Articles | Volume 21, issue 16
https://doi.org/10.5194/acp-21-12243-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-12243-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Kinetics and impacting factors of HO2 uptake onto submicron atmospheric aerosols during the 2019 Air QUAlity Study (AQUAS) in Yokohama, Japan
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation
for Environmental Quality, Guangzhou 511443, China
Graduate School of Global Environmental Studies, Kyoto University,
Kyoto 606-8501, Japan
Center for Regional Environmental Research, National Institute for
Environmental Studies, Ibaraki 305-8506, Japan
Yu Bai
Graduate School of Human and Environmental Studies, Kyoto University,
Kyoto 606-8316, Japan
Yukiko Fukusaki
Yokohama Environmental Science Research Institute, Yokohama Kanagawa
221-0024, Japan
Yuka Kousa
Yokohama Environmental Science Research Institute, Yokohama Kanagawa
221-0024, Japan
Sathiyamurthi Ramasamy
Center for Regional Environmental Research, National Institute for
Environmental Studies, Ibaraki 305-8506, Japan
Akinori Takami
Center for Regional Environmental Research, National Institute for
Environmental Studies, Ibaraki 305-8506, Japan
Ayako Yoshino
Center for Regional Environmental Research, National Institute for
Environmental Studies, Ibaraki 305-8506, Japan
Tomoki Nakayama
Faculty of Environmental Science and Graduate School of Fisheries and
Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
Yasuhiro Sadanaga
Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
Yoshihiro Nakashima
Graduate School of Agriculture, Tokyo University of Agriculture and
Technology, Tokyo 183-8538, Japan
Graduate School of Global Environmental Studies, Kyoto University,
Kyoto 606-8501, Japan
Kentaro Murano
Graduate School of Global Environmental Studies, Kyoto University,
Kyoto 606-8501, Japan
Nanase Kohno
Graduate School of Global Environmental Studies, Kyoto University,
Kyoto 606-8501, Japan
Yosuke Sakamoto
Graduate School of Global Environmental Studies, Kyoto University,
Kyoto 606-8501, Japan
Center for Regional Environmental Research, National Institute for
Environmental Studies, Ibaraki 305-8506, Japan
Graduate School of Human and Environmental Studies, Kyoto University,
Kyoto 606-8316, Japan
Yoshizumi Kajii
CORRESPONDING AUTHOR
Graduate School of Global Environmental Studies, Kyoto University,
Kyoto 606-8501, Japan
Center for Regional Environmental Research, National Institute for
Environmental Studies, Ibaraki 305-8506, Japan
Graduate School of Human and Environmental Studies, Kyoto University,
Kyoto 606-8316, Japan
Related authors
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024, https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary
Short summary
In-depth understanding of the near-ground vertical variability in photochemical ozone (O3) formation is crucial for mitigating O3 pollution. Utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in the Pearl River Delta region, one of the most O3-polluted areas in China.
Yixin Hao, Jun Zhou, Jie-Ping Zhou, Yan Wang, Suxia Yang, Yibo Huangfu, Xiao-Bing Li, Chunsheng Zhang, Aiming Liu, Yanfeng Wu, Yaqing Zhou, Shuchun Yang, Yuwen Peng, Jipeng Qi, Xianjun He, Xin Song, Yubin Chen, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 23, 9891–9910, https://doi.org/10.5194/acp-23-9891-2023, https://doi.org/10.5194/acp-23-9891-2023, 2023
Short summary
Short summary
By employing an improved net photochemical ozone production rate (NPOPR) detection system based on the dual-channel reaction chamber technique, we measured the net photochemical ozone production rate in the Pearl River Delta in China. The photochemical ozone formation mechanisms in the reaction and reference chambers were investigated using the observation-data-constrained box model, which helped us to validate the NPOPR detection system and understand photochemical ozone formation mechanism.
Wenjie Wang, Jipeng Qi, Jun Zhou, Bin Yuan, Yuwen Peng, Sihang Wang, Suxia Yang, Jonathan Williams, Vinayak Sinha, and Min Shao
Atmos. Meas. Tech., 14, 2285–2298, https://doi.org/10.5194/amt-14-2285-2021, https://doi.org/10.5194/amt-14-2285-2021, 2021
Short summary
Short summary
We designed a new reactor for measurements of OH reactivity (i.e., OH radical loss frequency) based on the comparative reactivity method under
high-NOx conditions, such as in cities. We performed a series of laboratory tests to evaluate the new reactor. The new reactor was used in the field and performed well in measuring OH reactivity in air influenced by upwind cities.
Jun Zhou, Miriam Elser, Ru-Jin Huang, Manuel Krapf, Roman Fröhlich, Deepika Bhattu, Giulia Stefenelli, Peter Zotter, Emily A. Bruns, Simone M. Pieber, Haiyan Ni, Qiyuan Wang, Yichen Wang, Yaqing Zhou, Chunying Chen, Mao Xiao, Jay G. Slowik, Samuel Brown, Laure-Estelle Cassagnes, Kaspar R. Daellenbach, Thomas Nussbaumer, Marianne Geiser, André S. H. Prévôt, Imad El-Haddad, Junji Cao, Urs Baltensperger, and Josef Dommen
Atmos. Chem. Phys., 19, 14703–14720, https://doi.org/10.5194/acp-19-14703-2019, https://doi.org/10.5194/acp-19-14703-2019, 2019
Short summary
Short summary
Reactive oxygen species (ROS) are believed to contribute to the adverse health effects of aerosols. We measured particle-bound ROS (PB-ROS) with an online instrument in two distinct environments, i.e., Beijing (China) and Bern (Switzerland). In both cities these exogenic ROS are predominantly related to secondary organic aerosol (SOA). PB-ROS content in SOA from various anthropogenic emission sources tested in the laboratory was comparable to that in the ambient measurements.
Jun Zhou, Peter Zotter, Emily A. Bruns, Giulia Stefenelli, Deepika Bhattu, Samuel Brown, Amelie Bertrand, Nicolas Marchand, Houssni Lamkaddam, Jay G. Slowik, André S. H. Prévôt, Urs Baltensperger, Thomas Nussbaumer, Imad El-Haddad, and Josef Dommen
Atmos. Chem. Phys., 18, 6985–7000, https://doi.org/10.5194/acp-18-6985-2018, https://doi.org/10.5194/acp-18-6985-2018, 2018
Short summary
Short summary
We thoroughly studied the reactive oxygen species (ROS) generation potential of particulate wood combustion emissions, from different combustion technologies, fuel types, operation methods, combustion regimes and phases. ROS from automatically operated combustion devices under optimal conditions were much lower than those from manually operated appliances. We examined the impact of atmospheric aging on ROS content in SOA and determined the controlling parameters, by using an online ROS analyzer.
Jun Zhou, Emily A. Bruns, Peter Zotter, Giulia Stefenelli, André S. H. Prévôt, Urs Baltensperger, Imad El-Haddad, and Josef Dommen
Atmos. Meas. Tech., 11, 65–80, https://doi.org/10.5194/amt-11-65-2018, https://doi.org/10.5194/amt-11-65-2018, 2018
Short summary
Short summary
Reactive oxygen species (ROS) in the particle phase may induce oxidative stress in the human lungs upon inhalation. Here we present and thoroughly characterize a modified online and offline ROS analyzer. Selected model organic compounds were tested and potential interferences from gas-phase and matrix effects of particulate constituents were evaluated. ROS measurements of filter samples revealed the rapid decay of a substantial ROS fraction, supporting the application of online measurements.
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024, https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary
Short summary
In-depth understanding of the near-ground vertical variability in photochemical ozone (O3) formation is crucial for mitigating O3 pollution. Utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in the Pearl River Delta region, one of the most O3-polluted areas in China.
Yixin Hao, Jun Zhou, Jie-Ping Zhou, Yan Wang, Suxia Yang, Yibo Huangfu, Xiao-Bing Li, Chunsheng Zhang, Aiming Liu, Yanfeng Wu, Yaqing Zhou, Shuchun Yang, Yuwen Peng, Jipeng Qi, Xianjun He, Xin Song, Yubin Chen, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 23, 9891–9910, https://doi.org/10.5194/acp-23-9891-2023, https://doi.org/10.5194/acp-23-9891-2023, 2023
Short summary
Short summary
By employing an improved net photochemical ozone production rate (NPOPR) detection system based on the dual-channel reaction chamber technique, we measured the net photochemical ozone production rate in the Pearl River Delta in China. The photochemical ozone formation mechanisms in the reaction and reference chambers were investigated using the observation-data-constrained box model, which helped us to validate the NPOPR detection system and understand photochemical ozone formation mechanism.
Yange Deng, Hiroaki Fujinari, Hikari Yai, Kojiro Shimada, Yuzo Miyazaki, Eri Tachibana, Dhananjay K. Deshmukh, Kimitaka Kawamura, Tomoki Nakayama, Shiori Tatsuta, Mingfu Cai, Hanbing Xu, Fei Li, Haobo Tan, Sho Ohata, Yutaka Kondo, Akinori Takami, Shiro Hatakeyama, and Michihiro Mochida
Atmos. Chem. Phys., 22, 5515–5533, https://doi.org/10.5194/acp-22-5515-2022, https://doi.org/10.5194/acp-22-5515-2022, 2022
Short summary
Short summary
Offline analyses of the hygroscopicity and composition of atmospheric aerosols are complementary to online analyses in view of the applicability to broader sizes, specific compound groups, and investigations at remote sites. This offline study characterized the composition of water-soluble matter in aerosols and their humidity-dependent hygroscopicity on Okinawa, a receptor site of East Asian outflow. Further, comparison with online analyses showed the appropriateness of the offline method.
Yange Deng, Satoshi Inomata, Kei Sato, Sathiyamurthi Ramasamy, Yu Morino, Shinichi Enami, and Hiroshi Tanimoto
Atmos. Chem. Phys., 21, 5983–6003, https://doi.org/10.5194/acp-21-5983-2021, https://doi.org/10.5194/acp-21-5983-2021, 2021
Short summary
Short summary
The temperature and acidity dependence of yields and chemical compositions of the α-pinene ozonolysis SOA were systematically investigated using a newly developed compact chamber system. Increases in SOA yields were observed with the decrease in temperature and under acidic seed conditions. The differences in chemical compositions between acidic and neutral seed conditions were characterized and explained from the viewpoints of acid-catalyzed reactions. Some organosulfates were newly detected.
Wenjie Wang, Jipeng Qi, Jun Zhou, Bin Yuan, Yuwen Peng, Sihang Wang, Suxia Yang, Jonathan Williams, Vinayak Sinha, and Min Shao
Atmos. Meas. Tech., 14, 2285–2298, https://doi.org/10.5194/amt-14-2285-2021, https://doi.org/10.5194/amt-14-2285-2021, 2021
Short summary
Short summary
We designed a new reactor for measurements of OH reactivity (i.e., OH radical loss frequency) based on the comparative reactivity method under
high-NOx conditions, such as in cities. We performed a series of laboratory tests to evaluate the new reactor. The new reactor was used in the field and performed well in measuring OH reactivity in air influenced by upwind cities.
Yongjoo Choi, Yugo Kanaya, Masayuki Takigawa, Chunmao Zhu, Seung-Myung Park, Atsushi Matsuki, Yasuhiro Sadanaga, Sang-Woo Kim, Xiaole Pan, and Ignacio Pisso
Atmos. Chem. Phys., 20, 13655–13670, https://doi.org/10.5194/acp-20-13655-2020, https://doi.org/10.5194/acp-20-13655-2020, 2020
Yongjoo Choi, Yugo Kanaya, Seung-Myung Park, Atsushi Matsuki, Yasuhiro Sadanaga, Sang-Woo Kim, Itsushi Uno, Xiaole Pan, Meehye Lee, Hyunjae Kim, and Dong Hee Jung
Atmos. Chem. Phys., 20, 83–98, https://doi.org/10.5194/acp-20-83-2020, https://doi.org/10.5194/acp-20-83-2020, 2020
Short summary
Short summary
The relationship between black carbon (BC) and carbon monoxide (CO) can differ by the different structure of fuel consumption. By investigating the representativeness of the BC and CO emission inventory for real-world comparison with reliable observations, this study suggested that accurate CO emissions should be preferentially investigated to enhance the accuracy of the BC emission rate over East Asia.
Kei Sato, Yuji Fujitani, Satoshi Inomata, Yu Morino, Kiyoshi Tanabe, Toshihide Hikida, Akio Shimono, Akinori Takami, Akihiro Fushimi, Yoshinori Kondo, Takashi Imamura, Hiroshi Tanimoto, and Seiji Sugata
Atmos. Chem. Phys., 19, 14901–14915, https://doi.org/10.5194/acp-19-14901-2019, https://doi.org/10.5194/acp-19-14901-2019, 2019
Short summary
Short summary
The volatility distributions of secondary organic aerosol (SOA) formed from the photooxidation of 1,3,5-trimethylbenzene were investigated by composition, heating, and dilution measurements. Fresh SOA, formed from 1,3,5-trimethylbenzene, included low-volatility compounds with < 1 μg m–3 saturation concentrations, which are not assumed to exist in fresh SOA particles in the standard volatility basis-set approach. Improvements in the organic aerosol model will be necessary.
Jun Zhou, Miriam Elser, Ru-Jin Huang, Manuel Krapf, Roman Fröhlich, Deepika Bhattu, Giulia Stefenelli, Peter Zotter, Emily A. Bruns, Simone M. Pieber, Haiyan Ni, Qiyuan Wang, Yichen Wang, Yaqing Zhou, Chunying Chen, Mao Xiao, Jay G. Slowik, Samuel Brown, Laure-Estelle Cassagnes, Kaspar R. Daellenbach, Thomas Nussbaumer, Marianne Geiser, André S. H. Prévôt, Imad El-Haddad, Junji Cao, Urs Baltensperger, and Josef Dommen
Atmos. Chem. Phys., 19, 14703–14720, https://doi.org/10.5194/acp-19-14703-2019, https://doi.org/10.5194/acp-19-14703-2019, 2019
Short summary
Short summary
Reactive oxygen species (ROS) are believed to contribute to the adverse health effects of aerosols. We measured particle-bound ROS (PB-ROS) with an online instrument in two distinct environments, i.e., Beijing (China) and Bern (Switzerland). In both cities these exogenic ROS are predominantly related to secondary organic aerosol (SOA). PB-ROS content in SOA from various anthropogenic emission sources tested in the laboratory was comparable to that in the ambient measurements.
Jun Zhou, Peter Zotter, Emily A. Bruns, Giulia Stefenelli, Deepika Bhattu, Samuel Brown, Amelie Bertrand, Nicolas Marchand, Houssni Lamkaddam, Jay G. Slowik, André S. H. Prévôt, Urs Baltensperger, Thomas Nussbaumer, Imad El-Haddad, and Josef Dommen
Atmos. Chem. Phys., 18, 6985–7000, https://doi.org/10.5194/acp-18-6985-2018, https://doi.org/10.5194/acp-18-6985-2018, 2018
Short summary
Short summary
We thoroughly studied the reactive oxygen species (ROS) generation potential of particulate wood combustion emissions, from different combustion technologies, fuel types, operation methods, combustion regimes and phases. ROS from automatically operated combustion devices under optimal conditions were much lower than those from manually operated appliances. We examined the impact of atmospheric aging on ROS content in SOA and determined the controlling parameters, by using an online ROS analyzer.
Kei Sato, Yuji Fujitani, Satoshi Inomata, Yu Morino, Kiyoshi Tanabe, Sathiyamurthi Ramasamy, Toshihide Hikida, Akio Shimono, Akinori Takami, Akihiro Fushimi, Yoshinori Kondo, Takashi Imamura, Hiroshi Tanimoto, and Seiji Sugata
Atmos. Chem. Phys., 18, 5455–5466, https://doi.org/10.5194/acp-18-5455-2018, https://doi.org/10.5194/acp-18-5455-2018, 2018
Short summary
Short summary
The volatility distribution of α-pinene secondary organic aerosols (SOAs) was evaluated with a wide range of techniques, including offline chemical analysis and dilution- and heat-induced evaporation. Compounds less volatile than semi-volatile products, i.e., highly oxygenated molecules and dimers, were identified as products, and the SOA evaporation with equilibration timescales of 24–46 min after dilution were observed.
Jun Zhou, Emily A. Bruns, Peter Zotter, Giulia Stefenelli, André S. H. Prévôt, Urs Baltensperger, Imad El-Haddad, and Josef Dommen
Atmos. Meas. Tech., 11, 65–80, https://doi.org/10.5194/amt-11-65-2018, https://doi.org/10.5194/amt-11-65-2018, 2018
Short summary
Short summary
Reactive oxygen species (ROS) in the particle phase may induce oxidative stress in the human lungs upon inhalation. Here we present and thoroughly characterize a modified online and offline ROS analyzer. Selected model organic compounds were tested and potential interferences from gas-phase and matrix effects of particulate constituents were evaluated. ROS measurements of filter samples revealed the rapid decay of a substantial ROS fraction, supporting the application of online measurements.
Takuma Miyakawa, Naga Oshima, Fumikazu Taketani, Yuichi Komazaki, Ayako Yoshino, Akinori Takami, Yutaka Kondo, and Yugo Kanaya
Atmos. Chem. Phys., 17, 5851–5864, https://doi.org/10.5194/acp-17-5851-2017, https://doi.org/10.5194/acp-17-5851-2017, 2017
Short summary
Short summary
We have deployed a single particle soot photometer (SP2) to characterize black carbon (BC) aerosols near industrial sources in Japan in the early summer of 2014 and at a remote island in the spring of 2015. The observed changes in the SP2-derived size distributions and mixing state of BC-containing particles with air mass transport are connected to meteorological variability (transport pathways and air mass histories) in spring in east Asia.
Satoshi Irei, Akinori Takami, Yasuhiro Sadanaga, Susumu Nozoe, Seiichiro Yonemura, Hiroshi Bandow, and Yoko Yokouchi
Atmos. Chem. Phys., 16, 4555–4568, https://doi.org/10.5194/acp-16-4555-2016, https://doi.org/10.5194/acp-16-4555-2016, 2016
Short summary
Short summary
Field measurements for trace-level chemical species in the gas and particulate phases were conducted at a rural site in westernmost Japan to better understand formation of secondary pollutants in transboundary air. A comparison of photochemical ages estimated by chemical clock with ozone concentrations or fractions of carboxylate in organic aerosol showed proportional relationships, and their slopes were 3.48 × 10−7 ppbv molecule−1 cm3 h−1 and 1.05 × 10−9 molecule−1 cm3 h−1, respectively.
Sayako Ueda, Tomoki Nakayama, Fumikazu Taketani, Kouji Adachi, Atsushi Matsuki, Yoko Iwamoto, Yasuhiro Sadanaga, and Yutaka Matsumi
Atmos. Chem. Phys., 16, 2525–2541, https://doi.org/10.5194/acp-16-2525-2016, https://doi.org/10.5194/acp-16-2525-2016, 2016
Short summary
Short summary
Detailed understandings of the light absorption property of black carbon (BC) particles and its relation to the mixing state and morphology are important. In this study, the enhancement of light absorption of BC due to coating (lensing effect) in a well-aged air mass was observed at an East Asian outflow site in Japan using a photoacoustic spectrometer, and its relation with mixing state and morphology of individual particles was examined based on transmission electron microscope analyses.
C. E. Jones, S. Kato, Y. Nakashima, and Y. Kajii
Atmos. Meas. Tech., 7, 1259–1275, https://doi.org/10.5194/amt-7-1259-2014, https://doi.org/10.5194/amt-7-1259-2014, 2014
G. M. Wolfe, C. Cantrell, S. Kim, R. L. Mauldin III, T. Karl, P. Harley, A. Turnipseed, W. Zheng, F. Flocke, E. C. Apel, R. S. Hornbrook, S. R. Hall, K. Ullmann, S. B. Henry, J. P. DiGangi, E. S. Boyle, L. Kaser, R. Schnitzhofer, A. Hansel, M. Graus, Y. Nakashima, Y. Kajii, A. Guenther, and F. N. Keutsch
Atmos. Chem. Phys., 14, 4715–4732, https://doi.org/10.5194/acp-14-4715-2014, https://doi.org/10.5194/acp-14-4715-2014, 2014
Related subject area
Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Fluxes, patterns and sources of phosphorus deposition in an urban–rural transition region in Southwest China
Influence of tropical cyclones on tropospheric ozone: possible implications
Tropospheric mercury vertical profiles between 500 and 10 000 m in central Europe
Atmospheric deposition of polybromodiphenyl ethers in remote mountain regions of Europe
A multi-sensor upper tropospheric ozone product (MUTOP) based on TES ozone and GOES water vapor: validation with ozonesondes
Composition of the TTL over Darwin: local mixing or long-range transport?
Yuanyuan Chen, Jiang Liu, Jiangyou Ran, Rong Huang, Chunlong Zhang, Xuesong Gao, Wei Zhou, Ting Lan, Dinghua Ou, Yan He, Yalan Xiong, Ling Luo, Lu Wang, and Ouping Deng
Atmos. Chem. Phys., 22, 14813–14823, https://doi.org/10.5194/acp-22-14813-2022, https://doi.org/10.5194/acp-22-14813-2022, 2022
Short summary
Short summary
Estimating the characteristics of atmospheric P deposition is critical to understanding the biogeochemical P cycle. Here we chose a typical urban–rural transition to monitor the dry and wet P depositions for 2 years. We found that atmospheric dry P deposition was the primary form of total P deposition, and P deposition could be affected by both meteorological factors and land-use types. Findings provide proper management of land use, which may help mitigate the pollution caused by P deposition.
Siddarth Shankar Das, Madineni Venkat Ratnam, Kizhathur Narasimhan Uma, Kandula Venkata Subrahmanyam, Imran Asatar Girach, Amit Kumar Patra, Sundaresan Aneesh, Kuniyil Viswanathan Suneeth, Karanam Kishore Kumar, Amit Parashuram Kesarkar, Sivarajan Sijikumar, and Geetha Ramkumar
Atmos. Chem. Phys., 16, 4837–4847, https://doi.org/10.5194/acp-16-4837-2016, https://doi.org/10.5194/acp-16-4837-2016, 2016
Short summary
Short summary
The present study examines the role of tropical cyclones in the enhancement of tropospheric ozone. The most significant and new observation reported is the increase in the upper-tropospheric ozone by 20–50 ppbv, which has extended down to the middle and lower troposphere. The descent rate of enhanced ozone layer during the passage of tropical cyclone is 0.8–1 km day−1. Enhancement of surface ozone concentration by ~ 10 ppbv in the daytime and 10–15 ppbv at night-time is observed.
Andreas Weigelt, Ralf Ebinghaus, Nicola Pirrone, Johannes Bieser, Jan Bödewadt, Giulio Esposito, Franz Slemr, Peter F. J. van Velthoven, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 16, 4135–4146, https://doi.org/10.5194/acp-16-4135-2016, https://doi.org/10.5194/acp-16-4135-2016, 2016
Short summary
Short summary
We show the first mercury profile measurements over Europe since 1996. Besides gaseous elemental mercury (GEM) and total gaseous mercury (TGM), the gases CO, SO2, NOx, and O3 were measured from aboard a research aircraft over four European locations. Compared to the boundary layer, the concentration of GEM and TGM in the free troposphere was 10–30% lower. Inside the individual layers no vertical gradient was apparent. Combined with CARIBIC data, a unique profile from 0.4 to 10.5 km is provided.
L. Arellano, P. Fernández, J. F. López, N. L. Rose, U. Nickus, H. Thies, E. Stuchlik, L. Camarero, J. Catalan, and J. O. Grimalt
Atmos. Chem. Phys., 14, 4441–4457, https://doi.org/10.5194/acp-14-4441-2014, https://doi.org/10.5194/acp-14-4441-2014, 2014
J. L. Moody, S. R. Felker, A. J. Wimmers, G. Osterman, K. Bowman, A. M. Thompson, and D. W. Tarasick
Atmos. Chem. Phys., 12, 5661–5676, https://doi.org/10.5194/acp-12-5661-2012, https://doi.org/10.5194/acp-12-5661-2012, 2012
W. J. Heyes, G. Vaughan, G. Allen, A. Volz-Thomas, H.-W. Pätz, and R. Busen
Atmos. Chem. Phys., 9, 7725–7736, https://doi.org/10.5194/acp-9-7725-2009, https://doi.org/10.5194/acp-9-7725-2009, 2009
Cited articles
Baker, A. R. and Jickells, T. D.: Mineral particle size as a control on
aerosol iron solubility, Geophys. Res. Lett., 33, L17608, https://doi.org/10.1029/2006GL026557,
2006.
Bertram, A. K., Martin, S. T., Hanna, S. J., Smith, M. L., Bodsworth, A., Chen, Q., Kuwata, M., Liu, A., You, Y., and Zorn, S. R.: Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component, Atmos. Chem. Phys., 11, 10995–11006, https://doi.org/10.5194/acp-11-10995-2011, 2011.
Bedjanian, Y., Lelièvre, S., and Le Bras, G.: Experimental study of the
interaction of HO2 radicals with soot surface, Phys. Chem. Chem. Phys.,
7, 334–341, https://doi.org/10.1039/B414217A, 2005.
Chen, G., Davis, D., Crawford, J., Heikes, B., O'Sullivan, D., Lee, M.,
Eisele, F., Mauldin, L., Tanner, D., Collins, J., Barrick, J., Anderson, B.,
Blake, D., Bradshaw, J., Sandholm, S., Carroll, M., Albercook, G., and
Clarke, A.: An assessment of HOx chemistry in the tropical pacific boundary
layer: comparison of model simulations with observations recorded during PEM
Tropics A, J. Atmos. Chem., 38, 317–344, https://doi.org/10.1023/A:1006402626288, 2001.
Cooper, P. L. and Abbatt, J. P. D.: Heterogeneous Interactions of OH and
HO2 Radicals with surfaces characteristic of atmospheric particulate
matter, J. Phys. Chem., 100, 2249–2254, https://doi.org/10.1021/jp952142z, 1996.
Creasey, D. J., Halford-Maw, P. A., Heard, D. E., Pilling, M. J., and Whitaker, B. J.: Implementation and initial deployment of a field instrument
for measurement of OH and HO2 in the troposphere by laser-induced
fluorescence, J. Chem. Soc. Faraday Trans. 93, 2907–2913, https://doi.org/10.1039/A701469D,
1997.
DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T.,
Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop,
D. R., and Jimenez, J. L.: Field-Deployable, High-Resolution, Time-of-Flight
Aerosol Mass Spectrometer, Anal. Chem. 78, 8281–8289, https://doi.org/10.1021/ac061249n,
2006.
Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A.: The “dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, 2015.
Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., and Weber, R. J.: Highly
acidic ambient particles, soluble metals, and oxidative potential: a link
between sulfate and aerosol toxicity, Environ. Sci. Technol., 51, 2611–2620,
https://doi.org/10.1021/acs.est.6b06151, 2017.
Finlayson-Pitts, B. J. and Pitts, J. N.: CHAPTER 7 – Chemistry of inorganic
nitrogen compounds, in: chemistry of the upper and lower atmosphere, edited
by: Finlayson-Pitts, B. J. and Pitts, J. N., Academic Press, San Diego,
264–293, 2000.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for
K+-Ca2+-Mg2+-NH -Na+-SO -NO -Cl−-H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007.
George, I. J. and Abbatt, J. P.: Heterogeneous oxidation of atmospheric
aerosol particles by gas-phase radicals, Nat. Chem., 2, 713–722,
https://doi.org/10.1038/nchem.806, 2010.
George, I. J., Matthews, P. S. J., Whalley, L. K., Brooks, B., Goddard, A.,
Baeza-Romero, M. T., and Heard, D. E.: Measurements of uptake coefficients
for heterogeneous loss of HO2 onto submicron inorganic salt aerosols,
Phys. Chem. Chem. Phys., 15, 12829–12845, https://doi.org/10.1039/C3CP51831K, 2013.
Gershenzon, Y. M., Grigorieva, V. M., Ivanov, A. V., and Remorov, R. G.:
O3 and OH Sensitivity to heterogeneous sinks of HO and CH3O2
on aerosol particles, Faraday Discuss., 100, 83–100, https://doi.org/10.1039/FD9950000083,
1995.
Gonzalez, J., Torrent-Sucarrat, M., and Anglada, J. M.: The reactions of
SO3 with HO2 radical and H2OHO2 radical complex.
Theoretical study on the atmospheric formation of HSO5 and
H2SO4, Phys. Chem. Chem. Phys., 12, 2116–2125, https://doi.org/10.1039/B916659A,
2010.
González Palacios, L., Corral Arroyo, P., Aregahegn, K. Z., Steimer, S.
S., Bartels-Rausch, T., Nozière, B., Guieu, C., Chester, R., Nimmo, M., Martin, J. M., Guerzoni, S., Nicolas, E.,
Mateu, J., and Keyse, S.: Atmospheric input of dissolved and particulate
metals to the northwestern Mediterranean, Deep Sea Res., 44, 655–674, https://doi.org/10.1016/S0967-0645(97)88508-6, 1997.
González Palacios, L., Corral Arroyo, P., Aregahegn, K. Z., Steimer, S. S., Bartels-Rausch, T., Nozière, B., George, C., Ammann, M., and Volkamer, R.: Heterogeneous photochemistry of imidazole-2-carboxaldehyde: HO2 radical formation and aerosol growth, Atmos. Chem. Phys., 16, 11823–11836, https://doi.org/10.5194/acp-16-11823-2016, 2016.
Guo, J., Tilgner, A., Yeung, C., Wang, Z., Louie, P. K. K., Luk, C. W. Y.,
Xu, Z., Yuan, C., Gao, Y., Poon, S., Herrmann, H., Lee, S., Lam, K. S., and
Wang, T.: Atmospheric peroxides in a polluted subtropical environment:
seasonal variation, sources and sinks, and importance of heterogeneous
processes, Environ. Sci. Technol., 48, 1443–1450, https://doi.org/10.1021/es403229x, 2014.
Guo, J., Wang, Z., Tao, W., and Zhang, X.: Theoretical evaluation of
different factors affecting the HO2 uptake coefficient driven by
aqueous-phase first-order loss reaction, Sci. Total Environ., 683, 146–153,
https://doi.org/10.1016/j.scitotenv.2019.05.237, 2019.
Halstead, M. J. R., Cunninghame, R. G., and Hunter, K. A.: Wet deposition of
trace metals to a remote site in Fiordland, New Zealand, Atmos. Environ.,
34, 665–676, https://doi.org/10.1016/S1352-2310(99)00185-5, 2000.
Hanson, D. R., Burkholder, J. B., Howard, C. J., and Ravishankara, A. R.:
Measurement of hydroxyl and hydroperoxy radical uptake coefficients on water
and sulfuric acid surfaces, J. Phys. Chem., 96, 4979–4985,
https://doi.org/10.1021/j100191a046, 1992.
Hanson, D. R., Ravishankara, A. R., and Solomon, S.: Heterogeneous reactions
in sulfuric acid aerosols: A framework for model calculations, J. Geophys.
Res.-Atmos., 99, 3615–3629, https://doi.org/10.1029/93jd02932, 1994.
Heard, D. E. and Pilling, M. J.: Measurement of OH and HO2 in the
Troposphere, Chem. Rev., 103, 5163–5198, https://doi.org/10.1021/cr020522s, 2003.
Hennigan, C. J., Izumi, J., Sullivan, A. P., Weber, R. J., and Nenes, A.: A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles, Atmos. Chem. Phys., 15, 2775–2790, https://doi.org/10.5194/acp-15-2775-2015, 2015.
Hofmann, H., Hoffmann, P., and Lieser, K. H.: Transition metals in
atmospheric aqueous samples, analytical determination and speciation,
Fresen. J. Anal. Chem., 340, 591–597, https://doi.org/10.1007/BF00322435, 1991.
Hsu, S.-C., Wong, G. T. F., Gong, G.-C., Shiah, F.-K., Huang, Y.-T., Kao,
S.-J., Tsai, F., Candice Lung, S.-C., Lin, F.-J., Lin, I. I., Hung, C.-C.,
and Tseng, C.-M.: Sources, solubility, and dry deposition of aerosol trace
elements over the East China Sea, Mar. Chem. 120, 116–127,
https://doi.org/10.1016/j.marchem.200810.003, 2010.
George, I. J., Slowik, J., and Abbatt, J.: Chemical aging of ambient organic
aerosol from heterogeneous reaction with hydroxyl radicals, Geophys. Res.
Lett., 35, L13811, https://doi.org/10.1029/2008GL033884, 2008.
Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos.
Environ., 34, 2131–2159, https://doi.org/10.1016/S1352-2310(99)00462-8, 2000.
Jaeglé, L., Jacob, D. J., Brune, W. H., Faloona, I., Tan, D., Heikes, B.
G., Kondo, Y., Sachse, G. W., Anderson, B., Gregory, G. L., Singh, H. B.,
Pueschel, R., Ferry, G., Blake, D. R., and Shetter, R. E.: Photochemistry of
HOx in the upper troposphere at northern midlatitudes, J. Geophys. Res.-Atmos., 105, 3877–3892, https://doi.org/10.1029/1999JD901016, 2000.
Kanaya, Y., Cao, R., Akimoto, H., Fukuda, M., Komazaki, Y., Yokouchi, Y.,
Koike, M., Tanimoto, H., Takegawa, N., and Kondo, Y.: Urban photochemistry
in central Tokyo: 1. Observed and modeled OH and HO2 radical
concentrations during the winter and summer of 2004, J. Geophys. Res.-Atmos., 112, D21312, https://doi.org/10.1029/2007jd008670, 2007a.
Kanaya, Y., Cao, R., Kato, S., Miyakawa, Y., Kajii, Y., Tanimoto, H.,
Yokouchi, Y., Mochida, M., Kawamura, K., and Akimoto, H.: Chemistry of OH
and HO2 radicals observed at Rishiri Island, Japan, in September 2003:
Missing daytime sink of HO2 and positive nighttime correlations with
monoterpenes, J. Geophys. Res.-Atmos., 112, D11308, https://doi.org/10.1029/2006jd007987, 2007b.
Lakey, P. S. J., George, I. J., Whalley, L. K., Baeza-Romero, M. T., and
Heard, D. E.: Measurements of the HO2 uptake coefficients onto single
component organic aerosols, Environ. Sci. Technol., 49, 4878–4885,
https://doi.org/10.1021/acs.est.5b00948, 2015.
Lakey, P. S. J., Berkemeier, T., Krapf, M., Dommen, J., Steimer, S. S., Whalley, L. K., Ingham, T., Baeza-Romero, M. T., Pöschl, U., Shiraiwa, M., Ammann, M., and Heard, D. E.: The effect of viscosity and diffusion on the HO2 uptake by sucrose and secondary organic aerosol particles, Atmos. Chem. Phys., 16, 13035–13047, https://doi.org/10.5194/acp-16-13035-2016, 2016a.
Lakey, P. S. J., George, I. J., Baeza-Romero, M. T., Whalley, L. K., and
Heard, D. E.: Organics substantially reduce HO2 uptake onto aerosols
containing transition metal ions, J. Phys. Chem. A, 120, 1421–1430,
https://doi.org/10.1021/acs.jpca.5b06316, 2016b.
Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B.: Tropospheric
chemistry: A global perspective, 86, 7210–7254, https://doi.org/10.1029/JC086iC08p07210,
1981.
Loukhovitskaya, E., Bedjanian, Y., Morozov, I., and Le Bras, G.: Laboratory
study of the interaction of HO2 radicals with the NaCl, NaBr,
MgCl2⋅6H2O and sea salt surfaces, Phys. Chem. Chem.
Phys., 11, 7896–7905, https://doi.org/10.1039/B906300E, 2009.
Macintyre, H. L. and Evans, M. J.: Parameterisation and impact of aerosol uptake of HO2 on a global tropospheric model, Atmos. Chem. Phys., 11, 10965–10974, https://doi.org/10.5194/acp-11-10965-2011, 2011.
Manoj, S. V., Mishra, C. D., Sharma, M., Rani, A., Jain, R., Bansal, S. P.,
and Gupta, K. S.: Iron, manganese and copper concentrations in wet
precipitations and kinetics of the oxidation of SO2 in rain water at
two urban sites, Jaipur and Kota, in Western India, Atmos. Environ., 34,
4479–4486, https://doi.org/10.1016/S1352-2310(00)00117-5, 2000.
Mao, J., Jacob, D. J., Evans, M. J., Olson, J. R., Ren, X., Brune, W. H., Clair, J. M. St., Crounse, J. D., Spencer, K. M., Beaver, M. R., Wennberg, P. O., Cubison, M. J., Jimenez, J. L., Fried, A., Weibring, P., Walega, J. G., Hall, S. R., Weinheimer, A. J., Cohen, R. C., Chen, G., Crawford, J. H., McNaughton, C., Clarke, A. D., Jaeglé, L., Fisher, J. A., Yantosca, R. M., Le Sager, P., and Carouge, C.: Chemistry of hydrogen oxide radicals (HOx) in the Arctic troposphere in spring, Atmos. Chem. Phys., 10, 5823–5838, https://doi.org/10.5194/acp-10-5823-2010, 2010.
Mao, J., Fan, S., Jacob, D. J., and Travis, K. R.: Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols, Atmos. Chem. Phys., 13, 509–519, https://doi.org/10.5194/acp-13-509-2013, 2013a.
Mao, J., Paulot, F., Jacob, D. J., Cohen, R. C., Crounse, J. D., Wennberg,
P. O., Keller, C. A., Hudman, R. C., Barkley, M. P., and Horowitz, L. W.:
Ozone and organic nitrates over the eastern United States: Sensitivity to
isoprene chemistry, J. Geophys. Res.-Atmos., 118, 11256–211268,
https://doi.org/10.1002/jgrd.50817, 2013b.
Martínez, M., Harder, H., Kovacs, T. A., Simpas, J. B., Bassis, J.,
Lesher, R. L., Brune, W., Frost, G., Williams, E., Stroud, C., Jobson, B.,
Roberts, J. M., Hall, S., Shetter, R., Wert, B. P., Fried, A., Alicke, B.,
Stutz, J., Young, V., White, A., and Zamora, R. J.: OH and HO2
concentrations, sources, and loss rates during the Southern Oxidants Study
in Nashville, Tennessee, summer 1999, J. Geophys. Res.-Atmos., 108, 4617, https://doi.org/10.1029/2003JD003551, 2003.
Matthews, P. S. J., Baeza-Romero, M. T., Whalley, L. K., and Heard, D. E.: Uptake of HO2 radicals onto Arizona test dust particles using an aerosol flow tube, Atmos. Chem. Phys., 14, 7397–7408, https://doi.org/10.5194/acp-14-7397-2014, 2014.
Millán, L., Wang, S., Livesey, N., Kinnison, D., Sagawa, H., and Kasai, Y.: Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder, Atmos. Chem. Phys., 15, 2889–2902, https://doi.org/10.5194/acp-15-2889-2015, 2015.
Miyazaki, K., Nakashima, Y., Schoemaecker, C., Fittschen, C., and Kajii, Y.:
Note: A laser-flash photolysis and laser-induced fluorescence detection
technique for measuring total HO2 reactivity in ambient air, Rev.
Sci. Instrum., 84, 076106, https://doi.org/10.1063/1.4812634, 2013.
Morita, A., Kanaya, Y., and Francisco, J. S.: Uptake of the HO2 radical
by water: Molecular dynamics calculations and their implications for
atmospheric modeling, J. Geophys. Res.-Atmos., 109, D09201, https://doi.org/10.1029/2003jd004240,
2004.
Mozurkewich, M., McMurry, P. H., Gupta, A., and Calvert, J. G.: Mass
accommodation coefficient for HO2 radicals on aqueous particles, J.
Geophys. Res.-Atmos., 92, 4163–4170, https://doi.org/10.1029/JD092iD04p04163, 1987.
Nakayama, T., Matsumi, Y., Kawahito, K., Watabe, Y.: Development and
evaluation of a palm-sized optical PM2.5 sensor. Aerosol Sci. Technol.,
52, 2–12, https://doi.org/10.1080/02786826.2017.1375078,2018.
Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Chhabra, P. S., Seinfeld, J. H., and Worsnop, D. R.: Changes in organic aerosol composition with aging inferred from aerosol mass spectra, Atmos. Chem. Phys., 11, 6465–6474, https://doi.org/10.5194/acp-11-6465-2011, 2011.
Oakes, M., Weber, R. J., Lai, B., Russell, A., and Ingall, E. D.: Characterization of iron speciation in urban and rural single particles using XANES spectroscopy and micro X-ray fluorescence measurements: investigating the relationship between speciation and fractional iron solubility, Atmos. Chem. Phys., 12, 745–756, https://doi.org/10.5194/acp-12-745-2012, 2012.
Remorov, R. G., Gershenzon, Y. M., Molina, L. T., and Molina, M. J.:
Kinetics and mechanism of HO2 uptake on solid NaCl, J. Phys. Chem. A,
106, 4558–4565, https://doi.org/10.1021/jp013179o, 2002.
Robinson, R. A., Stokes, R. H., and Marsh, K. N.: Activity coefficients in
the ternary system: water + sucrose + sodium chloride, J. Chem.
Thermodyn., 2, 745–750, https://doi.org/10.1016/0021-9614(70)90050-9, 1970.
Ross, H. B. and Noone, K. J.: A numerical investigation of the destruction
of peroxy radical by Cu ion catalysed reactions on atmospheric particles, J.
Atmos. Chem., 12, 121–136, https://doi.org/10.1007/BF00115775, 1991.
Saathoff, H., Naumann, K.-H., Riemer, N., Kamm, S., Möhler, O.,
Schurath, U., Vogel, H., and Vogel, B.: The loss of NO2, HNO3,
NO3/N2O5, and HO2/HOONO2 on soot aerosol: A chamber
and modeling study, Geophys. Res. Lett., 28, 1957–1960,
https://doi.org/10.1029/2000gl012619, 2001.
Sadanaga, Y., Yoshino, A., Watanabe, K., Yoshioka, A., Wakazono, Y., Kanaya,
Y., and Kajii, Y.: Development of a measurement system of OH reactivity in
the atmosphere by using a laser-induced pump and probe technique, Rev. Sci.
Instrum., 75, 2648–2655, https://doi.org/10.1063/1.1775311, 2004.
Sakamoto, Y., Zhou, J., Kohno, N., Nakagawa, M., Hirokawa, J., and Kajii,
Y.: Kinetics study of OH uptake onto deliquesced NaCl particles by combining
Laser Photolysis and Laser-Induced Fluorescence, J. Phys. Chem. Lett., 9,
4115–4119, https://doi.org/10.1021/acs.jpclett.8b01725, 2018.
Sakamoto, Y., Sadanaga, Y., Li, J., Matsuoka, K., Takemura, M., Fujii, T.,
Nakagawa, M., Kohno, N., Nakashima, Y., Sato, K., Nakayama, T., Kato, S.,
Takami, A., Yoshino, A., Murano, K., and Kajii, Y.: Relative and absolute
sensitivity analysis on ozone production in Tsukuba, a city in Japan,
Environ. Sci. Technol., 53, 13629–13635, https://doi.org/10.1021/acs.est.9b03542, 2019.
Schwarz, J. P., Spackman, J. R., Fahey, D. W., Gao, R. S., Lohmann, U.,
Stier, P., Watts, L. A., Thomson, D. S., Lack, D. A., Pfister, L., Mahoney,
M. J., Baumgardner, D., Wilson, J. C., and Reeves, J. M.: Coatings and their
enhancement of black carbon light absorption in the tropical atmosphere, J.
Geophys. Res.-Atmos., 113, https://doi.org/10.1029/2007JD009042, 2008.
Sedlak, D. L., and Hoigné, J.: The role of copper and oxalate in the
redox cycling of iron in atmospheric waters, Atmos. Environ., 27, 2173–2185, https://doi.org/10.1016/0960-1686(93)90047-3, 1993.
Siefert, R. L., Johansen, A. M., Hoffmann, M. R., and Pehkonen, S. O.:
Measurements of trace metal (Fe, Cu, Mn, Cr) oxidation states in fog and
stratus clouds, J. Air Waste Manage., 48, 128–143,
https://doi.org/10.1080/10473289.1998.10463659, 1998.
Sioutas, C., Kim, S., Chang, M.: Development and evaluation of a prototype
ultrafine particle concentrator, J. Aerosol Sci., 30, 1001–1017,
https://doi.org/10.1016/S0021-8502(98)00769-1, 1999.
Sommariva, R., Haggerstone, A.-L., Carpenter, L. J., Carslaw, N., Creasey, D. J., Heard, D. E., Lee, J. D., Lewis, A. C., Pilling, M. J., and Zádor, J.: OH and HO2 chemistry in clean marine air during SOAPEX-2, Atmos. Chem. Phys., 4, 839–856, https://doi.org/10.5194/acp-4-839-2004, 2004.
Song, H., Chen, X., Lu, K., Zou, Q., Tan, Z., Fuchs, H., Wiedensohler, A., Moon, D. R., Heard, D. E., Baeza-Romero, M.-T., Zheng, M., Wahner, A., Kiendler-Scharr, A., and Zhang, Y.: Influence of aerosol copper on HO2 uptake: a novel parameterized equation, Atmos. Chem. Phys., 20, 15835–15850, https://doi.org/10.5194/acp-20-15835-2020, 2020.
Stadtler, S., Simpson, D., Schröder, S., Taraborrelli, D., Bott, A., and Schultz, M.: Ozone impacts of gas–aerosol uptake in global chemistry transport models, Atmos. Chem. Phys., 18, 3147–3171, https://doi.org/10.5194/acp-18-3147-2018, 2018.
Stone, D., Whalley, L. K., and Heard, D. E.: Tropospheric OH and HO2
radicals: field measurements and model comparisons, Chem. Soc. Rev., 41,
6348–6404, https://doi.org/10.1039/C2CS35140D, 2012.
Takami, A., Mayama, N., Sakamoto, T., Ohishi, K., Irei, S., Yoshino, A.,
Hatakeyama, S., Murano, K., Sadanaga, Y., Bandow, H., Misawa, K., and Fujii,
M.: Structural analysis of aerosol particles by microscopic observation
using a time-of-flight secondary ion mass spectrometer, J. Geophys. Res.-Atmos., 118, 6726–6737, https://doi.org/10.1002/jgrd.50477, 2013.
Taketani, F., Kanaya, Y., and Akimoto, H.: Kinetics of heterogeneous
reactions of HO2 radical at ambient concentration levels with
(NH4)2SO4 and NaCl aerosol particles, J. Phys. Chem. A, 112,
2370–2377, https://doi.org/10.1021/jp0769936, 2008.
Taketani, F., Kanaya, Y., and Akimoto, H.: Heterogeneous loss of HO2 by
KCl, synthetic sea salt, and natural seawater aerosol particles. Atmos.
Environ., 43, 1660–1665, 2009.
Taketani, F., Kanaya, Y., Pochanart, P., Liu, Y., Li, J., Okuzawa, K., Kawamura, K., Wang, Z., and Akimoto, H.: Measurement of overall uptake coefficients for HO2 radicals by aerosol particles sampled from ambient air at Mts. Tai and Mang (China), Atmos. Chem. Phys., 12, 11907–11916, https://doi.org/10.5194/acp-12-11907-2012, 2012.
Thornton, J. and Abbatt, J. P. D.: Measurements of HO2 uptake to
aqueous aerosol: Mass accommodation coefficients and net reactive loss, J.
Geophys. Res.-Atmos., 110, D08309, https://doi.org/10.1029/2004jd005402, 2005.
Thornton, J. A., Jaeglé, L., and McNeill, V. F.: Assessing known
pathways for HO2 loss in aqueous atmospheric aerosols: Regional and
global impacts on tropospheric oxidants, J. Geophys. Res.-Atmos., 113, D05303,
https://doi.org/10.1029/2007jd009236, 2008.
Tie, X., Brasseur, G., Emmons, L., Horowitz, L., and Kinnison, D.: Effects
of aerosols on tropospheric oxidants: A global model study, J. Geophys. Res.-Atmos., 106, 22931–22964, https://doi.org/10.1029/2001JD900206, 2001.
Wang, Y., Arellanes, C., Curtis, D. B., and Paulson, S. E.: Probing the
source of hydrogen peroxide associated with coarse mode aerosol particles in
southern california, Environ. Sci. Technol., 44, 4070–4075,
https://doi.org/10.1021/es100593k, 2010.
Wang, D., Pakbin, P., Saffari, A., Shafer, M. M., Schauer, J. J., and
Sioutas, C.: Development and evaluation of a high-volume aerosol-into-liquid
collector for fine and ultrafine particulate matter, Aerosol Sci. Technol.,
47, 1226–1238, https://doi.org/10.1080/02786826.2013.830693, 2013.
Wang, D., Shafer, M. M., Schauer, J. J., and Sioutas, C.: Development of a
technology for online measurement of total and water-soluble copper (Cu) in
PM2.5, Aerosol Sci. Technol., 48, 864–874,
https://doi.org/10.1080/02786826.2014.937478, 2014.
Whalley, L. K., Furneaux, K. L., Goddard, A., Lee, J. D., Mahajan, A., Oetjen, H., Read, K. A., Kaaden, N., Carpenter, L. J., Lewis, A. C., Plane, J. M. C., Saltzman, E. S., Wiedensohler, A., and Heard, D. E.: The chemistry of OH and HO2 radicals in the boundary layer over the tropical Atlantic Ocean, Atmos. Chem. Phys., 10, 1555–1576, https://doi.org/10.5194/acp-10-1555-2010, 2010.
Wilkinson, J., Reynolds, B., Neal, C., Hill, S., Neal, M., and Harrow, M.: Major, minor and trace element composition of cloudwater and rainwater at Plynlimon, Hydrol. Earth Syst. Sci., 1, 557–569, https://doi.org/10.5194/hess-1-557-1997, 1997.
You, Y., Smith, M. L., Song, M., Martin, S. T., and Bertram, A. K.:
Liquid–liquid phase separation in atmospherically relevant particles
consisting of organic species and inorganic salts, Int. Rev. Phys. Chem.,
33, 43–77, https://doi.org/10.1080/0144235X.2014.890786, 2014.
Zhou, J., Elser, M., Huang, R.-J., Krapf, M., Fröhlich, R., Bhattu, D., Stefenelli, G., Zotter, P., Bruns, E. A., Pieber, S. M., Ni, H., Wang, Q., Wang, Y., Zhou, Y., Chen, C., Xiao, M., Slowik, J. G., Brown, S., Cassagnes, L.-E., Daellenbach, K. R., Nussbaumer, T., Geiser, M., Prévôt, A. S. H., El-Haddad, I., Cao, J., Baltensperger, U., and Dommen, J.: Predominance of secondary organic aerosol to particle-bound reactive oxygen species activity in fine ambient aerosol, Atmos. Chem. Phys., 19, 14703–14720, https://doi.org/10.5194/acp-19-14703-2019, 2019a.
Zhou, J., Murano, K., Kohno, N., Sakamoto, Y., and Kajii, Y.: Real-time
quantification of the total HO2 reactivity of ambient air and HO2 uptake kinetics onto ambient aerosols in Kyoto (Japan), Atmos. Environ., 223,
117189, https://doi.org/10.1016/j.atmosenv.2019.117189, 2019b.
Short summary
HO2 radicals play key roles in tropospheric chemistry, their levels in ambient air not yet fully explained by sophisticated models. Here we measured HO2 uptake kinetics onto ambient aerosols in real time using a self-built online system and investigated the impacting factors on such processes by coupling with other instrumentations. The role of the HO2 uptake process in O3 formation is also discussed. Results give useful information for coordinated control of aerosol and ozone pollutants.
HO2 radicals play key roles in tropospheric chemistry, their levels in ambient air not yet fully...
Altmetrics
Final-revised paper
Preprint