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Abstract. Although air quality in the United States has im-
proved remarkably in the past decades, ground-level ozone
(O3) often rises in exceedance of the national ambient air
quality standard in nonattainment areas, including the Long
Island Sound (LIS) and its surrounding areas. Accurate pre-
diction of high-ozone episodes is needed to assist govern-
ment agencies and the public in mitigating harmful effects
of air pollution. In this study, we have developed a suite of
potential forecast improvements, including dynamic bound-
ary conditions, rapid emission refresh and chemical data as-
similation, in a 3 km resolution Community Multiscale Air
Quality (CMAQ) modeling system. The purpose is to eval-
uate and assess the effectiveness of these forecasting tech-
niques, individually or in combination, in improving forecast
guidance for two major air pollutants: surface O3 and nitro-
gen dioxide (NO2). Experiments were conducted for a high-
O3 episode (28–29 August 2018) during the Long Island
Sound Tropospheric Ozone Study (LISTOS) field campaign,
which provides abundant observations for evaluating model

performance. The results show that these forecast system up-
dates are useful in enhancing the capability of this 3 km fore-
casting model with varying effectiveness for different pollu-
tants. For O3 prediction, the most significant improvement
comes from the dynamic boundary conditions derived from
the NOAA operational forecast system, National Air Quality
Forecast Capability (NAQFC), which increases the correla-
tion coefficient (R) from 0.81 to 0.93 and reduces the root
mean square error (RMSE) from 14.97 to 8.22 ppbv, com-
pared to that with the static boundary conditions (BCs). The
NO2 from all high-resolution simulations outperforms that
from the operational 12 km NAQFC simulation, regardless
of the BCs used, highlighting the importance of spatially re-
solved emission and meteorology inputs for the prediction of
short-lived pollutants. The effectiveness of improved initial
concentrations through optimal interpolation (OI) is shown
to be high in urban areas with high emission density. The in-
fluence of OI adjustment, however, is maintained for a longer
period in rural areas, where emissions and chemical transfor-
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mation make a smaller contribution to the O3 budget than
that in high-emission areas. Following the assessment of in-
dividual updates, the forecasting system is configured with
dynamic boundary conditions, optimal interpolation of initial
concentrations and emission adjustment, to simulate a high-
ozone episode during the 2018 LISTOS field campaign. The
newly developed forecasting system significantly reduces the
bias of surface NO2 prediction. When compared with the
NASA Langley GeoCAPE Airborne Simulator (GCAS) ver-
tical column density (VCD), this system is able to reproduce
the NO2 VCD with a higher correlation (0.74), lower nor-
malized mean bias (40 %) and normalized mean error (61 %)
than NAQFC (0.57, 45 % and 76 %, respectively). The 3 km
system captures magnitude and timing of surface O3 peaks
and valleys better. In comparison with lidar, O3 profile vari-
ability of the vertical O3 is captured better by the new sys-
tem (correlation coefficient of 0.71) than by NAQFC (cor-
relation coefficient of 0.54). Although the experiments are
limited to one pollution episode over the Long Island Sound,
this study demonstrates feasible approaches to improve the
predictability of high-O3 episodes in contemporary urban en-
vironments.

1 Introduction

Exposure to ambient air pollutants has been associated with
detrimental health effects, including cardiovascular diseases
and premature deaths (Brunekreef and Holgate, 2002; Kim,
2007; Héroux et al., 2015). Recent decades have seen re-
markable improvement in the air quality across the United
States. From 1990 to 2015, the United States Environmen-
tal Protection Agency (US EPA) estimated that the emis-
sions of nitrogen oxides (NOx), a major pollutant that con-
trols regional ozone formation, were reduced from 25.2 to
11.5× 106 t yr−1 (Feng et al., 2020). The downward trends
in NOx emissions have been verified by ground and satellite
observations in large cities (Tong et al., 2015) and in the east-
ern United States (Zhou et al., 2013; Krotkov et al., 2016).
Because of the substantial emission reductions, ground-level
ozone concentrations decreased ubiquitously across the US
(Hogrefe et al., 2011; Simon et al., 2015; He et al., 2020).

Regardless of the tremendous improvement in air qual-
ity, more than one-third of the US population still lives in
areas exceeding the National Ambient Air Quality Stan-
dards (NAAQS) for ozone (O3) and/or fine particulate matter
(PM2.5) (US EPA, 2020). Many of these ozone nonattain-
ment areas are located along the northeastern Interstate 95
(I-95, Interstate Highway on the East Coast of the United
States) corridor, where a high density of emissions is pro-
duced by transportation and other industrial sources. Surface
ozone is formed from photochemical reactions between NOx

and volatile organic compounds (VOCs) (NRC, 1991), and

the high emission density of NOx is a major controlling fac-
tor for high-ozone events in this region.

As part of the efforts to understand regional O3 pollu-
tion, a multi-agency collaborative study of precursor emis-
sions, ground-level O3 formation and transport in the New
York City (NYC) metropolitan region and downwind lo-
cations, the Long Island Sound Tropospheric Ozone Study
(LISTOS), was launched. Extensive measurements were col-
lected between June and September 2018 within the NYC
metropolitan area and over the Long Island Sound (LIS).
Multiple analyses of the ozone activities during this field
campaign have been conducted using numerical models
(Baker et al., 2019; Shu et al., 2019; Berkoff et al., 2019).

Air quality forecasts are a critical tool used by environ-
mental and public health agencies to mitigate the detrimental
effects of air pollution (Eder et al., 2010; Oliveri Conti et al.,
2017; Tong and Tang, 2018). Accurate prediction of ambi-
ent ozone and its precursors remains challenging due to in-
herent uncertainties in the model processes (transport, chem-
istry and removal), as well as in model inputs such as emis-
sions, initial concentrations (ICs) and boundary conditions
(BCs). Prior studies have also revealed that air quality models
face additional challenges in predicting surface O3 concen-
trations at coastal locations or over complex urban areas, in-
cluding uncertainties in vertical mixing, deposition processes
and spatial–temporal allocation of emissions to the air quality
models (Hogrefe et al., 2007; Tong et al., 2006). Therefore,
several modeling techniques have been developed to improve
the forecasting skills of these air quality models (Liu et al.,
2001; Tang et al., 2007). Previous studies (Wu et al., 2008;
Sandu et al., 2010) suggested employing data assimilation
methods to adjust the initial conditions of a model to reduce
model bias. Optimal interpolation (OI) is a simple data as-
similation method used to enhance model prediction (Can-
diani et al., 2013; Tang et al., 2015, 2017). Considering the
modeling sensitivity to BCs, Tang et al. (2009) examined the
impact of six different sources of lateral BCs on the CMAQ
(Community Multiscale Air Quality) forecast ability, and the
results showed that using global model predictions for BCs
was able to improve the correlation coefficients of surface O3
prediction compared to observations. Evaluations of different
databases and configurations for BCs in short-term and long-
term simulations also show that dynamic BCs have a positive
impact on numerical predictions (Tang et al., 2007; Makar et
al., 2010; Henderson et al., 2014; Khan and Kumar, 2019).
However, many of these studies use BCs based on global
forecasts of a relatively low resolution (e.g., 1.4◦× 1.4◦ and
2◦× 2.5◦). Therefore, databases with higher resolution, such
as satellite observations or regional forecasting products, are
introduced to construct boundary conditions that were shown
to result in a measurable improvement in model performance
(Borge et al., 2010; Pour-Biazar et al., 2011). Finally, updat-
ing emissions from the base year to the specific forecast year
has been shown to be an effective approach to reduce the un-

Atmos. Chem. Phys., 21, 16531–16553, 2021 https://doi.org/10.5194/acp-21-16531-2021



S. Ma et al.: Improving predictability of high-ozone episodes 16533

certainties of outdated emission inventories to increase fore-
casting accuracy (Pan et al., 2014; Tong et al., 2015, 2016).

This study examines to what extent various modeling
techniques can improve O3 and NO2 predictions over LIS
and surrounding areas. As the largest metropolitan area in
the United States on the Atlantic Ocean coast, this LIS re-
gion represents one of the most challenging places for air
quality modeling. The resolution of the present operational
forecasting system, National Air Quality Forecast Capabil-
ity (NAQFC), operated by the National Oceanic and Atmo-
spheric Administration (NOAA), is at a 12 km horizontal res-
olution (Davidson et al., 2008). To better resolve fine-scale
processes such as sea breeze and recirculation of air pollu-
tants at coastal sites, a high-resolution (3 km) air quality fore-
casting system over the LIS region (LIS3km) has been de-
veloped using the latest meteorology and air quality models.
Using observations from ground air quality monitors and the
LISTOS field campaign, we evaluate the forecasting skills
of the high-resolution air quality forecasting system to pre-
dict O3 and NO2 over LIS. Specifically, we use three forecast
improvements – dynamic boundary conditions, rapid emis-
sion refresh and chemical data assimilation – to improve
the LIS3km system. The effectiveness of each technique to
improve forecasting skill is assessed using the observations
from the LISTOS and the EPA AirNow network (available at
http://airnowapi.org, last access: 12 May 2021). Descriptions
of the modeling system, forecast improvements and observa-
tion data are presented in Sect. 2. Assessments of the CMAQ
results with and without different forecast system updates are
described in Sect. 3. The application of the new system to
predict a high-ozone episode is demonstrated in Sect. 4. A
summary of our findings and concluding remarks are pro-
vided in Sect. 5.

2 Methodology

2.1 Study design

To simulate ozone variability over a complex coastal ur-
ban environment, a high-resolution air quality forecasting
system has been developed for LIS and surrounding areas.
The forecasting system is comprised of state-of-the-science
weather, emission and chemical transport models. The model
domain covers eastern Pennsylvania, New Jersey, southern
New York, Connecticut and Rhode Island. While this model
domain is large enough to capture key physical and chem-
ical processes within the LIS area, such as sea breeze cir-
culation and photochemistry, the influence of regional trans-
port outside this domain cannot be adequately represented.
Therefore, real-time forecasts from the operational NAQFC
(Lee et al., 2017), produced by the NOAA National Weather
Service, are used to provide dynamic boundary conditions to
investigate the effect of this model input on forecasting per-

Table 1. Model adjustment and simulation design for the 3 km fore-
casting system

Name Description

1 Control Simulation with default profile BCs,
no adjustment

2 BCON Same as Control but BCs replaced
with NAQFC prediction

3 OI (three cases) Same as Control but initial
concentrations adjusted by three OI
methods (OI_avg, OI_idw and OI_bias)

4 EmisAdj (two cases) Same as Control but NOx emissions
adjusted using observed trends from
ground and satellite sensors (EmisAdj_avg,
EmisAdj_sub)

5 Combined (three cases) Combination of different techniques.
BCON+OI, BCON+OI+EmisAdj_avg,
and BCON+OI+EmisAdj_sub

formance. We also explore the effects of emission adjustment
and chemical data assimilation on forecasting performance.

Five groups of simulations are designed to evaluate the
performance and effectiveness of different adjustments of
the CMAQ model (Table 1). The first group (Control run)
applies no adjustment, using the default profile as lateral
boundary conditions (LBCs). It serves as the reference case
to allow the effectiveness of each adjustment method to be
quantified. The second experiment, named BCON, is simi-
lar to the Control run, except that dynamic boundary condi-
tions from the NOAA NAQFC with a horizontal resolution of
12 km were applied to replace the default BCs. In the optimal
interpolation (OI) run, the initial concentrations in CMAQ
are adjusted with three observation interpolation methods,
including area-average (OI_avg), inverse distance weight-
ing (idw) and CMAQ concentration gradients (OI_bias) (de-
tails of each OI approach provided in Sect. 2.3.2). The best
performer of these approaches will be used in the subse-
quent analyses. Next, a group of emission adjustment ex-
periments are designed to update NOx emissions using ob-
served changes from satellite and ground sensors (Tong et al.,
2016). These emission adjustment factors are applied either
uniformly across the domain (EmisAdj_whole) or separately
for each subdomain (EmisAdj_sub). In the latter case, the do-
main was divided into five regions based on city areas: New
York City (NYC), City of Philadelphia (PH), New Haven–
Hartford (NHH) and Providence–Pawtucket (PP) and the ar-
eas other than these four regions (OTHR) (Fig. 1). Finally,
three simulations with the combination of these three tech-
niques were conducted in search of the best performer. All
simulations were conducted for a high-ozone episode, which
lasted 168 h from 00:00 UTC on 25 August to 23:00 UTC on
31 August 2018.
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Figure 1. Study area over the Long Island Sound and surround-
ing areas. Red boxes depict four subdomains: New York City
(NYC), Philadelphia (PH), New Haven–Hartford region (NHH) and
Providence–Pawtucket region (PP). Black circles indicate the loca-
tions of EPA ground air quality monitors, the brown triangle in-
dicates the TOLNet O3 site located in Westport, CT, and the blue
lines present an example flight path conducted by the NASA B200
aircraft on 28–29 August 2018. Letters a–j indicate surface moni-
toring sites at (a) Flax Pond, (b) Queens College, (c) New Haven,
(d) Westport, (e) Colliers Mills, (f) Riverhead, (g) Greenwich, (h)
Madison-Beach Road, (i) Middletown-CVH-Shed and Stratford.

2.2 High-resolution air quality forecasting system
(LIS3km)

The high-resolution air quality forecasting system used here
is a new research prediction system deployed during the
2018 LISTOS field campaign period which is comprised of
three major components: meteorology, emission and chemi-
cal transport models. The Weather Research and Forecasting
(WRF) model version 4.0 (Skamarock et al., 2019) is used to
generate hourly meteorological fields to drive emission and
air quality modeling. The WRF model was configured with
the Thompson graupel microphysics scheme, the RRTMG
long- and short-wave radiation scheme, the Mellor–Yamada–
Janjic PBL (planetary boundary layer) scheme, the unified
Noah land-surface model and the Tiedtke cumulus param-
eterization option. No data assimilation was applied in the
WRF simulation. The model is conducted in a single domain
with 132× 122 grid cells, with one grid more on each bound-
ary compared to that of the chemical transport model. There
are 41 vertical layers with 20 layers below 1 km and a top
layer at 50 hPa. The forecast fields of Global Forecast Sys-
tem (GFS) version 4 products with a horizontal resolution of
0.25◦× 0.25◦ (available every 6 h) were employed to drive
the WRF model.

The emission input was provided using a hybrid emis-
sion modeling system that utilized the Sparse Matrix Op-

erator Kernel Emissions (SMOKE) model (Houyoux et al.,
2000) version 4.7 to process anthropogenic emissions, and
a suite of emission models to estimate emissions from in-
termittent and/or meteorology-dependent sources. Anthro-
pogenic emissions from area and mobile sources were taken
from US EPA 2011 National Emissions Inventory (NEI) ver-
sion 2 (NEI2011v2). The Motor Vehicle Emissions Simula-
tor (MOVES) was used to generate county-level emission
factors for the on-road and off-road sources. SMOKE uses
a combination of vehicle activity data, MOVES emission
factors, meteorology and other ancillary data (spatial, tem-
poral and speciation information) to generate hourly spe-
ciated model-ready emission data. Point sources were pro-
cessed in two steps. In the first step, emission inventories
of point sources were processed with SMOKE to generate
intermediate input files. Next, these intermediate files were
used to drive inline calculation of plume rise to distribute
point source emissions vertically in the CMAQ model do-
main. Two natural sources are included in this forecasting
system: biogenic and sea salt. Biogenic emissions from ter-
restrial plants were predicted using the inline version of the
Biogenic Emission Inventory System (BEIS) (Pierce et al.,
1998). The emissions of sea spray aerosols are calculated us-
ing an updated version of the Gong (2003) sea spray emission
parameterization (Gantt et al., 2015).

The CMAQ model ingests emissions and meteorology
to predict spatial and temporal variations of O3, NO2 and
their precursors. In this study, version 5.3.1 of the CMAQ
model was configured to include detailed implementation
of inline emission processes for biogenic, sea salt and ele-
vated anthropogenic emissions, horizontal and vertical ad-
vection, turbulent diffusion, dry/wet deposition and full
gas, aqueous and aerosol chemistry using a revised Carbon
Bond 6 gas-phase mechanism and the AE6 aerosol mecha-
nism (CB6r3_AE6_AQ) (Byun and Schere, 2006; Luecken
et al., 2019). Both the meteorological and air quality models
have a 3 km horizontal resolution over the LIS region and its
surrounding areas (Fig. 1).

2.3 Techniques to improve forecasting skills

We implement and test three forecasting improvement tech-
niques to assess their effectiveness in enhancing the simula-
tion performance of the CMAQ model. Details of each up-
date are described below.

2.3.1 Dynamic lateral boundary conditions

Regional air quality models such as CMAQ rely on lateral
boundary conditions to account for inflow of air pollutants
and precursors from out-of-domain sources. These boundary
conditions fall into two categories: static and dynamic. Static
boundary conditions are time-independent vertical profiles
of appropriate species at the boundaries that can be pre-
pared from prescribed profiles, long-term vertical observa-
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tions or climatological model simulations (Tong and Mauzer-
all, 2006; Tang et al., 2007). Dynamical boundary conditions
are provided by a concurrently running global model or an-
other regional model covering a larger domain. In the previ-
ous studies of regional modeling, a nested grid approach was
often applied to provide dynamic BCs for the study area (e.g.,
Taghavi et al., 2004). However, the nested model would need
higher computational resources and a longer running time.
The increasing pool of real-time national and global fore-
casts provides alternative BCs that can be used to drive a re-
gional forecasting system as demonstrated in this work. Here,
we explore the feasibility of utilizing the products of NOAA
NAQFC, which provides real-time national forecasts to pre-
pare dynamic boundary conditions to drive the LIS3km sys-
tem. The NAQFC is an operational system, operated by the
National Weather Services, and the data are provided freely
to the public. Hourly forecasts of the NAQFC (Lee et al.,
2017) are processed using the BCON tool developed by the
US EPA. The description of NAQFC configuration can be
found in Lee et al. (2017), and a summary is provided in Ta-
ble S1 in the Supplement.

2.3.2 Optimal interpolation

Optimal interpolation (OI) is a commonly applied data as-
similation method (Wang et al., 2013; Chai et al., 2017)
that can be used to adjust the initial conditions (ICs) of an
air quality model to minimize errors (Adhikary, 2008). This
method runs fast and portably, making it very suitable for the
forecasting system which needs regular execution. The equa-
tion of the OI method is defined as

xa
= xb
+BHT

(
HBHT

+O
)−1

(y−Hxb), (1)

where xa and xb are the analyzed and background fields, re-
spectively. B and O are the background and observation error
covariance matrix, H is the observational operator and HT is
its matrix transpose, and y is the observation vector.

In the CMAQ model, the restart file, called CGRID, is
daily generated during the simulation and acts as ICs for the
next day. To constrain the biases in ICs, the concentrations
of ozone, NO2 and NO in the restart file were adjusted via
the OI method, which is applied every 24 h at 00:00 coor-
dinated universal time (UTC). The influence area of OI is
controlled by the correlation length scale, and the previous
study by Chai et al. (2017) chose the range of 84 km for the
contiguous US domain. Moreover, this influence length scale
also varies from region to region. Over remote regions, the
length scale may be longer, while it is shorter over polluted
areas as the correlation decreases more rapidly. Considering
the high emission density and the fine model resolution over
the LIS area, we chose a shorter influence length (33 km) for
a higher correlation threshold (r>= 0.5) for the LIS, which
means this OI adjustment was made on each 11×11 grid cell
block of the surface layer over the whole domain to obtain the

analyzed field xa . Next, as there is no information of vertical
background profile in this method, the ratio between xa and
xb at each surface layer grid point was used to scale the con-
centrations for all vertical layers within the PBL, following
Tang et al. (2015, 2017).

The OI assimilation first allocates ground-based observa-
tional data from the EPA AirNow network into model grid
cells. The Tang et al. (2015) method puts in situ data directly
into the corresponding model grid cells. If there was more
than one active site in the same grid cell, the observations are
first averaged before being applied to the grid cell (OI_avg
hereafter). Grid cells that did not have observations and were
not within five grids cells from the observations were not
adjusted. Therefore, the region of influence is limited, and
the adjusted fields may be discrete in spatial distribution.
Besides this method, experiments were also performed with
two different interpolation methods for preparing the obser-
vational data. The first one was to interpolate the averaged
observational grid points to the whole domain using the in-
verse distance weighting (IDW) interpolation scheme (Shep-
ard, 1968) (the OI_idw method). With this interpolation, the
effect of OI will be not limited near the observational sites,
and most of the grid cells in the domain can be adjusted com-
paring to the OI_avg. The second method adjusted the ini-
tial concentrations by subtracting the bias between the sim-
ulation and the averaged observations within the grid point
then smoothing the adjusted concentration field via the IDW
scheme. This method is called OI_bias. Unlike the OI_idw,
which just applied the spatial interpolation to extend the OI
effect, in this method the observation cells are distributed to
the whole domain grids based on the spatial patterns pro-
vided by the model so that it is able to better reflect the real-
istic fields.

2.3.3 Emission refresh

The third forecast system update evaluated here is the rapid
emission refresh capability that allows for timely updates of
outdated NEIs to the forecasting year (Tong et al., 2016).
Here we focus on updating NOx emissions. NOx are im-
portant precursors to tropospheric ozone formation (Spicer,
1983; Chameides et al., 1992); therefore, their emissions
can influence atmospheric ozone concentrations. Since NOx

emissions decreased substantially over the last decade (Sil-
vern et al., 2019; Dix et al., 2020) and the anthropogenic
emission used in this study are based on the 2011 NEIs,
the NOx emissions need to be projected from 2011 to the
forecast year (2018). According to the approach proposed by
Tong et al. (2016), the adjustment factor used for the emis-
sion projection is derived from the monthly changing rates of
surface- and satellite-observed NOx (NO2). Temporal trends
at the surface are determined from the hourly observed NOx

concentration during the morning rush hours (06:00, 07:00,
08:00 and 09:00 local time). These times are optimal for as-
sessing local emission conditions since they are related to
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the highest NOx levels typically produced as a result of both
commuter traffic peaks and the shallow morning planetary
boundary layer (Tong et al., 2015). Satellite-based temporal
trends are calculated from the monthly NO2 product retrieved
from the Ozone Monitoring Instrument (OMI) aboard the
Aura satellite (Lamsal et al., 2020). A weighting function is
introduced to combine the surface-based and satellite-based
temporal trends to acquire the merged projection adjustment
factor (AF) for a specified region:

AF=
1S×NS × fS +1G×NG× fG

NS × fS +NG× fG

, (2)

where 1S and NS are the temporal trend and the number of
satellite data, respectively; and 1G and NG are the tempo-
ral trend and the number of surface-based data, respectively.
Two weighting factors, fS and fG, are applied to the satel-
lite and surface data, respectively. Here the value of fS is
set to 1 and fG to 100 to avoid dominance by either data
source (Tong et al., 2015). In this study, two groups of AFs
are prepared for the emission projection. One is the average
AF over the whole domain (EmisAdj_avg), and the other
group includes the AFs for each sub-region in the research
area (EmisAdj_sub). The AFs used in both groups are the
averages of the monthly AFs from May to September.

2.4 Observational datasets

In this study, a suite of observational datasets was used ei-
ther as inputs for emissions and chemical data assimilation
or to evaluate model performance. These datasets include
surface O3 and NO2 measurements from the US EPA Air
Quality System (AQS) surface network, the NO2 vertical
column density (VCD) from the OMI satellite data, NO2
VCD from the GeoCAPE Airborne Simulator (GCAS) on
the NASA Langley Research Center B200 aircraft and the
O3 vertical profile from the NASA Langley Mobile Ozone
Lidar (LMOL). Detailed information of each dataset is pro-
vided below.

Surface concentrations of O3 and NO2 are used for emis-
sion adjustment and chemical data assimilation, as well as
evaluation of model performance. AQS is a routine moni-
toring network established to collect ambient air pollution
data in urban, suburban and rural areas. AQS monitors deter-
mine O3 concentrations according to the Federal Reference
Method promulgated in the 2015 revisions to the National
Ambient Air Quality Standards (Long et al., 2014) and NOx

concentrations using the chemiluminescence instruments de-
scribed by McClenny et al. (2002). AQS measures both O3
and NO2 at hourly intervals. Note that NO2 measurements
are typically biased high due to interference in the chemilu-
minescence measurement (Dunlea et al., 2007). As the goal
of this study is to improve forecasting performance, a near-
real-time version of the AQS data was used, called AirNow.
This is a preliminary dataset for the purpose of real-time air
quality reporting and forecasting; it is not fully verified and

provides fewer measured species. The data used in this study
are downloaded from the AirNow data portal maintained by
the US EPA.

NO2 VCD measurements were provided by the Ozone
Monitoring Instrument (OMI) standard product (version 4),
available from the NASA Goddard Earth Sciences Data and
Information Services Center (GES DISC). OMI is a nadir-
viewing hyperspectral imaging spectrometer that measures
solar backscattered radiance and solar irradiance in the ultra-
violet and visible regions (270–500 nm) (Levelt et al., 2006).
The Aura spacecraft has a local equator-crossing time of
13:45 in the ascending node. OMI views the Earth along the
satellite track with a swath of 3600 km on the surface in order
to provide daily global coverage. In the normal global opera-
tional mode, the OMI ground pixel at nadir is approximately
13 km× 24 km, with increasing pixel sizes toward the edges
of the orbital swaths. Multi-year OMI NO2 data are further
aggregated to calculate state-level emission adjustment fac-
tors using a mass conservation approach (Tong et al., 2015).

The high-resolution NO2 observations from the GCAS
(Kowalewski and Janz, 2014) are used for a direct compar-
ison against model simulations of the NO2 VCD. GCAS is
an ultraviolet–visible spectrometer used in air quality field
studies to map the spatiotemporal distribution of NO2 and
HCHO VCDs at high spatial resolution (Nowlan et al., 2018;
Judd et al., 2020). During LISTOS, this instrument flew on
11 flight days collecting between two and four gapless raster
datasets at spatial resolutions for NO2 as fine as 250× 250 m.
More information about the retrieval can be found in Judd et
al. (2020). During LISTOS, NO2 from GCAS was validated
using coincident Pandora measurements and had a median
percent difference of −1.2 %, with 95 % of the most tempo-
rally homogeneous points within ± 25 % or 0.1 DU.

Finally, O3 vertical profiles from the NASA LMOL are
used to evaluate the CMAQ prediction of O3 profiles dur-
ing the LISTOS field campaign. LMOL is part of a NASA-
sponsored ozone lidar network called the tropospheric ozone
lidar network (TOLNet; Sullivan et al., 2017), which is a
mobile ground-based ozone lidar platform equipped with a
pulsed UV laser and all associated power and lidar con-
trol support units (De Young et al., 2017; Gronoff et al.,
2019). In this study, we use LMOL lidar observations at
the Westport site (41 118◦ N, 73 337◦W). All available field
measurement data during this campaign were obtained from
the LISTOS Data Archive (available at https://www-air.larc.
nasa.gov/missions/listos/index.html, last access: 1 November
2021).
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3 Evaluation on the effectiveness of simulation
improvements

3.1 Effects of boundary conditions

In this section, we examine the effects of using the dynamic
boundary conditions on O3 and NO2 predictions. As a ref-
erence, we also compare these simulations to the NAQFC
results, extracted for the same region, during the 29 August
high-ozone event. Figure 2 shows the O3 and NO2 24 h aver-
age concentrations simulated by Control (static BCs), BCON
(dynamic BCs) and the NOAA NAQFC over the LIS region.
Compared to the underestimated O3 concentrations simu-
lated by Control run, the concentration level using dynamic
boundary conditions increases considerably and is closer to
the observations. High O3 concentrations appear over near-
coast areas but are lower in the northwest of the domain. This
spatial pattern illustrates the ozone river in a northeastward
direction along the I-95 corridor, extending from Philadel-
phia to NYC and then to Connecticut, where the worst air
quality is often observed. Although it overestimates surface
O3 in Philadelphia and central New Jersey, the BCON simu-
lation can reproduce O3 hourly variations during this episode
well in comparison with the observed data (see the time se-
ries in Fig. 2d). Note the peak O3 simulated in the Control
run is nearly the same on all days during the simulation pe-
riod. The comparisons between the peak O3 with the default
profile and dynamic LBC case indicate relatively large re-
gional contributions on these days. Compared to the Control
run, the BCON run performed better not only in bias, but
also with higher correlation coefficients between prediction
and observations (Table S2), especially during the 26–27 Au-
gust high-O3 days. As the profile BCs are static and lack
spatial–temporal variations, the Control run mainly reflects
the local contributions of emissions, transport and chemical
processes within the domain (Tang et al., 2007). The under-
prediction suggests that these processes are insufficient to
produce the observed O3 levels and that the transport of air
pollutants from upwind is important to predict the high-O3
episodes. It highlights the significant influence of dynamic
BCs on the simulations over this region during high-pollution
events. In comparison, the influence of BCs is less important
during the cold season. There is a smaller difference between
upwind concentrations and the background concentrations
used in the default BCs, compared to that during a hot season
when the upwind photochemical production is more active,
resulting in better agreement between the prediction and ob-
servations (Fig. S2a, d). Note that other studies have shown
the influence of BCs can become more prominent during the
cold season when “local” pollution production is slow (e.g.,
Fiore et al., 2009). The magnitude of the actual influence is
determined by several factors, such as emission density, pho-
tochemical production and sink, and spatial distribution and
gradients of the concerned species.

The performance of the high-resolution simulation is next
compared to that by the NAQFC. The NAQFC simulation,
which has been used to provide national numerical guidance
for O3 and PM2.5 (Lee et al., 2017), is run at a coarser reso-
lution (12 km), using a different CMAQ version (a revised
CMAQ5.0), driven by different emission and meteorology
datasets. Regardless of these differences, the NAQFC and
BCON runs predict similar surface O3 distribution patterns.
Compared to that in the NAQFC prediction, the O3 predic-
tion from the 3 km BCON run demonstrates more detailed
spatial distribution. For instance, the O3 concentration over
the Long Island Sound is lower than its surrounding areas
during this episode, which is better resolved by the 3 km sim-
ulation than the 12 km NAQFC (Fig. 2a–c). The O3 distribu-
tion along the coastal area, such as the coasts of Connecticut
and Rhode Island, also agrees better with the observations
than the 12 km NAQFC prediction. This suggests that the
high-resolution simulation can better reproduce the pollutant
variability over this coastal urban area during this episode. In
addition, the BCON run performs better over southern New
Jersey, and northeast of the LIS domain, with considerably
reduced biases in the LIS downwind areas as well. As for the
diurnal variations, the BCON run overestimates the peak O3
concentrations on 28 and 29 August, while the NAQFC run
performs well and is closer to the measurements (Fig. 2d).
The use of coarser resolution NAQFC predictions as BCs
substantially improves the capability of the 3 km forecast-
ing system to reproduce the O3 variability. Compared to the
Control run, the correlation coefficient between BCON and
observed O3 concentrations increases from 0.81 to 0.93, and
the root mean square error (RMSE) decreases from 14.97 to
8.22 ppbv with a reduction of 45 %, resulting in a compara-
ble performance with the NOAA NAQFC predictions with
correlation of 0.91 (Table S2).

The spatial patterns of predicted NO2 concentrations from
the Control, BCON and NAQFC runs are quite similar, with
high values over the NYC area (Fig. 3). The simulated NO2
concentrations by the 3 km forecasting system, either with
static or with dynamic BCs, agree better with the observa-
tions than those from the 12 km NAQFC simulation, high-
lighting the importance of using high-resolution inputs to
better represent the emission sources in the model. The cor-
relation coefficient and RMSEs are 0.69 and 4.12 ppb for the
Control run, 0.71 and 3.82 ppb for the BCON run, and 0.67
and 4.98 ppb for the NAQFC run, respectively (Table S2). In
addition, the improvement of simulated NO2 using dynamic
BCs was much smaller compared to that of O3. This is be-
cause the lifetime of NO2 is relatively short (1–7 h in sum-
mertime; Lu et al., 2015), and its budget in urban areas is
mainly influenced by local emissions and chemistry and less
by regional transport, indicating the effectiveness of dynamic
BCs depends not only on the downwind/upwind gradients,
but also on the lifetime of concerned species.
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Figure 2. Predicted O3 concentrations from (a) Control, (b) BCON and (c) NOAA NAQFC simulations on 29 August 2018 and (d) compar-
ison of domain-averaged hourly O3 concentrations with EPA AirNow measurements during this episode. Colored circles in the top panels
depict the observed concentrations from ground measurements.

Figure 3. Predicted NO2 concentrations from (a) Control, (b) BCON and (c) NOAA NAQFC simulations on 29 August 2018 and (d)
comparison of domain-averaged hourly NO2 concentrations to EPA AirNow measurements during the episode. Colored circles in the top
panels depict the observed concentrations from ground measurements.
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Figure 4. The concentrations of surface O3 in initial conditions file
at 00:00 UTC on 26 August 2018 adjusted by OI_avg, OI_idw and
OI_bias.

3.2 Effects of initial condition adjustment

Initial concentrations are an important input to air quality
forecasting. Adjusting initial concentrations through chem-
ical data assimilation has been shown to significantly im-
prove air quality forecasting (Tang et al., 2015; Chai et al.,
2017), although the impacts wane with increasing forecast
length. Here we compare the results using various OI meth-
ods with the simulations without any BC adjustment (same as
the Control run) and study the effects of adjusting initial con-
ditions on O3 and NO2 prediction. Figure 4 illustrates the ini-
tial concentrations of surface O3 adjusted by OI_avg, OI_idw
and OI_bias, respectively. In the initial concentrations, the ar-
eas influenced by OI_avg are primarily limited to the ground-
based sites and the regions within five model grid cells in
each direction of the observations compared to the Control
run (Fig. 4a, b). The rest of the domain is not affected by
the adjustment, resulting in significant differences between
adjusted and unadjusted areas. The O3 fields adjusted by
OI_idw (Fig. 4c) and OI_bias (Fig. 4d) show similar hori-
zontal distributions, but the concentration level of OI_bias is
relatively higher over NYC and northern New Jersey. Fur-
thermore, in contrast to the localized changes by OI_avg,
those of OI_idw and OI_bias show smoother changes over
larger parts of the domain.

Next, the initial concentration files after adjustment are
used to feed CMAQ simulations. The O3 prediction by the
Control run and three OI runs at 00:00 UTC on 26 August
2018 (the first hour after OI adjusting) is depicted in Fig. 5.

Figure 5. Spatial distributions of predicted surface O3 concentra-
tions using three optimal interpolation (OI) approaches (OI_avg,
OI_idw and OI_bias) at 00:00 UTC on 26 August 2018.

The adjusted O3 fields show different patterns compared to
that in the Control run with no IC adjustment. The predicted
O3 field with the OI_avg method shows a distribution with
localized high-value areas near the observational sites. As
for the other two OI methods, the distribution using OI_bias
has similar patterns with that of OI_idw, while the concen-
trations over the high-O3 area are further elevated. Biases
between observed and predicted concentrations are reduced
in most areas. The statistical metrics calculated from hourly
simulated and observed data from 26 to 31 August 2018 are
reported in Table 2. The RMSEs for O3 are reduced from
14.97 ppbv in the Control run to 13.72 ppbv in the OI_bias
run, to 13.79 ppbv in the OI_idw run and to 14.30 ppbv in
the OI_avg run. The correlation for O3 also slightly increases
from the Control run to the OI runs (Table 2). In comparison,
NO2 prediction is less influenced by this adjustment, with
insignificant changes in the model performance (Table 3). In
addition, the effects of this adjustment on the modeling re-
sults decrease with the simulation time and display no dis-
cernible difference from the Control run after 12 h (Fig. S1
in the Supplement). Generally, the improvement of the sim-
ulated results due to OI data assimilation over the study do-
main is smaller than that from the dynamic BCs. Among the
three OI methods, the simulation with OI_bias shows the best
performance, so this method is chosen for subsequent anal-
yses, in which multiple techniques are combined to improve
forecasting skills.

The ICs for each day were adjusted by OI using real-time
observations; it is interesting to note that the duration of OI
influence on O3 simulation varies from place to place. Fig-
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Table 2. Regional mean statistical metrics between hourly observed
and simulated O3 from 26 to 31 August 2018 over the Long Island
Sound region.

Stats/runs Control OI_avg OI_idw OI_bias

CORR 0.81 0.84 0.85 0.85
RMSE 14.97 14.30 13.79 13.72
NMB −30 % −29 % −27 % −27 %
NME 34 % 33 % 31 % 31 %

CORR: correlation coefficient. RMSE: root mean square error. NMB:
normalized mean bias. NME: normalized mean error.

Table 3. Same as Table 2 but for NO2.

Stats/runs Control OI_avg OI_idw OI_bias

CORR 0.69 0.69 0.69 0.70
RMSE 4.12 4.11 4.08 4.08
NMB −17 % −17 % −15 % −17 %
NME 35 % 35 % 35 % 34 %

ure 6 shows the time series of the averaged differences in
predicted hourly O3 concentrations between the Control run
and each of the three OI runs from 26 to 31 August 2018 in
three urban areas (NYC, Philadelphia, New Haven–Hartford)
and other (OTHR) areas. The differences illustrate the ef-
fect of adjusting initial concentrations on O3 prediction. In
large metropolitan areas, OI adjustments result in spikes that
indicate larger model errors at the time of OI adjustment,
with the mean errors up to 14 ppbv in surface hourly O3
concentrations over NYC and 16 ppbv over Philadelphia, re-
spectively. In comparison, the spikes in non-urban areas are
much smaller, reflecting the fact that there are smaller bi-
ases between observations and predictions (Fig. 6). The New
Haven–Hartford region sees a smaller change of O3 concen-
tration compared to between that in large cities. The OI ef-
fects in large cities remain for a shorter time than in non-
urban area or smaller cities. For example, the differences be-
tween OI runs and the Control run decrease to ∼ 0 ppb in
4 to 8 h in two metropolitan areas, NYC and Philadelphia
(Fig. 6a, b). Meanwhile, in the New Haven–Hartford region
(Fig. 6c), Providence–Pawtucket region (not shown) and the
non-urban areas (Fig. 6d), the differences could last 12 to
16 h. The different durations indicate the influence time of
OI-adjusted ICs, not necessarily the improvement in model
skill, which is determined by both initial concentrations and
other processes (chemical production and transport, etc.).
The improvement using OI adjustment is comparable over
different subdomains (Table S3). This difference reflects the
dependence of O3 level on the initial concentrations in the
air quality model. In general, the influence of OI adjustment
lingers for a longer period in an area with low emission den-
sity, where emissions and chemical reactions make a smaller

contribution to the O3 budget than that in the area with high
emission density.

3.3 Effects of NOx emission adjustment

One of the major challenges in air quality forecasting is the
time lag in updating the emission inputs generated for a spec-
ified base year, which is typically different than the year for
which the simulation is desired (Tong et al., 2012). Here
we test the effects of implementing a new emission update
technique, the rapid emission refresh, on forecasting perfor-
mance. In this study, the NEI2011v2 data are used to rep-
resent anthropogenic emissions, while the target forecast-
ing year is 2018. Both the AQS ground monitors and the
OMI sensor observed considerable decreases in NOx during
summertime (May–September) from 2011 to 2018 (Fig. 7).
The largest reduction in ground concentrations appears in
the west of NYC. The OMI NO2 observations show an in-
crease primarily over Connecticut and Rhode Island, the re-
gion downwind of the Long Island Sound (Fig. 7b). The av-
erage AF for the whole domain is−18.6 %. The AFs for each
subdomain are−31.9 % for NYC,−12.7 % for Philadelphia,
−9.4 % for the New Haven–Hartford region,−28.2 % for the
Providence–Pawtucket region and−16.5 % for other regions,
respectively. In general, the NOx variations in this study are
similar to those between 2005 and 2012 (Tong et al., 2015),
indicating that the NOx emissions continued decreasing dur-
ing the past 14 years. This trend highlights the importance
of updating the emissions to the model year, in order to re-
duce the bias in the emission inputs for model simulations,
especially for time-sensitive applications such as air quality
forecasting.

The results in Tables 4 and 5 show that the performance
for O3 and NO2 prediction is very similar between two
simulations using the two emission adjustment methods (a
uniform average adjustment factor over the entire domain
and spatially varied factors for each subdomain defined in
Fig. 1). The correlations in each sub-domains are the same,
and the average for both simulations is 0.81 for O3 and 0.69
for NO2, respectively. The biases and errors are also at the
same level from the two simulations. Compared to the O3
in the Control run, RMSE changes slightly from 14.97 to
14.71 ppbv (EmisAdj_avg) and 14.55 ppbv (EmisAdj_sub),
while the correlation remains the same. The largest differ-
ences appeared in NYC with RMSE of 15.54 (EmisAdj_avg)
and 14.93 ppb (EmisAdj_sub). This demonstrates that emis-
sion adjustment alone results in limited improvement of O3
prediction, due in part to the fact that the O3 production in
this region is NOx-saturated (VOC-limited) in urban areas
where most AQS monitors are deployed, so the O3 level is
less sensitive to the change in NOx emissions. Similarly, the
retrievals of satellite observations are also more sensitive to
urban plumes. In addition, regional transport of air pollu-
tion results in dispersion of emitted NOx and its byprod-
ucts/reservoirs. The observations from satellite or ground
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Figure 6. Effects of OI-adjusted initial concentrations on hourly surface O3 in three metropolitan areas (New York, Philadelphia and New
Haven–Hartford) and the rest of the domain using three optimal interpolation (OI) approaches (OI_avg, OI_idw and OI_bias).

Figure 7. NOx differences observed by (a) AQS and (b) OMI from summer 2011 to summer 2018 over the LIS model domain.

monitors, based on which the emissions were adjusted, may
not accurately capture the temporal evolution of the emis-
sion sources. A large geographical range may better reflect
the overall changes of NOx emissions in the LIS region. Pre-
vious studies either use a coarse model resolution (e.g., 1◦ in
Lamsal et al., 2011, or state-level adjustment in Tong et al.,
2016). As a result, the simulated concentrations using differ-

ent methods were very close, and the limited difference can
also get averaged out when calculating the averaged statisti-
cal metrics. The effect of the emission adjustment method
in this study is not as large as BCON or OI adjustments,
which directly influence O3 concentrations. A recent study
by Jin et al. (2020) showed that the decrease in NOx emis-
sions has shifted the NOx-saturated to NOx-sensitive regime
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transition zone closer to urban centers, approximately 40 to
60 km from the center (the highest emission point) of New
York City. Therefore, it is expected that the effectiveness
of emission adjustment will increase over time in this re-
gion. For surface NO2, the emission adjustment showed a
more significant impact on simulated concentrations. Note
that the emission adjustment was only implemented in the
LIS system, not in NAQFC, which still uses the 2014 NEI
for anthropogenic emissions. Without the emission adjust-
ment, the changes in NOx emissions between the inventory
and forecast years are not accounted for. On the high-O3
days, NAQFC overpredicted surface O3 during the study pe-
riod (Fig. 2c). The NAQFC LBCs are likely associated with
a possible overprediction of the regional transport, which can
be partially responsible for the BCON LIS simulation over-
predicting O3 during high-O3 days (Fig 2d). Considering the
similarities of these two emission adjustment methods, they
will be both tested in the subsequent multi-adjustment simu-
lations.

3.4 Effectiveness of combined adjustment methods

After assessing the effects of individual updates, we test how
these updates can be combined to optimize forecasting per-
formance. In the preceding sections, three groups of adjust-
ment approaches have been included and evaluated. For each
group, the best performing method has been identified, in-
cluding the dynamic BCs, ICs with OI bias and rapid emis-
sion refresh (including EmisAdj_avg and EmisAdj_sub).
With these selected updates, we design and conduct two
multi-adjustment simulations; the first one used both the
dynamic BCs and the OI-bias-adjusted initial concentration
files (BO for short), and the other one employed the NOx

emission adjustment together with the combination of BCON
and OI bias (BOE hereafter). Results of these combined ad-
justments are compared against the Control, BCON run and
the NAQFC prediction.

First, we compare two BOE simulations, one with
the EmisAdj_avg emission adjustment and the other
with EmisAdj_sub. The statistical metrics of BOE with
EmisAdj_avg and BOE with EmisAdj_sub (Tables S4, S5)
are quite similar in each sub region and also have the same
correlations. On average, the RMSEs of the combined BOE
setup using the EmisAdj_avg method are slightly smaller
than that using the EmisAdj_sub method during the study
period (Tables S4, S5), which is different from that when
a single adjustment method was applied (see Tables 4 and
5). Therefore, in the subsequent evaluation we take BOE
(EmisAdj_avg) to compare against surface and other obser-
vations. Figure 8 compares the predicted hourly O3 and NO2
concentrations against in situ observations from 26 to 31 Au-
gust 2018 in five subdomains and the overall domain with
Taylor diagrams (Taylor, 2001). In the Taylor diagram, the
relative skill of each forecasting system to reproduce the O3
and NO2 variability is represented using three statistical met-

rics: correlation (R) with values on arc of the right angled
sector, normalized standard deviation (SD) with values on
the y axis and centered root-mean-square difference (RMSD)
with values on the x axis. The normalized SD is shown as the
dashed-line concentric circles, while RMSD is shown as non-
dashed-line concentric circles, with the observation point act-
ing as the center (OBS on the x axis). Their values higher
(lower) than 1 indicate biased high (low) of the simulations.
In general, the forecasting skill is measured by the distance to
the OBS point on these diagrams: the shorter the better. The
default (Control) run yielded a correlation coefficient of ap-
proximately 0.8 (0.77–0.84) in each subdomain, while those
with adjustments show stronger correlations with R all above
0.9. Furthermore, the performance in the OTHER areas is
better than that in the five subdomains, with the R value up
to 0.97 and SD close to 1 (Fig. 8e). Taylor diagrams also re-
veal that these adjustments are even more effective over the
low emission areas. The three adjusted runs, namely BCON
(no. 2), BO (no. 3) and BOE (no. 4) in the diagrams, have
reproduced surface O3 concentrations over the NYC region
well. The simulations with BOE usually demonstrate a rela-
tively lower O3 concentration level than that with the BCON
run or the combined BCON and OI run. This means in the
overestimated areas (such as NYC, Fig. 8a), the simulations
with emission adjustment show better performance than that
without emission adjustment. In addition, these three simula-
tions have similar biases and errors, with NMB ranging from
4 % to 22 % and NME from 15 % to 22 % (Fig. 9a, c). These
results illustrate the importance of combining complemen-
tary modeling system updates to reduce model uncertainties
in a comprehensive way. A single update, such as emission
adjustment, may result in a better emission input closer to the
“true” level, but its effect can be offset by systematic biases
caused by other inputs. Concurrent improvements of bound-
ary conditions and initial concentrations allow for a more re-
alistic initial state and boundary conditions to demonstrate
the effectiveness of the emission adjustment in improving O3
forecasting (Fig. 9).

The Taylor diagrams show that the performance of vari-
ability of NO2 predictions is generally worse than that of
variability of O3 predictions. Overlaid on the same diagrams,
the points that represent NO2 performance are all further
away from the OBS point compared to that representing O3
from the same simulations (Fig. 8). This is not surprising
as O3 has been one of the focal points in air quality mod-
eling in the past decades, while NO2 has not been scruti-
nized with the same intensity. All of the high-resolution sim-
ulations, including the Control run with unrealistic bound-
ary conditions, perform better for NO2 prediction than the
NAQFC run (Fig. 9), highlighting the benefit of using a high-
resolution modeling system for predicting short-lived chem-
ical species such as NO2. The NAQFC generally underes-
timates NO2 concentrations in all subdomains. Its bias is
the smallest in the NYC subdomain and the largest in the
downwind New Haven–Hartford region. The correlation co-
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Table 4. Statistical metrics of O3 prediction performance after NOx emission adjustment in different sub-regions from 26 to 31 August 2018.

EmisAdj_avg EmisAdj_sub

Domains/stats CORR RMSE NMB NME CORR RMSE NMB NME

NYC 0.78 15.54 −34 % 36 % 0.78 14.93 −32 % 35 %
PH 0.78 15.29 −30 % 35 % 0.78 15.38 −31 % 35 %
NHH 0.85 13.24 −25 % 31 % 0.85 13.24 −25 % 31 %
PP 0.81 17.26 −31 % 35 % 0.81 17.06 −30 % 34 %
OTHR 0.84 12.24 −24 % 29 % 0.84 12.17 −24 % 29 %
Average 0.81 14.71 −29 % 33 % 0.81 14.55 −28 % 33 %

Table 5. Same as Table 4 but for NO2.

EmisAdj_avg EmisAdj_sub

Domains/stats CORR RMSE NMB NME CORR RMSE NMB NME

NYC 0.82 4.23 −22 % 27 % 0.82 4.77 −29 % 31 %
PH 0.79 5.69 −36 % 41 % 0.79 5.53 −33 % 40 %
NHH 0.49 7.69 −44 % 49 % 0.49 7.53 −41 % 48 %
PP 0.67 2.92 −18 % 35 % 0.67 2.95 −21 % 36 %
OTHR 0.69 2.56 −33 % 39 % 0.69 2.54 −32 % 39 %
Average 0.69 4.62 −31 % 38 % 0.69 4.67 −31 % 39 %

efficient is between 0.8 and 0.9 in NYC but lower than 0.6
in the New Haven–Hartford region (Fig. 8). Similarly, the
NMB is within 10 % in NYC but can be as large as−65 % in
the New Haven–Hartford region. Such a contrast suggests ei-
ther an underestimate of emission sources in Connecticut or
an unrealistically short lifetime of NOx due to flawed model
chemistry, or a combination of both.

4 High-O3 episode simulations during the LISTOS
field campaign

In this section, the newly developed high-resolution system,
equipped with all forecast improvements (dynamic bound-
ary conditions, optimal interpolation and emission adjust-
ment, or BOE), is used to simulate a high-O3 episode over
the Long Island Sound region. During the high-O3-pollution
days (28–29 August 2018) in this episode, surface O3 con-
centrations exceeded the National Ambient Air Quality Stan-
dard (NAAQS) (daily maximum 8 h average of 70 ppbv)
at several monitoring locations, including one site (Colliers
Mills) in New Jersey, one site (Riverhead) in New York and
five sites (Greenwich, Madison-Beach Road, Middletown-
CVH-Shed, Stratford and Westport) in Connecticut. While
merely exceeding the threshold values by a few parts per bil-
lion by volume at most sites, the O3 concentrations reached
84 ppbv at the Westport site and 87 ppbv at the Stratford
site. Considering the significant emission reduction and air
quality improvements in the eastern United States (He et al.,
2020; Qu et al., 2019), this episode, which occurred during
a well-designed field campaign, offers a rare opportunity to

assess how well a state-of-the-science air quality model can
predict a high-O3-pollution event that is now less frequent
than in the past decades.

4.1 NO2 prediction

CMAQ predictions of NO2 surface concentrations and ver-
tical column density are compared against ground and air-
craft observations. NO2 is not only a key precursor to tro-
pospheric ozone, but also a proxy for traffic-related air pol-
lution in many epidemiological studies (e.g., Jerrett et al.,
2007). Within the LISTOS CMAQ domain, there are four
active ground monitors with valid NO2 readings during the
study period. Hourly variations from AQS monitors, the BOE
3 km prediction and the operational NAQFC prediction are il-
lustrated in Fig. 10. Among these sites, the lowest NO2 con-
centrations were observed at the Flax Pond site in the mid-
dle of Long Island, away from the major emission sources.
Both BOE and NAQFC are able to reproduce the magni-
tude and diurnal variations of surface NO2 concentrations
at this site. The NO2 concentration at the Queens College
site, also located in the Long Island Sound and downtown
NYC, is significantly higher than at the Flax Pond site, due
to its close proximity to major sources such as the tunnels,
harbors and highways. At this site, the BOE 3 km predic-
tion is considerably better than that from the NAQFC predic-
tion. Similarly, the BOE prediction outperforms the NAQFC
at the New Haven site in Connecticut, where the surface NO2
concentration reaches 40 ppbv on 28 August and 55 ppbv
on 29 August 2018. The NAQFC-predicted concentration is
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Figure 8. Model performance in Taylor diagrams of hourly O3 (in red color) and NO2 (in blue color) simulated by five runs, including the
Control run, dynamic boundary conditions (BCON), boundary conditions with optimal interpolation (BCON+OI) and an all-adjustment run
including emission adjustment (BOE) and the operational NOAA National Air Quality Forecast Capability (NAQFC) run during the episode
over five subdomains and the overall domain (Average). The comparison time is from 26 to 31 August 2018.

constantly below 10 ppbv, severely underestimating the ob-
servations. In comparison, the BOE-predicted concentrations
are much closer to the observations, although still underpre-
dicting the latter. Finally, both models missed the first, pri-
mary peak on both days at the Westport, CT site, which is
strongly influenced by the NYC plume and sea breeze circu-
lation.

Next, the two model simulations are compared against the
NO2 VCD measured by NASA GCAS during the LISTOS
field campaign. In order to allow for a comparison between
simulations and measurements from GCAS, the CMAQ pre-
diction of NO2 mixing ratio is vertically integrated from the
surface to the layer, which is the closest to the plane altitude
to generate vertical column density (unit: molecules cm−2),
with GCAS data averaged over the 3 km grid to provide a
spatially representative observation dataset. We also sample
the model data to match the actual measurement time. The
GCAS observations show higher NO2 VCD in the morning
and lower values in the afternoon. This temporal pattern is
well captured by both simulations. The GCAS observations
depict an NO2 hotspot over lower Manhattan and Brooklyn,
which is reproduced by both BOE and NAQFC (Fig. 11). The
observed and simulated VCDs are generally at the same mag-

nitude (4–40× 1015 molecules cm−2), with BOE better cap-
turing the peak values. Moreover, the VCD prediction from
the BOE run presents a northeastward pattern, and it was
lower over the water area of LIS than that over surrounding
lands. In comparison, the VCD from NAQFC shows a high
NO2 plume over the land and the water around LIS. Com-
pared to that from NAQFC, the spatial distribution of NO2
VCD from BOE is more consistent with that of GCAS. This
is also the case for the prediction of surface NO2 distribu-
tions (Fig. 3), indicating the high-resolution system can out-
perform NAQFC through resolving the fine-scale processes.
It should be noted that the VCD levels from both simulations
are biased high outside the high-emission-density areas, es-
pecially in the morning. The BOE prediction shows a larger
area of high-NO2 VCD than that from GCAS, suggesting ei-
ther a positive bias in NOx emissions or inefficient transfor-
mation and removal of emitted NOx in the CMAQ model.
The high-NO2 VCD from the NAQFC simulation is lower
than the measurements over lower Manhattan and Brooklyn,
and the high-NO2 VCD extends to an area larger than that
from both GCAS and BOE. The performance is relatively
unsatisfactory during the high-pollution period in the morn-
ing of 28 August (Fig. 11e, i), with a correlation of only 0.56
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Figure 9. Comparisons of model performance for surface O3 (a and b) and NO2 (c and d) concentrations from five CMAQ simula-
tions against measurements from the Air Quality System monitors. These simulations include the Control run, dynamic boundary con-
ditions (BCON), boundary conditions with optimal interpolation (BCON+OI), and an all-adjustment run including emission adjustment
(BCON+OI+EmisAdj), and the operational NOAA National Air Quality Forecast Capability (NAQFC) run during the episode over five
subdomains. Two performance metrics are used here: normalized mean bias (NMB) and normalized mean error (NME). The comparison
time is from 26 to 31 August 2018.

Figure 10. Variations of observed (OBS) and simulated surface NO2 concentrations by the 3 km BOE system (BOE) and the 12 km NOAA
NAQFC system (NOAA NAQFC) at (a) Flax Pond, NY; (b) Queens College, NY; (c) New Haven, CT; and (d) Westport, CT, sites during
28–29 August 2018.

https://doi.org/10.5194/acp-21-16531-2021 Atmos. Chem. Phys., 21, 16531–16553, 2021



16546 S. Ma et al.: Improving predictability of high-ozone episodes

for BOE and 0.44 for NAQFC. These low correlations could
be in part caused by the high spatial variability of fine resolu-
tion measured VCD, so that the averaged VCD is still more
variable than either model. In contrast, the spatial patterns of
NO2 VCD in the afternoon are better reproduced than in the
morning (Table S6). In addition, the NO2 VCD from the sim-
ulation with combined adjustments using the EmisAdj_sub
method for emission refresh shows a similar spatial pattern to
that using BOE (Fig. S3). The NO2 VCD level, however, is
lower over the NYC area, suggesting an underestimate over
the hotspot but much better prediction over the rest of the
area. Besides the uncertainties in the model, an evaluation
conducted by Judd et al. (2020) showed that the absolute dif-
ference in GCAS from Pandora measurements has an average
and standard deviation of −0.2× 1015

± 2× 1015 molecules
cm−2 and a percent difference on average of−1.5 %± 20 %.
Overall, the BOE simulation at the 3 km resolution is able
to reproduce the observed NO2 VCD, and unlike the re-
sults of surface NO2, the NO2 VCD using EmisAdj_sub has
lower NMB (33 %) and NME (57 %) compared to that using
EmisAdj_avg (40 % and 61 %), while their correlation is still
the same (0.74). It indicates the advantage of adjusting emis-
sion with a finer spatial resolution in simulating NO2 vertical
column in this study. Table S6 shows that both 3 km sim-
ulations perform better than the 12 km NAQFC (R = 0.57,
NMB = 45 % and NME = 76 %, respectively).

4.2 O3 prediction

One key result expected from the improved prediction sys-
tem is better prediction of high-O3 episodes, especially those
events that cause the exceedance of NAAQS. Here we com-
pare the model performance between BOE and NAQFC
at the seven sites where the O3 concentrations exceeded
the NAAQS. Compared to NAQFC, BOE demonstrates en-
hanced prediction skills at all sites (Fig. 12). Note the com-
parisons may be attributed to the differences in meteorology,
emission and other factors. Although it is difficult to attribute
the improvement quantitatively to each factor, the magnitude
of O3 improvement from the base run to the BOE run is com-
parable to that of the overall reduced O3 bias, suggesting a
significant contribution from these improvement techniques.
The results show that BOE can better capture peak O3 val-
ues than NAQFC in the afternoon, a highly desired feature
in predicting O3 exceedances. Hourly surface O3 concentra-
tions reached more than 100 ppbv at four Connecticut sites,
including Greenwich, Westport, Middletown-CVH-Shed and
Stratford. While neither BOE nor NAQFC is able to predict
such high values, BOE reduces the bias by 10–20 ppbv dur-
ing peak hours at these sites. The improvement of peak O3
prediction is less significant on the other sites with lower ob-
served O3 concentration, but BOE still displays better per-
formance than NAQFC. There are only three sites at which
one or both simulations overpredict peak O3 on the 29 Au-
gust 2018. Compared to NAQFC, BOE shows larger over-

prediction of the peak O3 at the Greenwich site but smaller
overprediction at two other sites (Middletown and Westport).

Besides better peak prediction, BOE has also improved the
prediction of the timing of peak O3. The peaks predicted by
BOE are 2 to 3 h earlier than that by NAQFC, which agrees
better with the timing of the observed peaks (Fig. 12). The
BOE peaks are narrower than the NAQFC ones, so that the
former follows the observed O3 downslope and avoids the
positive biases during late afternoon and early evening. Fi-
nally, BOE has improved the prediction of low O3 concentra-
tions and nighttime O3 valleys that are lower than those from
NAQFC. Both simulations, however, are unable to reproduce
the extreme low nighttime values at several sites. Overall,
the BOE simulation performs better in capturing daytime O3
peaks and nighttime valleys, as well as the timing of both,
with a mean correlation coefficient of 0.93 compared to 0.88
for the NAQFC simulation. This can be in part attributed to
the high resolution of the LIS 3 km system, which can better
resolve meteorology and emission variations. As the emis-
sions and meteorological inputs play an important role in de-
termining the magnitude and timing of high peaks (Pan et
al., 2017), high-resolution data of both emission and meteo-
rology contributed to the improved the simulation of peak O3
value and its timing, especially over urban areas (Fig. 12).

Vertical profiles of O3 are compared between the Lang-
ley Mobile O3 Lidar (LMOL) observations and the CMAQ
simulations at the Westport site. As shown in Fig. 13, LMOL
observations reveal that the O3 concentration in the planetary
boundary layer starts to build up around 16:00–17:00 UTC,
and high concentrations (>∼ 70 ppbv), which extend to a
height of about 1.5 km, last until 23:00 UTC on 28 and
29 August. This pattern is reproduced by both the BOE and
NAQFC simulations. Above the PBL, the variations of O3
concentrations are also captured by both simulations. O3
concentrations in the free troposphere are more controlled
by regional O3 production and transport than in the PBL.
Consequently, the structure and magnitude of the O3 profiles
are very similar between the BOE and NAQFC simulations,
since the BOE simulation is driven by the dynamic boundary
conditions derived from the same NAQFC simulation. Com-
pared to that from the LMOL observations, the predicted O3
concentrations from both runs are biased low above 800 hPa
but biased high below it. Between the two model simulations,
the BOE run not only produces more O3 in the PBL, but
also shows a better temporal evolution of the PBL structure,
with a short-lived high O3 peak and a PBL height peak be-
tween 20:00–22:00 UTC on 28 August and persistent O3 and
PBL height plateaus between 16:00–23:00 UTC on 29 Au-
gust (Fig. 13). The PBL in the BOE simulation extends well
above 850 mbar, while the observed high O3 from LMOL
generally stays beneath this height, suggesting possible over-
prediction of the PBL height.

In general, the 3 km BOE simulation performs better to
capture the temporal variability of the PBL and O3 pro-
duction but tends to overestimate both during this episode.
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Figure 11. Spatial distribution of NO2 vertical column density (VCD) observed by NASA GeoCAPE Airborne Simulator (GCAS) (top row)
and simulated by the 3 km BOE (center row) and 12 km NOAA NAQFC (bottom row) over the LIS domain during 28–29 August 2018.
There were two flight missions each day: the morning flight (AM) from ∼ 11:00 to 15:00 UTC and the afternoon flight (PM) from ∼ 16:00
to 20:00 UTC.

In contrast, the NAQFC simulation has produced less pro-
nounced temporal variations in both O3 concentrations and
PBL height in the lower troposphere, in particular on 28 Au-
gust when this region experienced the worst air quality in
several states. The NAQFC simulation, however, performed
better during the time with lower O3 concentrations, which
resulted in an overall lower NMB (9 %) and NME (21 %)
comparing to that in BOE (22 % and 26 % respectively). The
BOE simulation, however, presented a much better reproduc-
tion of the O3 variability in terms of correlation (0.71) than
the NAQFC run (0.54). This suggests that the new 3 km BOE
system is more responsive to the variations of the controlling
factors that shape O3 pollution, although the system needs to
be further refined to reduce bias. The model performance for
O3 surface concentration and vertical distribution using the
AFs from EmisAdj_sub is very close to that using the AFs
from EmisAdj_avg in the BOE case (Fig. S4, Table S7).

5 Summary

Improvement of air quality in the past decades renders the
prediction of high-ozone events more challenging. This study
investigates the feasibility of designing a high-resolution
air quality prediction system to capture these less frequent
events with more accuracy. Relying on the observations col-
lected during the Long Island Sound Tropospheric Ozone
Study field campaign, we have assessed the effectiveness of
various improvements to the prediction system to enhance
the predictability of high-O3 episodes. These updates were
then combined to explore how to further improve the pre-
dictability of both ozone and nitrogen dioxide. Finally, the
modeling system with combined updates has been utilized to
simulate a severe high-O3-pollution event in the Long Island
Sound and surrounding areas.

Different prediction system updates demonstrate varying
potentials to improve O3 and NO2 prediction performance.
For O3 prediction, the most significant improvement comes
from the dynamic boundary conditions derived from NOAA
National Air Quality Forecast Capability (NAQFC), com-
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Figure 12. Time series of observed (OBS) and simulated surface O3 concentrations by the 3 km system with dynamic boundary conditions,
OI initialization and emission adjustment (BOE) and the 12 km NOAA National Air Quality Forecast Capability System (NAQFC) system
at the seven sites where the National Ambient Air Quality Standard (NAAQS) for O3 were exceeded during 28–29 August 2018: (a) Colliers
Mills, (b) Riverhead, (c) Greenwich, (d) Madison-Beach Road, (e) Middletown-CVH-Shed, (f) Stratford and (g) Westport.

pared to that with the static boundary conditions. This is due
in part to the fact that the model domain used in this study is
relatively small and that O3 is a regional air pollutant, making
its prediction more susceptible to the influence of regional
transport. Dynamic boundary conditions (BCs) are less influ-
ential in NO2 prediction, for which all high-resolution simu-
lations outperform the 12 km NAQFC simulation, highlight-
ing the importance of spatially resolved emission and meteo-
rology for the prediction of short-lived pollutants. The impact
of improved initial concentrations through optimal interpo-
lation (OI) is shown to be large in urban areas initially but
fades away rapidly. The influence of OI adjustment, how-
ever, lingers for a longer period in an area with low emis-
sion density where emissions and chemical reactions make a
smaller contribution to the O3 budget than that in the areas
with high emission density. Such a method may be more use-
ful if applied to vertical layers above the ground. Future air
quality forecasting and modeling can benefit from concerted
efforts to provide near-real-time data of O3 aloft on a con-
tinuous basis (Mathur et al., 2018), so that improved initial-
ization of the aloft conditions can better represent regional
transport and modulate the inferred impact of LBCs on O3
prediction. Finally, emission adjustment, which changes the
baseline emissions using the temporal trends derived from
ground and satellite observations, only yields moderate im-

provement in O3 prediction compared to that without emis-
sion adjustment. One possible direction to explore is to ap-
ply other methods to constrain emissions that use both vari-
ational (e.g., Elbern et al., 2007; Vira and Sofiev, 2012) and
ensemble-based (e.g., Miyazaki et al., 2012, 2017) solutions
to analyze the 3D chemical tracers as well as their respective
precursor emissions simultaneously. In addition, the impor-
tance of volatile consumer product VOCs has been identified
in recent studies (McDonald et al., 2018), suggesting that up-
dating other species than NOx is also necessary. This may
be challenging, however, through a similar approach to the
NOx emission adjustment implemented here, since there are
limited measurements of VOCs from both ground and space
instruments. While the effectiveness of each update varies, a
combination of these updates proves to outperform that with
each single update. The new prediction system at 3 km reso-
lution, equipped with dynamic BCs, OI and Emission adjust-
ment (BOE), was used to simulate a high-O3 episode over
the Long Island Sound region. Compared to the 12 km oper-
ational NAQFC, the BOE system is able to significantly re-
duce the biases in surface O3 and NO2 prediction. The BOE
is also able to reproduce NO2 VCD observed by NASA Lan-
gley GCAS with higher accuracy than the NAQFC. More im-
portantly, the BOE simulation shows considerable improve-
ment in capturing the O3 peaks and valleys, as well as the
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Figure 13. Comparison of vertical O3 profiles (observed by NASA Langley Mobile O3 Lidar (left column, a and d)) with these simulated
by the 3 km prediction system (central column, b and e) and the 12 km NOAA NAQFC (right column, c and f) over the Westport site on
28 August (a–c) and 29 August 2018 (d–f), respectively. Note white represents missing data from the lidar data.

timing of both, with a correlation coefficient of 0.93 com-
pared to that of 0.88 by the NAQFC. This study demonstrates
feasible measures to improve the capability of air quality pre-
diction systems to capture high-O3 episodes in a cleaner ur-
ban environment.

Code and data availability. WRF is an open-source commu-
nity model. The source code is publicly available at https:
//www2.mmm.ucar.edu/wrf/users/download/get_sources.html,
(WRF Development and Support Team, 2021). Source code for
CMAQ version 5.3.1 and SMOKE version 4.7 can be downloaded
from Community Modeling and Analysis System (CMAS) Cen-
ter, available at https://www.cmascenter.org/download/software/
cmaq/cmaq_5-3-1.cfm?DB=TRUE and https://www.cmascenter.
org/download/software/smoke/smoke_4-7.cfm?DB=TRUE
(CMAS, 2021a, b). The AirNow hourly data of O3 and NOx

are available at https://files.airnowtech.org/?prefix=airnow (US
EPA, 2021a), and the hourly NOx data from the US EPA
Air Quality System (AQS) surface network are available at
https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw (US
EPA, 2021b). The GCAS NO2 vertical column density and the
LMOL O3 vertical profile data from LISTOS are available at https:
//www-air.larc.nasa.gov/cgi-bin/ArcView/listos (NASA, 2018).
The monthly product of NO2 vertical column density from OMI is

available at https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI
(NASA and GSFC, 2021).
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