Impact of high-resolution sea surface temperature, emission spikes and wind
on simulated surface ozone in Houston, Texas during a high ozone episode,
Atmos. Environ., 152, 362–376,
https://doi.org/10.1016/j.atmosenv.2016.12.030, 2017.
Pierce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., and Guenther,
A.: Influence of increased isoprene emissions on regional ozone modeling, J.
Geophys. Res.-Atmos., 103, 25611–25629, 1998.
Pour-Biazar, A., Khan, M., Wang, L., Park, Y., Newchurch, M., McNider, R.
T., Liu, X., Byun, D. W., and Cameron, R.: Utilization of satellite
observation of ozone and aerosols in providing initial and boundary
condition for regional air quality studies, J. Geophys. Res.-Atmos.,
116, D18309, https://doi.org/10.1029/2010JD015200, 2011.
Qu, Z., Henze, D. K., Li, C., Theys, N., Wang, Y., Wang, J., Wang, W., Han,
J., Shim, C., Dickerson, R. R., and Ren, X.: SO2 Emission Estimates Using OMI SO2 Retrievals for 2005–2017, J. Geophys. Res.-Atmos.,
124, 8336–8359, https://doi.org/10.1029/2019JD030243, 2019.
Sandu, A., Chai, T., and Carmichael, G. R.: Integration of Models and Observations – a Modern Paradigm for Air Quality Simulations, Chapter 15, Model. Pollut. Complex Environ. Syst., Hanrahan, G., Ed.; ILM Publications: St Albans, UK, 2, 419–434, ISBN 1 906 79901 6, 2010.
Shepard, D.: A two-dimensional interpolation function for irregularly-spaced
data, in: Proceedings of the 1968 23rd ACM National Conference, 517–524,
https://doi.org/10.1145/800186.810616, 1968.
Shu, Q., Baker, K. R., Napelenok, S. L., Szykman, J., Valin, L., and Plessel,
T.: Multi-scale Analysis of Ozone Source Apportionment Using CMAQ-ISAM
during 2018 LISTOS Field Campaign, AGUFM, A31E-06, 2019.
Silvern, R. F., Jacob, D. J., Mickley, L. J., Sulprizio, M. P., Travis, K. R., Marais, E. A., Cohen, R. C., Laughner, J. L., Choi, S., Joiner, J., and Lamsal, L. N.: Using satellite observations of tropospheric NO2 columns to infer long-term trends in US NOx emissions: the importance of accounting for the free tropospheric NO2 background, Atmos. Chem. Phys., 19, 8863–8878, https://doi.org/10.5194/acp-19-8863-2019, 2019.
Simon, H., Reff, A., Wells, B., Xing, J., and Frank, N.: Ozone trends across
the United States over a period of decreasing NOx and VOC emissions,
Environ. Sci. Technol., 49, 186–195, https://doi.org/10.1021/es504514z,
2015.
Skamarock, C., Klemp, B., Dudhia, J., Gill, O., Liu, Z., Berner, J., Wang, W., Powers, G., Duda, G., Barker, D., and Huang, X.-Y.: A description of the advanced research WRF model version 4, Tech. Rep., UCAR/NCAR, https://doi.org/10.5065/1DFH-6P97, 2019.
Spicer, C. W.: Smog chamber studies of nitrogen oxide (NOx) transformation
rate and nitrate precursor relationships, Environ. Sci. Technol., 17,
112–120, https://doi.org/10.1021/es00108a010, 1983.
Sullivan, J. T., Berkoff, T., Gronoff, G., Knepp, T., Pippin, M., Allen, D.,
Twigg, L., Swap, R., Tzortziou, M., and Thompson, A. M.: The Ozone
Water–Land Environmental Transition Study, UMBC Fac. Collect.,
https://doi.org/10.1175/BAMS-D-18-0025.1, 2019.
Taghavi, M., Cautenet, S., and Foret, G.: Simulation of ozone production in a complex circulation region using nested grids, Atmos. Chem. Phys., 4, 825–838, https://doi.org/10.5194/acp-4-825-2004, 2004.
Tang, Y. H., Carmichael, G. R., Thongboonchoo, N., Chai, T. F., Horowitz, L. W., Pierce, R., Al-Saadi, J. A., Pfister, G., Vukovich, J. M., Avery, M. A., Sachse, G. W., Ryerson, T. B., Holloway, J. S., Atlas, E. L., Flocke, F. M., Weber, R. J., Huey, L. G., Dibb, J. E., Streets, D., and Brune, W. H.: Influence of lateral and top boundary conditions on regional air quality prediction: A multiscale study coupling regional and global chemical transport models, J. Geophys. Res., 112, D10S18,
https://doi.org/10.1029/2006JD007515, 2007.
Tang, Y., Lee, P., Tsidulko, M., Huang, H.-C., McQueen, J. T., DiMego, G.
J., Emmons, L. K., Pierce, R. B., Thompson, A. M., and Lin, H.-M.: The impact
of chemical lateral boundary conditions on CMAQ predictions of tropospheric
ozone over the continental United States, Environ. Fluid. Mech., 9,
43–58, https://doi.org/10.1007/s10652-008-9092-5, 2009.
Tang, Y., Chai, T., Pan, L., Lee, P., Tong, D., Kim, H.-C., and Chen, W.:
Using optimal interpolation to assimilate surface measurements and satellite
AOD for ozone and PM2.5: A case study for July 2011, J. Air Waste Manage.
Assoc., 65, 1206–1216, https://doi.org/10.1080/10962247.2015.1062439,
2015.
Tang, Y., Pagowski, M., Chai, T., Pan, L., Lee, P., Baker, B., Kumar, R., Delle Monache, L., Tong, D., and Kim, H.-C.: A case study of aerosol data assimilation with the Community Multi-scale Air Quality Model over the contiguous United States using 3D-Var and optimal interpolation methods, Geosci. Model Dev., 10, 4743–4758, https://doi.org/10.5194/gmd-10-4743-2017, 2017.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001.
Tong, D. and Tang, Y.: Advancing Air Quality Forecasting to Protect Human
Health, Environmental Managers, available at: https://pubs.awma.org/flip/EM-Oct-2018/tong.pdf (last access: 13 November 2020), 2018.
Tong, D. Q. and Mauzerall, D. L.: Spatial variability of summertime
tropospheric ozone over the continental United States: Implications of an
evaluation of the CMAQ model, Atmos. Environ., 40, 3041–3056, 2006.
Tong, D. Q., Dan, M., Wang, T., and Lee, P.: Long-term dust climatology in the western United States reconstructed from routine aerosol ground monitoring, Atmos. Chem. Phys., 12, 5189–5205, https://doi.org/10.5194/acp-12-5189-2012, 2012.
Tong, D. Q., Lamsal, L., Pan, L., Ding, C., Kim, H., Lee, P., Chai, T.,
Pickering, K. E., and Stajner, I.: Long-term NOx trends over large cities in
the United States during the great recession: Comparison of satellite
retrievals, ground observations, and emission inventories, Atmos. Environ.,
107, 70–84, https://doi.org/10.1016/j.atmosenv.2015.01.035, 2015.
Tong, D., Pan, L., Chen, W., Lamsal, L., Lee, P., Tang, Y., Kim, H.,
Kondragunta, S., and Stajner, I.: Impact of the 2008 Global Recession on air
quality over the United States: Implications for surface ozone levels from
changes in NOx emissions, Geophys. Res. Lett., 43, 9280–9288,
https://doi.org/10.1002/2016GL069885, 2016.
US EPA: The Green Book Nonattainment Areas for Criteria Pollutants, available at: http://www.epa.gov/airquality/greenbook/index.html, last access: 13 November 2020.
US EPA: AirNow dataset, US Environmental Protection Agency (EPA) [data set], available at https://files.airnowtech.org/?prefix=airnow, last access: 12 May 2021a.
US EPA: Air Quality System (AQS), US Environmental Protection Agency (EPA) [data set], available at https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw, last access: 12 May 2021b.
Vira, J. and Sofiev, M.: On variational data assimilation for estimating
the model initial conditions and emission fluxes for short–term forecasting
of SOx concentrations, Atmos. Environ., 46, 318–328,
https://doi.org/10.1016/j.atmosenv.2011.09.066, 2012.
Wang, Y., Sartelet, K. N., Bocquet, M., and Chazette, P.: Assimilation of ground versus lidar observations for PM10 forecasting, Atmos. Chem. Phys., 13, 269–283, https://doi.org/10.5194/acp-13-269-2013, 2013.
WRF Development and Support Team: WRF source codes, WRF Development and Support Team [code], available at: https://www2.mmm.ucar.edu/wrf/users/download/get_source.html, last access: 1 November 2021.
Wu, L., Mallet, V., Bocquet, M., and Sportisse, B.: A comparison study of data assimilation algorithms for ozone forecasts, J. Geophys. Res.-Atmos., 113, D20310, https://doi.org/10.1029/2008JD009991, 2008.
Zhou, W., Cohan, D. S., and Napelenok, S. L.: Reconciling NOx emissions
reductions and ozone trends in the US, 2002–2006, Atmos. Environ., 70,
236–244, https://doi.org/10.1016/j.atmosenv.2012.12.038, 2013.
Short summary
Predicting high ozone gets more challenging as urban emissions decrease. How can different techniques be used to foretell the quality of air to better protect human health? We tested four techniques with the CMAQ model against observations during a field campaign over New York City. The new system proves to better predict the magnitude and timing of high ozone. These approaches can be extended to other regions to improve the predictability of high-O3 episodes in contemporary urban environments.
Predicting high ozone gets more challenging as urban emissions decrease. How can different...
Altmetrics
Final-revised paper
Preprint