Articles | Volume 20, issue 9
https://doi.org/10.5194/acp-20-5327-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-20-5327-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Physico-chemical characterization of urban aerosols from specific combustion sources in West Africa at Abidjan in Côte d'Ivoire and Cotonou in Benin in the frame of the DACCIWA program
Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS,
Toulouse, France
Catherine Liousse
CORRESPONDING AUTHOR
Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS,
Toulouse, France
Elhadji Thierno Doumbia
Centre National de Recherche Météorologiques (CNRM) UMR 3589, Météo-France/CNRS, Toulouse, France
Armelle Baeza-Squiban
Réponses Moléculaires et Cellulaires aux Xénobiotiques_RMCX, Université Paris Diderot, Unité de Biologie Fonctionnelle et
Adaptative-RMCX, CNRS, UMR 8251, Paris, France
Hélène Cachier
Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS,
Toulouse, France
Jean-Francois Léon
Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS,
Toulouse, France
Véronique Yoboué
Laboratoire de Physique de l'Atmosphère, Université
Félix Houphouët-Boigny, Abidjan BPV 34, Côte d'Ivoire
Aristique Barthel Akpo
Laboratoire de Physique du Rayonnement, Université
d'Abomey-Calavi, Abomey-Calavi, Bénin
Corinne Galy-Lacaux
Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS,
Toulouse, France
Benjamin Guinot
Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS,
Toulouse, France
Cyril Zouiten
Géosciences Environnement Toulouse, Université de Toulouse,
CNRS, UPS, Toulouse, France
Hongmei Xu
Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS,
Toulouse, France
Department of Environmental Science and Engineering, Xi'an Jiaotong
University, Xi'an,
China
Eric Gardrat
Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS,
Toulouse, France
Sekou Keita
UFR Sciences Biologiques, Université Péléforo-Gbon-Coulibaly de Khorogo, BP 1328 Khorogo, Côte d'Ivoire
Related authors
Hongmei Xu, Jean-François Léon, Cathy Liousse, Benjamin Guinot, Véronique Yoboué, Aristide Barthélémy Akpo, Jacques Adon, Kin Fai Ho, Steven Sai Hang Ho, Lijuan Li, Eric Gardrat, Zhenxing Shen, and Junji Cao
Atmos. Chem. Phys., 19, 6637–6657, https://doi.org/10.5194/acp-19-6637-2019, https://doi.org/10.5194/acp-19-6637-2019, 2019
Short summary
Short summary
This paper discusses the personal exposure characteristics and health implication of PM2.5 and bounded chemical species based on three anthropogenic sources and related populations (domestic fires for women, waste burning for students and motorcycle traffic for drivers) in Abidjan and Cotonou in dry and wet seasons of 2016. This work can be regarded as the first attempt at measuring personal exposure to PM2.5 and its related health risks in underdeveloped countries of Africa.
Sekou Keita, Cathy Liousse, Véronique Yoboué, Pamela Dominutti, Benjamin Guinot, Eric-Michel Assamoi, Agnès Borbon, Sophie L. Haslett, Laetitia Bouvier, Aurélie Colomb, Hugh Coe, Aristide Akpo, Jacques Adon, Julien Bahino, Madina Doumbia, Julien Djossou, Corinne Galy-Lacaux, Eric Gardrat, Sylvain Gnamien, Jean F. Léon, Money Ossohou, E. Touré N'Datchoh, and Laurent Roblou
Atmos. Chem. Phys., 18, 7691–7708, https://doi.org/10.5194/acp-18-7691-2018, https://doi.org/10.5194/acp-18-7691-2018, 2018
Short summary
Short summary
This study provides emission factor (EF) data for elemental and organic carbon, total particulate matter and 58 volatile organic compound species for combustion sources specific to Africa to establish emission inventories with less uncertainty. EFs obtained in this study are generally higher than those in the literature whose values are used in emissions inventories for Africa. This shows that particles and VOC emissions were sometimes underestimated and underlines this study's importance.
Marie Lothon, François Gheusi, Fabienne Lohou, Véronique Pont, Serge Soula, Corinne Jambert, Solène Derrien, Yannick Bezombes, Emmanuel Leclerc, Gilles Athier, Antoine Vial, Alban Philibert, Bernard Campistron, Frédérique Saïd, Jeroen Sonke, Julien Amestoy, Erwan Bargain, Pierre Bosser, Damien Boulanger, Guillaume Bret, Renaud Bodichon, Laurent Cabanas, Guylaine Canut, Jean-Bernard Estrampes, Eric Gardrat, Zaida Gomez Kuri, Jérémy Gueffier, Fabienne Guesdon, Morgan Lopez, Olivier Masson, Pierre-Yves Meslin, Yves Meyerfeld, Nicolas Pascal, Eric Pique, Michel Ramonet, Felix Starck, and Romain Vidal
Atmos. Meas. Tech., 17, 6265–6300, https://doi.org/10.5194/amt-17-6265-2024, https://doi.org/10.5194/amt-17-6265-2024, 2024
Short summary
Short summary
The Pyrenean Platform for Observation of the Atmosphere (P2OA) is a coupled plain–mountain instrumented platform in southwestern France for the monitoring of climate variables and the study of meteorological processes in a mountainous region. A comprehensive description of this platform is presented for the first time: its instrumentation, the associated dataset, and a meteorological characterization the site. The potential of the P2OA is illustrated through several examples of process studies.
Sarah Tinorua, Cyrielle Denjean, Pierre Nabat, Véronique Pont, Mathilde Arnaud, Thierry Bourrianne, Maria Dias Alves, and Eric Gardrat
Atmos. Meas. Tech., 17, 3897–3915, https://doi.org/10.5194/amt-17-3897-2024, https://doi.org/10.5194/amt-17-3897-2024, 2024
Short summary
Short summary
The three most widely used techniques for measuring black carbon (BC) have been deployed continuously for 2 years at a French high-altitude research station. Despite a similar temporal variation in the BC load, we found significant biases by up to a factor of 8 between the three instruments. This study raises questions about the relevance of using these instruments for specific background sites, as well as the processing of their data, which can vary according to the atmospheric conditions.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter G. Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1617, https://doi.org/10.5194/egusphere-2024-1617, 2024
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as variable in size and composition. Here we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the datasets to model output.
Antonin Soulie, Claire Granier, Sabine Darras, Nicolas Zilbermann, Thierno Doumbia, Marc Guevara, Jukka-Pekka Jalkanen, Sekou Keita, Cathy Liousse, Monica Crippa, Diego Guizzardi, Rachel Hoesly, and Steven J. Smith
Earth Syst. Sci. Data, 16, 2261–2279, https://doi.org/10.5194/essd-16-2261-2024, https://doi.org/10.5194/essd-16-2261-2024, 2024
Short summary
Short summary
Anthropogenic emissions are the result of transportation, power generation, industrial, residential and commercial activities as well as waste treatment and agriculture practices. This work describes the new CAMS-GLOB-ANT gridded inventory of 2000–2023 anthropogenic emissions of air pollutants and greenhouse gases. The methodology to generate the emissions is explained and the datasets are analysed and compared with publicly available global and regional inventories for selected world regions.
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
EGUsphere, https://doi.org/10.5194/egusphere-2024-284, https://doi.org/10.5194/egusphere-2024-284, 2024
Short summary
Short summary
Ozone is a secondary air pollutant that is detrimental to human and plant health. A better understanding of its chemical evolution is a challenge for Africa, where it is still under-sampled. Out of 14 sites examined (1995–2020), high levels of O3 are reported in southern Africa. The dominant chemical processes leading to O3 formation are identified. A decrease in O3 is observed at Katibougou (Mali) and Banizoumbou (Niger), and an increase at Zoétélé (Cameroon) and Skukuza (South Africa).
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Ruben Urraca, Greet Janssens-Maenhout, Nicolás Álamos, Lucas Berna-Peña, Monica Crippa, Sabine Darras, Stijn Dellaert, Hugo Denier van der Gon, Mark Dowell, Nadine Gobron, Claire Granier, Giacomo Grassi, Marc Guevara, Diego Guizzardi, Kevin Gurney, Nicolás Huneeus, Sekou Keita, Jeroen Kuenen, Ana Lopez-Noreña, Enrique Puliafito, Geoffrey Roest, Simone Rossi, Antonin Soulie, and Antoon Visschedijk
Earth Syst. Sci. Data, 16, 501–523, https://doi.org/10.5194/essd-16-501-2024, https://doi.org/10.5194/essd-16-501-2024, 2024
Short summary
Short summary
CoCO2-MOSAIC 1.0 is a global mosaic of regional bottom-up inventories providing gridded (0.1×0.1) monthly emissions of anthropogenic CO2. Regional inventories include country-specific information and finer spatial resolution than global inventories. CoCO2-MOSAIC provides harmonized access to these datasets and can be considered as a regionally accepted reference to assess the quality of global inventories, as done in the current paper.
Gabriel Calassou, Pierre-Yves Foucher, and Jean-François Léon
Atmos. Meas. Tech., 17, 57–71, https://doi.org/10.5194/amt-17-57-2024, https://doi.org/10.5194/amt-17-57-2024, 2024
Short summary
Short summary
We propose analyzing the aerosol composition of plumes emitted by different industrial stacks using PRISMA satellite hyperspectral observations. Three industrial sites have been observed: a coal-fired power plant in South Africa, a steel plant in China, and gas flaring at an oil extraction site in Algeria. Aerosol optical thickness and particle radius are retrieved within the plumes. The mass flow rate of particulate matter is estimated in the plume using the integrated mass enhancement method.
Money Ossohou, Jonathan Edward Hickman, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, Marcellin Adon, Véronique Yoboué, Eric Gardrat, Maria Dias Alvès, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 23, 9473–9494, https://doi.org/10.5194/acp-23-9473-2023, https://doi.org/10.5194/acp-23-9473-2023, 2023
Short summary
Short summary
The updated analyses of ground-based concentrations and satellite total vertical columns of atmospheric ammonia help us to better understand 21st century ammonia dynamics in sub-Saharan Africa. We conclude that the drivers of trends are agriculture in the dry savanna of Katibougou, Mali; air temperature and agriculture in the wet savanna of Djougou, Benin, and Lamto, Côte d'Ivoire; and leaf area index, air temperature, residential, and agriculture in forests of Bomassa, Republic of Congo.
Marc Guevara, Hervé Petetin, Oriol Jorba, Hugo Denier van der Gon, Jeroen Kuenen, Ingrid Super, Claire Granier, Thierno Doumbia, Philippe Ciais, Zhu Liu, Robin D. Lamboll, Sabine Schindlbacher, Bradley Matthews, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 8081–8101, https://doi.org/10.5194/acp-23-8081-2023, https://doi.org/10.5194/acp-23-8081-2023, 2023
Short summary
Short summary
This study provides an intercomparison of European 2020 emission changes derived from official inventories, which are reported by countries under the framework of several international conventions and directives, and non-official near-real-time estimates, the use of which has significantly grown since the COVID-19 outbreak. The results of the work are used to produce recommendations on how best to approach and make use of near-real-time emissions for modelling and monitoring applications.
Qian Zhang, Yujie Zhang, Zhichun Wu, Bin Zhang, Yaling Zeng, Jian Sun, Hongmei Xu, Qiyuan Wang, Zhihua Li, Junji Cao, and Zhenxing Shen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-801, https://doi.org/10.5194/acp-2022-801, 2022
Revised manuscript not accepted
Short summary
Short summary
We identified the brown carbon (BrC) molecules and their absorbing abilities on a molecular level from animal dung fuel combustion over the Tibetan Plateau region in China. The ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometer coupled with the partial least squares regression were precisely applied to characterize the molecular absorptions, key molecular markers, and radiative effects of BrC from household combustion scenarios at the high-altitude area.
Mohamed Lamine Kassamba-Diaby, Corinne Galy-Lacaux, Veronique Yoboué, Jonathan E. Hickman, Kerneels Jaars, Sylvain Gnamien, Richmond Konan, Eric Gardrat, and Siele Silué
EGUsphere, https://doi.org/10.5194/egusphere-2022-994, https://doi.org/10.5194/egusphere-2022-994, 2022
Preprint archived
Short summary
Short summary
This work presents the chemical composition of precipitation from 2018 to 2020 at three sites representative of a south-north transect in Côte d'Ivoire. It includes two urban sites (Abidjan and Korhogo) and one rural site (Lamto). Measured rain chemical content and wet deposition fluxes highlights different dominant sources contributions i.e anthropogenic sources (traffic, construction, industry) at urban sites and biomass burning at the rural site.
Flossie Brown, Gerd A. Folberth, Stephen Sitch, Susanne Bauer, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Makoto Deushi, Inês Dos Santos Vieira, Corinne Galy-Lacaux, James Haywood, James Keeble, Lina M. Mercado, Fiona M. O'Connor, Naga Oshima, Kostas Tsigaridis, and Hans Verbeeck
Atmos. Chem. Phys., 22, 12331–12352, https://doi.org/10.5194/acp-22-12331-2022, https://doi.org/10.5194/acp-22-12331-2022, 2022
Short summary
Short summary
Surface ozone can decrease plant productivity and impair human health. In this study, we evaluate the change in surface ozone due to climate change over South America and Africa using Earth system models. We find that if the climate were to change according to the worst-case scenario used here, models predict that forested areas in biomass burning locations and urban populations will be at increasing risk of ozone exposure, but other areas will experience a climate benefit.
Constance K. Segakweng, Pieter G. van Zyl, Cathy Liousse, Johan P. Beukes, Jan-Stefan Swartz, Eric Gardrat, Maria Dias-Alves, Brigitte Language, Roelof P. Burger, and Stuart J. Piketh
Atmos. Chem. Phys., 22, 10291–10317, https://doi.org/10.5194/acp-22-10291-2022, https://doi.org/10.5194/acp-22-10291-2022, 2022
Short summary
Short summary
A detailed size-resolved assessment of the chemical characteristics of outdoor and indoor aerosols collected in low-income urban settlements in South Africa indicated the significance of household combustion for cooking and space heating – an important source of pollutants in the developing world – to atmospheric chemical composition. The regional impact of industrial sources in the highly industrialised and densely populated north-eastern interior of South Africa was also evident.
Julius Vira, Peter Hess, Money Ossohou, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 22, 1883–1904, https://doi.org/10.5194/acp-22-1883-2022, https://doi.org/10.5194/acp-22-1883-2022, 2022
Short summary
Short summary
Ammonia is one of the main components of nitrogen deposition. Here we use a new model to assess the ammonia emissions from agriculture, the largest anthropogenic source of ammonia. The model results are consistent with earlier estimates over industrialized regions in agreement with observations. However, the model predicts much higher emissions over sub-Saharan Africa compared to earlier estimates. Available observations from surface stations and satellites support these higher emissions.
Jonathan E. Hickman, Niels Andela, Enrico Dammers, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, Courtney A. Di Vittorio, Money Ossohou, Corinne Galy-Lacaux, Kostas Tsigaridis, and Susanne E. Bauer
Atmos. Chem. Phys., 21, 16277–16291, https://doi.org/10.5194/acp-21-16277-2021, https://doi.org/10.5194/acp-21-16277-2021, 2021
Short summary
Short summary
Ammonia (NH3) gas emitted from soils and biomass burning contributes to particulate air pollution. We used satellite observations of the atmosphere over Africa to show that declines in NH3 concentrations over South Sudan's Sudd wetland in 2008–2017 are related to variation in wetland extent. We also find NH3 concentrations increased in West Africa as a result of biomass burning and increased in the Lake Victoria region, likely due to agricultural expansion and intensification.
Thierno Doumbia, Claire Granier, Nellie Elguindi, Idir Bouarar, Sabine Darras, Guy Brasseur, Benjamin Gaubert, Yiming Liu, Xiaoqin Shi, Trissevgeni Stavrakou, Simone Tilmes, Forrest Lacey, Adrien Deroubaix, and Tao Wang
Earth Syst. Sci. Data, 13, 4191–4206, https://doi.org/10.5194/essd-13-4191-2021, https://doi.org/10.5194/essd-13-4191-2021, 2021
Short summary
Short summary
Most countries around the world have implemented control measures to combat the spread of the COVID-19 pandemic, resulting in significant changes in economic and personal activities. We developed the CONFORM (COvid-19 adjustmeNt Factors fOR eMissions) dataset to account for changes in emissions during lockdowns. This dataset was created with the intention of being directly applicable to existing global and regional inventories used in chemical transport models.
Sekou Keita, Catherine Liousse, Eric-Michel Assamoi, Thierno Doumbia, Evelyne Touré N'Datchoh, Sylvain Gnamien, Nellie Elguindi, Claire Granier, and Véronique Yoboué
Earth Syst. Sci. Data, 13, 3691–3705, https://doi.org/10.5194/essd-13-3691-2021, https://doi.org/10.5194/essd-13-3691-2021, 2021
Short summary
Short summary
This inventory fills the gap in African regional inventories, providing biofuel and fossil fuel emissions that take into account African specificities. It could be used for air quality modeling. We show that all pollutant emissions are globally increasing during the period 1990–2015. Also, West Africa and East Africa emissions are largely due to domestic fire and traffic activities, while southern Africa and northern Africa emissions are largely due to industrial and power plant sources.
Maurin Zouzoua, Fabienne Lohou, Paul Assamoi, Marie Lothon, Véronique Yoboue, Cheikh Dione, Norbert Kalthoff, Bianca Adler, Karmen Babić, Xabier Pedruzo-Bagazgoitia, and Solène Derrien
Atmos. Chem. Phys., 21, 2027–2051, https://doi.org/10.5194/acp-21-2027-2021, https://doi.org/10.5194/acp-21-2027-2021, 2021
Short summary
Short summary
Based on a field experiment conducted in June and July 2016, we analyzed the daytime breakup of continental low-level stratiform clouds over southern West Africa in order to provide complementary guidance for model evaluation during the monsoon season. Those clouds exhibit weaker temperature and moisture jumps at the top compared to marine stratiform clouds. Their lifetime and the transition towards shallow convective clouds during daytime hours depend on their coupling with the surface.
Jean-François Léon, Aristide Barthélémy Akpo, Mouhamadou Bedou, Julien Djossou, Marleine Bodjrenou, Véronique Yoboué, and Cathy Liousse
Atmos. Chem. Phys., 21, 1815–1834, https://doi.org/10.5194/acp-21-1815-2021, https://doi.org/10.5194/acp-21-1815-2021, 2021
Short summary
Short summary
We have investigated the aerosol optical depth (AOD) and its relation to PM2.5 surface concentrations in southern West Africa based on in situ observations (2015–2017 period) and MODIS satellite data (2003–2019). MODIS AODs are validated using a regional network of handheld and automatic sun photometers. Satellite-derived PM2.5 shows an increasing trend during the short dry period that is possibly linked to the increase in anthropogenic emission over this area.
Jan-Stefan Swartz, Pieter G. van Zyl, Johan P. Beukes, Corinne Galy-Lacaux, Avishkar Ramandh, and Jacobus J. Pienaar
Atmos. Chem. Phys., 20, 10637–10665, https://doi.org/10.5194/acp-20-10637-2020, https://doi.org/10.5194/acp-20-10637-2020, 2020
Short summary
Short summary
Statistical modelling of interdependencies between local, regional and global parameters on long-term trends of atmospheric SO2, NO2 and O2 within proximity of the pollution hotspot in South Africa indicated that changes in meteorological conditions and/or variances in source influences contributed to temporal variability. The impact of increased anthropogenic activities and energy demand was evident, while the El Niño–Southern Oscillation made a significant contribution to O3 levels.
G. Calassou, P.-Y. Foucher, and J.-F. Leon
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 791–797, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-791-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-791-2020, 2020
Alima Dajuma, Kehinde O. Ogunjobi, Heike Vogel, Peter Knippertz, Siélé Silué, Evelyne Touré N'Datchoh, Véronique Yoboué, and Bernhard Vogel
Atmos. Chem. Phys., 20, 5373–5390, https://doi.org/10.5194/acp-20-5373-2020, https://doi.org/10.5194/acp-20-5373-2020, 2020
Short summary
Short summary
A modeling study through COSMO-ART was used to investigate the implication of downward mixing induced by clouds in transporting biomass burning aerosols from central and southern Africa located between 2 and 4 km into the PBL over southern West Africa. Results showed that individual mixing events south of the coast of Côte d’Ivoire due to mid-level convective clouds injects part of the biomass burning plume into the PBL. 15 % of CO mass from the 2–4 km layer is mixed below 1 km.
Pamela Dominutti, Sekou Keita, Julien Bahino, Aurélie Colomb, Cathy Liousse, Véronique Yoboué, Corinne Galy-Lacaux, Eleanor Morris, Laëtitia Bouvier, Stéphane Sauvage, and Agnès Borbon
Atmos. Chem. Phys., 19, 11721–11741, https://doi.org/10.5194/acp-19-11721-2019, https://doi.org/10.5194/acp-19-11721-2019, 2019
Short summary
Short summary
Several field campaigns were performed in southern West Africa in the framework of the DACCIWA project with the purpose of measuring a broad range of atmospheric constituents. Our study presents the analysis of a comprehensive dataset which integrates up to 56 species of VOCs measured at different ambient sites and emission sources. Our detailed VOC estimation for Cote d'Ivoire is 3 to 6 times higher than the whole of Europe, transportation being the dominant source of VOCs.
Hongmei Xu, Jean-François Léon, Cathy Liousse, Benjamin Guinot, Véronique Yoboué, Aristide Barthélémy Akpo, Jacques Adon, Kin Fai Ho, Steven Sai Hang Ho, Lijuan Li, Eric Gardrat, Zhenxing Shen, and Junji Cao
Atmos. Chem. Phys., 19, 6637–6657, https://doi.org/10.5194/acp-19-6637-2019, https://doi.org/10.5194/acp-19-6637-2019, 2019
Short summary
Short summary
This paper discusses the personal exposure characteristics and health implication of PM2.5 and bounded chemical species based on three anthropogenic sources and related populations (domestic fires for women, waste burning for students and motorcycle traffic for drivers) in Abidjan and Cotonou in dry and wet seasons of 2016. This work can be regarded as the first attempt at measuring personal exposure to PM2.5 and its related health risks in underdeveloped countries of Africa.
Vincent Huijnen, Andrea Pozzer, Joaquim Arteta, Guy Brasseur, Idir Bouarar, Simon Chabrillat, Yves Christophe, Thierno Doumbia, Johannes Flemming, Jonathan Guth, Béatrice Josse, Vlassis A. Karydis, Virginie Marécal, and Sophie Pelletier
Geosci. Model Dev., 12, 1725–1752, https://doi.org/10.5194/gmd-12-1725-2019, https://doi.org/10.5194/gmd-12-1725-2019, 2019
Short summary
Short summary
We report on an evaluation of tropospheric ozone and its precursor gases in three atmospheric chemistry versions as implemented in ECMWF’s Integrated Forecasting System (IFS), referred to as IFS(CB05BASCOE), IFS(MOZART) and IFS(MOCAGE). This configuration of having various chemistry versions within IFS provides a quantification of uncertainties in CAMS trace gas products that are induced by chemistry modelling.
Jonathan E. Hickman, Enrico Dammers, Corinne Galy-Lacaux, and Guido R. van der Werf
Atmos. Chem. Phys., 18, 16713–16727, https://doi.org/10.5194/acp-18-16713-2018, https://doi.org/10.5194/acp-18-16713-2018, 2018
Short summary
Short summary
Ammonia gas, which contributes to air pollution, is emitted from soils and combustion. In regions with distinct dry and rainy seasons, the first rainfall events each year trigger biogeochemical activity in soils. We used satellite observations of the atmosphere over the African Sahel savanna ecosystem to show that increases in soil moisture at the onset of the rainy season are responsible for large pulsed emissions of ammonia equal to roughly a fifth of annual ammonia emissions from the region
Sekou Keita, Cathy Liousse, Véronique Yoboué, Pamela Dominutti, Benjamin Guinot, Eric-Michel Assamoi, Agnès Borbon, Sophie L. Haslett, Laetitia Bouvier, Aurélie Colomb, Hugh Coe, Aristide Akpo, Jacques Adon, Julien Bahino, Madina Doumbia, Julien Djossou, Corinne Galy-Lacaux, Eric Gardrat, Sylvain Gnamien, Jean F. Léon, Money Ossohou, E. Touré N'Datchoh, and Laurent Roblou
Atmos. Chem. Phys., 18, 7691–7708, https://doi.org/10.5194/acp-18-7691-2018, https://doi.org/10.5194/acp-18-7691-2018, 2018
Short summary
Short summary
This study provides emission factor (EF) data for elemental and organic carbon, total particulate matter and 58 volatile organic compound species for combustion sources specific to Africa to establish emission inventories with less uncertainty. EFs obtained in this study are generally higher than those in the literature whose values are used in emissions inventories for Africa. This shows that particles and VOC emissions were sometimes underestimated and underlines this study's importance.
Julien Djossou, Jean-François Léon, Aristide Barthélemy Akpo, Cathy Liousse, Véronique Yoboué, Mouhamadou Bedou, Marleine Bodjrenou, Christelle Chiron, Corinne Galy-Lacaux, Eric Gardrat, Marcellin Abbey, Sékou Keita, Julien Bahino, Evelyne Touré N'Datchoh, Money Ossohou, and Cossi Norbert Awanou
Atmos. Chem. Phys., 18, 6275–6291, https://doi.org/10.5194/acp-18-6275-2018, https://doi.org/10.5194/acp-18-6275-2018, 2018
Short summary
Short summary
Atmospheric aerosols were collected in Cotonou/traffic (CT), Benin, and, Abidjan/traffic (AT), Abidjan/landfill (AL) and Abidjan/domestic fires (ADF), Côte d'Ivoire, from February 2015 to March 2017. We report the weekly PM2.5, elemental (EC) and organic (OC) carbon, and aerosol optical depth (AOD) in both cities. PM2.5 was 32 ± 32, 32 ± 24, 28 ± 19 and 145 ± 69 µg m−3 at CT, AT, AL and ADF. OC / EC is 3.5 at CT, 2.0 at AT, 2.2 at AL and 5.2 at ADF. AOD is 0.58 at Cotonou and 0.68 at Abidjan.
Julien Bahino, Véronique Yoboué, Corinne Galy-Lacaux, Marcellin Adon, Aristide Akpo, Sékou Keita, Cathy Liousse, Eric Gardrat, Christelle Chiron, Money Ossohou, Sylvain Gnamien, and Julien Djossou
Atmos. Chem. Phys., 18, 5173–5198, https://doi.org/10.5194/acp-18-5173-2018, https://doi.org/10.5194/acp-18-5173-2018, 2018
Short summary
Short summary
This work, part of DACCIWA WP2
Air Pollution and Health, aims to characterize urban air pollution levels through the measurement of NO2, SO2, NH3, HNO3 and O3 at 21 measurements sites in the district of Abidjan, an important metropolis in western Africa. Results show a high spatial variability of gaseous pollutants at the scale of the district of Abidjan and the predominance of the concentration of two pollutants (NH3 and NO2) related to domestic fires and road traffic, respectively.
Sophie L. Haslett, J. Chris Thomas, William T. Morgan, Rory Hadden, Dantong Liu, James D. Allan, Paul I. Williams, Sekou Keita, Cathy Liousse, and Hugh Coe
Atmos. Chem. Phys., 18, 385–403, https://doi.org/10.5194/acp-18-385-2018, https://doi.org/10.5194/acp-18-385-2018, 2018
Short summary
Short summary
Wood burning is chaotic, so the particles emitted can be difficult to study in a repeatable way. Here, we addressed this problem by carefully controlling small wood fires in the lab. We saw three burning phases, which could be told apart chemically; we also saw evidence of these in measurements of wood burning in London in 2012. Controlled experiments like this help us to understand why emissions are so variable and to recognise burning conditions just from the particles seen in the atmosphere.
Augustin Colette, Camilla Andersson, Astrid Manders, Kathleen Mar, Mihaela Mircea, Maria-Teresa Pay, Valentin Raffort, Svetlana Tsyro, Cornelius Cuvelier, Mario Adani, Bertrand Bessagnet, Robert Bergström, Gino Briganti, Tim Butler, Andrea Cappelletti, Florian Couvidat, Massimo D'Isidoro, Thierno Doumbia, Hilde Fagerli, Claire Granier, Chris Heyes, Zig Klimont, Narendra Ojha, Noelia Otero, Martijn Schaap, Katarina Sindelarova, Annemiek I. Stegehuis, Yelva Roustan, Robert Vautard, Erik van Meijgaard, Marta Garcia Vivanco, and Peter Wind
Geosci. Model Dev., 10, 3255–3276, https://doi.org/10.5194/gmd-10-3255-2017, https://doi.org/10.5194/gmd-10-3255-2017, 2017
Short summary
Short summary
The EURODELTA-Trends numerical experiment has been designed to assess the capability of chemistry-transport models to capture the evolution of surface air quality over the 1990–2010 period in Europe. It also includes sensitivity experiments in order to analyse the relative contribution of (i) emission changes, (ii) meteorological variability, and (iii) boundary conditions to air quality trends. The article is a detailed presentation of the experiment design and participating models.
Qiang Huang, Jiubin Chen, Weilin Huang, Pingqing Fu, Benjamin Guinot, Xinbin Feng, Lihai Shang, Zhuhong Wang, Zhongwei Wang, Shengliu Yuan, Hongming Cai, Lianfang Wei, and Ben Yu
Atmos. Chem. Phys., 16, 11773–11786, https://doi.org/10.5194/acp-16-11773-2016, https://doi.org/10.5194/acp-16-11773-2016, 2016
Short summary
Short summary
Atmospheric airborne mercury is of particular concern because, once inhaled, both Hg and its vectors might have adverse effects on human beings. In this study, we attempted to identify the sources of PM2.5-Hg in Beijing, China, using Hg isotopic composition. Large range and seasonal variations in both mass-dependent and mass-independent fractionations of Hg isotopes in haze particles demonstrate the usefulness of Hg isotopes for directly tracing the sources and its vectors in the atmosphere.
M. Mallet, F. Dulac, P. Formenti, P. Nabat, J. Sciare, G. Roberts, J. Pelon, G. Ancellet, D. Tanré, F. Parol, C. Denjean, G. Brogniez, A. di Sarra, L. Alados-Arboledas, J. Arndt, F. Auriol, L. Blarel, T. Bourrianne, P. Chazette, S. Chevaillier, M. Claeys, B. D'Anna, Y. Derimian, K. Desboeufs, T. Di Iorio, J.-F. Doussin, P. Durand, A. Féron, E. Freney, C. Gaimoz, P. Goloub, J. L. Gómez-Amo, M. J. Granados-Muñoz, N. Grand, E. Hamonou, I. Jankowiak, M. Jeannot, J.-F. Léon, M. Maillé, S. Mailler, D. Meloni, L. Menut, G. Momboisse, J. Nicolas, T. Podvin, V. Pont, G. Rea, J.-B. Renard, L. Roblou, K. Schepanski, A. Schwarzenboeck, K. Sellegri, M. Sicard, F. Solmon, S. Somot, B Torres, J. Totems, S. Triquet, N. Verdier, C. Verwaerde, F. Waquet, J. Wenger, and P. Zapf
Atmos. Chem. Phys., 16, 455–504, https://doi.org/10.5194/acp-16-455-2016, https://doi.org/10.5194/acp-16-455-2016, 2016
Short summary
Short summary
The aim of this article is to present an experimental campaign over the Mediterranean focused on aerosol-radiation measurements and modeling. Results indicate an important atmospheric loading associated with a moderate absorbing ability of mineral dust. Observations suggest a complex vertical structure and size distributions characterized by large aerosols within dust plumes. The radiative effect is highly variable, with negative forcing over the Mediterranean and positive over northern Africa.
J.-F. Léon, P. Augustin, M. Mallet, T. Bourrianne, V. Pont, F. Dulac, M. Fourmentin, D. Lambert, and B. Sauvage
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-9507-2015, https://doi.org/10.5194/acpd-15-9507-2015, 2015
Preprint withdrawn
Short summary
Short summary
This paper presents the aerosol vertical distribution observed by lidar soundings in Corsica (western Mediterranean) between February 2012 and August 2013. A seasonal cycle is observed in the extinction coefficient profiles and aerosol optical thickness with minima in winter and maxima in spring-summer. Less than 10% of the daily observations show high AOD corresponding to the large-scale advection of desert dust from Northern Africa or pollution aerosols from Europe.
P. Nabat, S. Somot, M. Mallet, M. Michou, F. Sevault, F. Driouech, D. Meloni, A. di Sarra, C. Di Biagio, P. Formenti, M. Sicard, J.-F. Léon, and M.-N. Bouin
Atmos. Chem. Phys., 15, 3303–3326, https://doi.org/10.5194/acp-15-3303-2015, https://doi.org/10.5194/acp-15-3303-2015, 2015
Short summary
Short summary
This paper uses an original approach based on a coupled regional aerosol--atmosphere--ocean model to study the dust radiative effects over the Mediterranean in summer 2012. After an evaluation of the prognostic aerosol scheme, the dust aerosol daily variability is shown to improve the simulated surface radiation and temperature at the daily scale. It has also a significant impact on the summer average, thus highlighting the importance of a relevant representation of aerosols in climate models.
Y. Wang, K. N. Sartelet, M. Bocquet, P. Chazette, M. Sicard, G. D'Amico, J. F. Léon, L. Alados-Arboledas, A. Amodeo, P. Augustin, J. Bach, L. Belegante, I. Binietoglou, X. Bush, A. Comerón, H. Delbarre, D. García-Vízcaino, J. L. Guerrero-Rascado, M. Hervo, M. Iarlori, P. Kokkalis, D. Lange, F. Molero, N. Montoux, A. Muñoz, C. Muñoz, D. Nicolae, A. Papayannis, G. Pappalardo, J. Preissler, V. Rizi, F. Rocadenbosch, K. Sellegri, F. Wagner, and F. Dulac
Atmos. Chem. Phys., 14, 12031–12053, https://doi.org/10.5194/acp-14-12031-2014, https://doi.org/10.5194/acp-14-12031-2014, 2014
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Automated compound speciation, cluster analysis, and quantification of organic vapors and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
Significant role of biomass burning in heavy haze formation in a megacity: Molecular-level insights from intensive PM2.5 sampling on winter hazy days
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Daytime and nighttime aerosol soluble iron formation in clean and slightly polluted moist air in a coastal city in eastern China
Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing
A Multi-site Passive Approach for Studying the Emissions and Evolution of Smoke from Prescribed Fires
Non-sea-salt aerosols that contain trace bromine and iodine are widespread in the remote troposphere
Simultaneous organic aerosol source apportionment at two Antarctic sites reveals large-scale and ecoregion-specific components
Measurement report: Optical characterization, seasonality, and sources of brown carbon in fine aerosols from Tianjin, North China: year-round observations
High-resolution analyses of concentrations and sizes of black carbon particles deposited on northwest Greenland over the past 350 years – Part 2: Seasonal and temporal trends in black carbon originated from fossil fuel combustion and biomass burning
Bayesian inference-based estimation of hourly primary and secondary organic carbon in suburban Hong Kong: multi-temporal-scale variations and evolution characteristics during PM2.5 episodes
Enhanced daytime secondary aerosol formation driven by gas-particle partitioning in downwind urban plumes
Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions
Impact assessment of terrestrial and marine air-mass on the constituents and intermixing of bioaerosols over coastal atmosphere
Measurement report: Characteristics of nitrogen-containing organics in PM2.5 in Ürümqi, northwestern China – differential impacts of combustion of fresh and aged biomass materials
Measurement report: Bio-physicochemistry of tropical clouds at Maïdo (Réunion, Indian Ocean): overview of results from the BIO-MAÏDO campaign
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
Atmos. Chem. Phys., 24, 10655–10666, https://doi.org/10.5194/acp-24-10655-2024, https://doi.org/10.5194/acp-24-10655-2024, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Fang Cao, Sönke Szidat, and Yanlin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2098, https://doi.org/10.5194/egusphere-2024-2098, 2024
Short summary
Short summary
Reports on the molecular level knowledge of high temporal resolution PM2.5 components on hazy days are still limited. This study investigated many individual PM2.5 species and sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossils increased with increasing haze pollution. These findings suggest BB may be an important driver of haze events in winter.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
EGUsphere, https://doi.org/10.5194/egusphere-2024-1390, https://doi.org/10.5194/egusphere-2024-1390, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), after knowing the aerosol chemical composition.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024, https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Short summary
We attempt to use a novel structural self-organising map and machine learning models to identify a weather system and quantify the importance of each meteorological factor in driving the unexpected PM2.5 and O3 changes under the specific weather system during the COVID-19 lockdown in China. The result highlights that temperature under the double-centre high-pressure system plays the most crucial role in abnormal events.
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024, https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary
Short summary
Aerosol particles from mainland can transport to oceans and deposit, providing soluble Fe and affecting phytoplankton growth. Thus, we studied the dissolution process of aerosol Fe and found that photochemistry played a key role in promoting Fe dissolution in clean conditions. RH-dependent reactions were more influential in slightly polluted conditions. These results highlight the distinct roles of two weather-related parameters (radiation and RH) in influencing geochemical cycles related to Fe.
Yanqin Ren, Zhenhai Wu, Yuanyuan Ji, Fang Bi, Junling Li, Haijie Zhang, Hao Zhang, Hong Li, and Gehui Wang
Atmos. Chem. Phys., 24, 6525–6538, https://doi.org/10.5194/acp-24-6525-2024, https://doi.org/10.5194/acp-24-6525-2024, 2024
Short summary
Short summary
Nitrated aromatic compounds (NACs) and oxygenated derivatives of polycyclic aromatic hydrocarbons (OPAHs) in PM2.5 were examined from an urban area in Beijing during the autumn and winter. The OPAH and NAC concentrations were much higher during heating than before heating. They majorly originated from the combustion of biomass and automobile emissions, and the secondary generation was the major contributor throughout the whole sampling period.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O’Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1485, https://doi.org/10.5194/egusphere-2024-1485, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires, however, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in two different years, we characterize the emissions and evolution up to 8 hours of PM2.5 mass, BC, and BrC in smoke from burning of forested lands in the southeastern US.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Tomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1399, https://doi.org/10.5194/egusphere-2024-1399, 2024
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol, and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
Zhichao Dong, Chandra Mouli Pavuluri, Peisen Li, Zhanjie Xu, Junjun Deng, Xueyan Zhao, Xiaomai Zhao, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 5887–5905, https://doi.org/10.5194/acp-24-5887-2024, https://doi.org/10.5194/acp-24-5887-2024, 2024
Short summary
Short summary
Comprehensive study of optical properties of brown carbon (BrC) in fine aerosols from Tianjin, China, implied that biological emissions are major sources of BrC in summer, whereas fossil fuel combustion and biomass burning emissions are in cold periods. The direct radiation absorption caused by BrC in short wavelengths contributed about 40 % to that caused by BrC in 300–700 nm. Water-insoluble but methanol-soluble BrC contains more protein-like chromophores (PLOM) than that of water-soluble BrC.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, and Teruo Aoki
EGUsphere, https://doi.org/10.5194/egusphere-2024-1498, https://doi.org/10.5194/egusphere-2024-1498, 2024
Short summary
Short summary
Monthly records spanning 350 years from a Greenland ice core reveal trends in black carbon (BC) concentrations and sizes. BC concentrations have risen since the late 19th century due to the inflow of anthropogenic BC, with these particles being larger than those from biomass burning (BB). High BB BC concentration peaks in summer originating from BB could reduce albedo. However, BB BC showed no upward trend until the early 2000s. Our findings are crucial for validating aerosol and climate models.
Shan Wang, Kezheng Liao, Zijing Zhang, Yuk Ying Cheng, Qiongqiong Wang, Hanzhe Chen, and Jian Zhen Yu
Atmos. Chem. Phys., 24, 5803–5821, https://doi.org/10.5194/acp-24-5803-2024, https://doi.org/10.5194/acp-24-5803-2024, 2024
Short summary
Short summary
In this work, hourly primary and secondary organic carbon were estimated by a novel Bayesian inference approach in suburban Hong Kong. Their multi-temporal-scale variations and evolution characteristics during PM2.5 episodes were examined. The methodology could serve as a guide for other locations with similar monitoring capabilities. The observation-based results are helpful for understanding the evolving nature of secondary organic aerosols and refining the accuracy of model simulations.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baolin Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2024-887, https://doi.org/10.5194/egusphere-2024-887, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas-particle partitioning when the site was affected by urban plumes. Box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
James Brean, David C. S. Beddows, Eija Asmi, Ari Virkkula, Lauriane L. J. Quéléver, Mikko Sipilä, Floortje Van Den Heuvel, Thomas Lachlan-Cope, Anna Jones, Markus Frey, Angelo Lupi, Jiyeon Park, Young Jun Yoon, Ralf Weller, Giselle L. Marincovich, Gabriela C. Mulena, Roy M. Harrison, and Manuel Dall´Osto
EGUsphere, https://doi.org/10.5194/egusphere-2024-987, https://doi.org/10.5194/egusphere-2024-987, 2024
Short summary
Short summary
Our results emphasize how understanding the geographical variation in surface types across the Antarctic is key to understanding secondary aerosol sources.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
EGUsphere, https://doi.org/10.5194/egusphere-2024-841, https://doi.org/10.5194/egusphere-2024-841, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing processes of terrestrial and marine aerosols. Terrestrial air mass constituted a larger proportion during severe air pollution, harboring more animal and human pathogens. A relative shift towards marine air-mass with respect to pollution elimination, where saprophytic bacteria and fungi were predominant. Mixed air-mass reveals the intermixing processes of terrestrial and marine sources.
Yi-Jia Ma, Yu Xu, Ting Yang, Hong-Wei Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 24, 4331–4346, https://doi.org/10.5194/acp-24-4331-2024, https://doi.org/10.5194/acp-24-4331-2024, 2024
Short summary
Short summary
This study provides field-based evidence about the differential impacts of combustion of fresh and aged biomass materials on aerosol nitrogen-containing organic compounds (NOCs) in different seasons in Ürümqi, bridging the linkages between the observations and previous laboratory studies showing the formation mechanisms of NOCs.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Cited articles
Adon, M., Galy-Lacaux, C., Yoboué, V., Delon, C., Lacaux, J. P.,
Castera, P., Gardrat, E., Pienaar, J., Al Ourabi, H., Laouali, D., Diop, B.,
Sigha-Nkamdjou, L., Akpo, A., Tathy, J. P., Lavenu, F., and Mougin, E.: Long
term measurements of sulfur dioxide, nitrogen dioxide, ammonia, nitric acid
and ozone in Africa using passive samplers, Atmos. Chem. Phys., 10,
7467–7487, https://doi.org/10.5194/acp-10-7467-2010, 2010.
Alastuey, A., Querol, X., Castillo, S., Escudero, M., Avila, A., Cuevas, E.,
Torres, C., Romero, P., Exposito, F., and Garcia, O.: Characterisation of TSP
and PM2.5 at Izaña and Sta, Cruz de Tenerife (Canary Islands, Spain)
during a Saharan Dust Episode (July 2002), Atmos. Environ., 39,
4715–4728, https://doi.org/10.1016/j.atmosenv.2005.04.018, 2005.
Arditsoglou, A. and Samara, C.: Levels of total suspended particulate matter
and major trace elements in Kosovo: a source identification and
apportionment study, Chemosphere, 59, 669–678, https://doi.org/10.1016/j.chemosphere.2004.10.056, 2005.
Arndt, R. L., Carmichael, G. R., Streets, D. G., and Bhatti, N.: Sulfur
dioxide emissions and sectorial contributions to sulfur deposition in Asia,
Atmos. Environ., 31, 1553–1572, https://doi.org/10.1016/S1352-2310(96)00236-1, 1997.
Avogbe, P. H., Ayi-Fanou, L., Cachon, B., Chabi, N., Debende, A., Dewaele,
D., Aissi, F., Cazier, F., and Sanni, A.: Hematological changes among
Beninese motor-bike taxi drivers exposed to benzene by urban air pollution,
Afr. J. Environ. Sci. Technol., 5, 464–472,
2011.
Balarabe, M., Abdullah, K., and Nawawi, M.: Seasonal Variations of Aerosol
Optical Properties and Identification of Different Aerosol Types Based on
AERONET Data over Sub-Sahara West-Africa, Atmos. Clim. Sci., 6, 13–28,
https://doi.org/10.4236/acs.2016.61002, 2016.
Belis, C. A., Karagulian, F., Larsen, B. R., and Hopke, P. K.: Critical
review and meta-analysis of ambient particulate matter source apportionment
using receptor models in Europe, Atmos. Environ., 69, 94–108, https://doi.org/10.1016/j.atmosenv.2012.11.009, 2013.
Bisht, D. S., Dumka, U. C., Kaskaoutis, D. G., Pipal, A. S., Srivastava, A. K.,
Soni, V. K., Attri, S. D., Sateesh, M., and Tiwari, S.: Carbonaceous aerosols and
pollutants over Delhi urban environment: Temporal evolution, source
apportionment and radiative forcing, Sci. Total Environ.,
521/522, 431–445, 2015.
Boucher, O.: Aérosols atmosphériques Propriétés et impacts climatiques, Springer Paris, 2012.
Bouhila, Z., Mouzai, M., Azli, T., Nedjar, A., Mazouzi, C., Zergoug, Z.,
Boukhadra, D., Chegrouche, S., and Lounici, H.: Investigation of aerosol
trace element concentrations nearby Algiers for environmental monitoring
using instrumental neutron activation analysis, Atmos. Res., 166,
49–59, https://doi.org/10.1016/j.atmosres.2015.06.013, 2015.
Cachier, H., Brémond, M.-P., and Buat-Ménard, P.: Carbonaceous
aerosols from different tropical biomass burning sources, Nature, 340,
371–373, https://doi.org/10.1038/340371a0, 1989.
Cachon, B. F., Firmin, S., Verdin, A., Ayi-Fanou, L., Billet, S., Cazier,
F., Martin, P. J., Aissi, F., Courcot, D., Sanni, A., and Shirali, P.:
Proinflammatory effects and oxidative stress within human bronchial
epithelial cells exposed to atmospheric particulate matter (PM2.5 and
PM>2.5) collected from Cotonou, Benin, Environ. Pollut., 185,
340–351, https://doi.org/10.1016/j.envpol.2013.10.026, 2014.
Cao, J. J., Lee, S. C., Zhang, X. Y., Chow, J. C., An, Z. S., Ho, K. F., Watson,
J. G., Fung, K., Wang, Y. Q., and Shen, Z. X.: Characterization of airborne
carbonate over a site near Asian dust source regions during spring 2002 and
its climatic and environmental significance, J. Geophys. Res., 110,
D03203, https://doi.org/10.1029/2004JD005244, 2005.
Cassee, F. R., Héroux, M.-E., Gerlofs-Nijland, M. E., and Kelly, F. J.:
Particulate matter beyond mass: recent health evidence on the role of
fractions, chemical constituents and sources of emission, Inhal.
Toxicol., 25, 802–812, https://doi.org/10.3109/08958378.2013.850127, 2013.
Celo, V., Dabek-Zlotorzynska, E., Mathieu, D., and Okonskaia, I.: Validation of
simple microwave-assisted acid digestion method using microvessels for
analysis of trace elements in atmospheric PM2.5 in monitoring and
fingerprinting studies, Open Chem. Biomed. Method. J.,
3, 141–150, 2010.
Cesari, D., Donateo, A., Conte, M., Merico, E., Giangreco, A., Giangreco, F.,
and Contini, D.: An inter-comparison of PM2.5 at urban and urban
background sites: Chemical characterization and source apportionment,
Atmos. Res., 174/175, 106–119, https://doi.org/10.1016/j.atmosres.2016.02.004,
2016.
Cheng, Z., Jiang, J., Chen, C., Gao, J., Wang, S., Watson, J. G., Wang, H.,
Deng, J., Wang, B., Zhou, M., Chow, J. C., Pitchford, M. L., and Hao, J.:
Estimation of Aerosol Mass Scattering Efficiencies under High Mass Loading:
Case Study for the Megacity of Shanghai, China, Environ. Sci. Technol.,
49, 831–838, https://doi.org/10.1021/es504567q, 2015.
Chiapello, I., Bergametti, G., Chatenet, B., Bousquet, P., Dulac, F., and
Soares, E. S.: Origins of African dust transported over the northeastern
tropical Atlantic, J. Geophys. Res., 102, 13701–13709, https://doi.org/10.1029/97JD00259, 1997.
Chow, J. C., Watson, J. G., Lu, Z., Lowenthal, D. H., Frazier, C. A.,
Solomon, P. A., Thuillier, R. H., and Magliano, K.: Descriptive analysis of
PM2.5 and PM10 at regionally representative locations during
SJVAQS/AUSPEX, Atmos. Environ., 30, 2079–2112,
https://doi.org/10.1016/1352-2310(95)00402-5, 1996.
Colbeck, I., Nasir, Z. A., Ahmad, S., and Ali, Z.: Exposure to PM10, PM2.5,
PM1 and Carbon Monoxide on Roads in Lahore, Pakistan, Aerosol Air Qual.
Res., 11, 689–695, https://doi.org/10.4209/aaqr.2010.10.0087, 2011.
Colette, A., Menut, L., Haeffelin, M., and Morille, Y.: Impact of the
transport of aerosols from the free troposphere towards the boundary layer
on the air quality in the Paris area, Atmos. Environ., 42,
390–402, https://doi.org/10.1016/j.atmosenv.2007.09.044, 2007.
Dieme, D., Cabral-Ndior, M., Garçon, G., Verdin, A., Billet, S., Cazier,
F., Courcot, D., Diouf, A., and Shirali, P.: Relationship between
physicochemical characterization and toxicity of fine particulate matter
(PM2.5) collected in Dakar city (Senegal), Environ. Res., 113,
1–13, https://doi.org/10.1016/j.envres.2011.11.009, 2012.
Ding, A., Huang, X., and Fu, C.: Air Pollution and Weather Interaction in
East Asia, Oxford Research Encyclopedias, Environ. Sci., 1, 1–26, https://doi.org/10.1093/acrefore/9780199389414.013.536, 2017.
Djossou, J., Léon, J.-F., Akpo, A. B., Liousse, C., Yoboué, V.,
Bedou, M., Bodjrenou, M., Chiron, C., Galy-Lacaux, C., Gardrat, E., Abbey,
M., Keita, S., Bahino, J., Touré N'Datchoh, E., Ossohou, M., and Awanou,
C. N.: Mass concentration, optical depth and carbon composition of
particulate matter in the major southern West African cities of Cotonou
(Benin) and Abidjan (Côte d'Ivoire), Atmos. Chem. Phys., 18,
6275–6291, https://doi.org/10.5194/acp-18-6275-2018, 2018.
Doumbia, E. H. T., Liousse, C., Galy-Lacaux, C., Ndiaye, S. A., Diop, B.,
Ouafo, M., Assamoi,
E.M., Gardrat, E., Castera, P., Rosset, R., Akpo, A., and Sigha, L.: Real time black carbon measurements in West and Central
Africa urban sites, Atmos. Environ., 54, 529–537, 2012..
Draxler, R. R. and Rolph, G. D.: Evaluation of the Transfer Coefficient
Matrix (TCM) approach to model the atmospheric radionuclide air
concentrations from Fukushima, J. Geophys. Res., 117, D05107,
https://doi.org/10.1029/2011JD017205, 2012.
Du, Z., He, K., Cheng, Y., Duan, F., Ma, Y., Liu, J., Zhang, X., Zheng, M.,
and Weber, R.: A yearlong study of water-soluble organic carbon in Beijing
I: Sources and its primary vs. secondary nature, Atmos. Environ.,
92, 514–521, https://doi.org/10.1016/j.atmosenv.2014.04.060, 2014.
Favez, O.: Caractérisation physico-chimique de la pollution particulaire
dans des mégapoles contrastées, Thèse de l'Université
PARIS.DIDEROT (Paris 7), France, 2008.
Favez, O., Sciare, J., Cachier, H., Alfaro, S. C., and Abdelwahab, M. M.:
Significant formation of water-insoluble secondary organic aerosols in
semi-arid urban environment, Geophys. Res. Lett., 35, L15801,
https://doi.org/10.1029/2008GL034446, 2008.
Feng, J., Guo, Z., Chan, C. K., and Fang, M.: Properties of organic matter in
PM2.5 at Changdao Island, China – A rural site in the transport path
of the Asian continental outflow, Atmos. Environ., 41, 1924–1935,
https://doi.org/10.1016/j.atmosenv.2006.10.064, 2007.
Feng, J., Hu, M., Chan, C. K., Lau, P. S., Fang, M., He, L., and Tang, X.: A
comparative study of the organic matter in PM2.5 from three Chinese
megacities in three different climatic zones, Atmos. Environ.,
40, 3983–3994, https://doi.org/10.1016/j.atmosenv.2006.02.017, 2006.
Freitas, M. C., Pacheco, A. M. G., Baptista, M. S., Dionísio, I.,
Vasconcelos, M. T. S. D., and Cabral, J. P.: Response of exposed detached lichens
to atmospheric elemental deposition, Proc. ECOpole., 1, 15–21, 2007.
Gaga, E. O., Arı, A., Akyol, N., Üzmez, Ö. Ö., Kara, M., Chow,
J. C., Watson, J. G., Özel, E., Döğeroğlu, T., and Odabasi,
M.: Determination of real-world emission factors of trace metals, EC, OC,
BTEX, and semivolatile organic compounds (PAHs, PCBs and PCNs) in a rural
tunnel in Bilecik, Turkey, Sci. Total Environ., 643, 1285–1296,
https://doi.org/10.1016/j.scitotenv.2018.06.227, 2018.
Gao, Y., Nelson, E. D., Field, M. P., Ding, Q., Li, H., Sherrell, R. M.,
Gigliotti, C. L., Van Ry, D. A., Glenn, T. R., and Eisenreich, S. J.:
Characterization of atmospheric trace elements on PM2.5 particulate
matter over the New York–New Jersey harbor estuary, Atmos.
Environ., 36, 1077–1086, https://doi.org/10.1016/S1352-2310(01)00381-8, 2002.
Genga, A., Ielpo, P., Siciliano, T., and Siciliano, M.: Carbonaceous
particles and aerosol mass closure in PM2.5 collected in a port city,
Atmos. Res., 183, 245–254, https://doi.org/10.1016/j.atmosres.2016.08.022,
2017.
Goldberg, E. D.: Composition of sea Water, edited by: Hill, H. M., Comparative Oceanography, Vol. 2, SeaWiley, New York, 1963.
Gounougbe, F.: Pollution atmosphérique par les gaz d'échappement et
état de santé des conducteurs de taxi-moto (Zemidjan) de Cotonou
(Bénin), Thèse de doctorat en Médecine (832), 1999.
Guinot, B., Cachier, H., and Oikonomou, K.: Geochemical perspectives from a
new aerosol chemical mass closure, Atmos. Chem. Phys., 7, 1657–1670, https://doi.org/10.5194/acp-7-1657-2007, 2007.
Guttikunda, S. K. and Calori, G.: A GIS based emissions inventory at 1 km × 1 km spatial resolution for air pollution analysis in Delhi,
India, Atmos. Environ., 67, 101–111,
https://doi.org/10.1016/j.atmosenv.2012.10.040, 2013.
Hara, K., Osada, K., Kido, M., Hayashi, M., Matsunaga, K., Iwasaka, Y.,
Yamanouchi, T., Hashida, G., and Fukatsu, T.: Chemistry of sea-salt particles
and inorganic halogen species in Antarctic regions: Compositional
differences between coastal and inland stations, J. Geophys. Res., 109,
D20208, https://doi.org/10.1029/2004JD004713, 2004.
He, K., Yang, F., Ma, Y., Zhang, Q., Yao, X., Chan, C. K., Cadle, S., Chan,
T., and Mulawa, P.: The characteristics of PM2.5 in Beijing, China,
Atmos. Environ., 35, 4959–4970, https://doi.org/10.1016/S1352-2310(01)00301-6, 2001.
Hildemann, L. M., Markowski, G. R., and Cass, G. R.: Chemical composition of
emissions from urban sources of fine organic aerosol, Environ. Sci.
Technol., 25, 744–759, https://doi.org/10.1021/es00016a021, 1991.
Huang, H., Ho, K. F., Lee, S. C., Tsang, P. K., Ho, S. S. H., Zou, C. W.,
Zou, S. C., Cao, J. J., and Xu, H. M.: Characteristics of carbonaceous
aerosol in PM2.5: Pearl Delta River Region, China, Atmos. Res.,
104/105, 227–236, https://doi.org/10.1016/j.atmosres.2011.10.016, 2012.
Jaffrezo, J.-L., Aymoz, G., Delaval, C., and Cozic, J.: Seasonal variations of the water soluble organic carbon mass fraction of aerosol in two valleys of the French Alps, Atmos. Chem. Phys., 5, 2809–2821, https://doi.org/10.5194/acp-5-2809-2005, 2005.
Keita, S., Liousse, C., Yoboué, V., Dominutti, P., Guinot, B., Assamoi,
E.-M., Borbon, A., Haslett, S. L., Bouvier, L., Colomb, A., Coe, H., Akpo,
A., Adon, J., Bahino, J., Doumbia, M., Djossou, J., Galy-Lacaux, C.,
Gardrat, E., Gnamien, S., Léon, J. F., Ossohou, M.,
N&apos;Datchoh, E. T., and Roblou, L.: Particle and VOC emission
factor measurements for anthropogenic sources in West Africa, Atmos. Chem.
Phys., 18, 7691–7708, https://doi.org/10.5194/acp-18-7691-2018, 2018.
Khan, Md. F., Shirasuna, Y., Hirano, K., and Masunaga, S.: Characterization
of PM2.5, PM2.5−10 and PM>10 in ambient air,
Yokohama, Japan, Atmos. Res., 96, 159–172,
https://doi.org/10.1016/j.atmosres.2009.12.009, 2010.
Kim, H., Liu, X., Kobayashi, T., Kohyama, T., Wen, F.-Q., Romberger, D. J.,
Conner, H., Gilmour, P. S., Donaldson, K., MacNee, W., and Rennard, S. I.:
Ultrafine Carbon Black Particles Inhibit Human Lung Fibroblast-Mediated
Collagen Gel Contraction, Am. J. Respir. Cell. Mol. Biol., 28, 111–121,
https://doi.org/10.1165/rcmb.4796, 2003.
Knippertz, P., Tesche, M., Heinold, B., Kandler, K., Toledano, C., and
Esselborn, M.: Dust mobilization and aerosol transport from West Africa to
Cape Verde – a meteorological overview of SAMUM-2, Tellus B, 63, 430–447, https://doi.org/10.1111/j.1600-0889.2011.00544.x,
2011.
Kouassi, K. S., Billet, S., Garaßon, G., Verdin, A., Diouf,
A., Cazier, F., Djaman, J., Courcot, D., and Shirali, P.: Oxidative damage
induced in A549 cells by physically and chemically characterized air
particulate matter (PM2.5) collected in Abidjan, Côte d'Ivoire, J.
Appl. Toxicol., 30, 310–320, https://doi.org/10.1002/jat.1496, 2009.
Lamaison, L.: Caractérisation des particules atmosphériques et
identification de leurs sources dans une atmosphère urbaine sous influence
industrielle, Thèse Doctorat, Univ des Sciences et Technologies, Lille,
2006.
Léon, J.F., Akpo, A., Bedou, M., Djossou, J., Bodjrenou, M., Yoboué,
V., and Liousse, C.: Profondeur optique des aérosols sur le sud de
l'Afrique de l'Ouest, soumis à ACPD, 2019.
Li, T.-C., Yuan, C.-S., Hung, C.-H., Lin, H.-Y., Huang, H.-C., and Lee,
C.-L.: Chemical Characteristics of Marine Fine Aerosols over Sea and at
Offshore Islands during Three Cruise Sampling Campaigns in the Taiwan
Strait-Sea Salts and Anthropogenic Particles, Atmos. Chem. Phys. Discuss.,
1–27, https://doi.org/10.5194/acp-2016-384, 2016.
Li, Y., Schwandner, F. M., Sewell, H. J., Zivkovich, A., Tigges, M., Raja,
S., Holcomb, S., Molenar, J. V., Sherman, L., Archuleta, C., Lee, T., and
Collett, J. L.: Observations of ammonia, nitric acid and fine particles in a
rural gas production region, Atmos. Environ., 83, 80–89,
https://doi.org/10.1016/j.atmosenv.2013.10.007, 2014.
Liang, L., Engling, G., Du, Z., Cheng, Y., Duan, F., Liu, X., and He, K.:
Seasonal variations and source estimation of saccharides in atmospheric
particulate matter in Beijing, China, Chemosphere, 150, 365–377, 2016.
Liousse, C., Assamoi, E., Criqui, P., Granier, C., and Rosset, R.: Explosive
growth in African combustion emissions from 2005 to 2030, Environ. Res.
Lett., 9, 035003, https://doi.org/10.1088/1748-9326/9/3/035003, 2014.
Lonati, G., Ozgen, S., and Giugliano, M.: Primary and secondary carbonaceous
species in PM2.5 samples in Milan (Italy), Atmos. Environ.,
41, 4599–4610, https://doi.org/10.1016/j.atmosenv.2007.03.046, 2007.
Lowenthal, D., Zielinska, B., Samburova, V., Collins, D., Taylor, N., and
Kumar, N.: Evaluation of assumptions for estimating chemical light
extinction at U.S. national parks, J. Air Waste Manag.
Assoc., 65, 249–260, https://doi.org/10.1080/10962247.2014.986307, 2015.
Mason, B. and Moore, B. C.: Principles of Geochemistry, 4th Edn., John Wiley
and Sons, New York, 46–47, 1982.
Minguillón, M. C., Cirach, M., Hoek, G., Brunekreef, B., Tsai, M., de
Hoogh, K., Jedynska, A., Kooter, I. M., Nieuwenhuijsen, M., and Querol, X.:
Spatial variability of trace elements and sources for improved exposure
assessment in Barcelona, Atmos. Environ., 89, 268–281, https://doi.org/10.1016/j.atmosenv.2014.02.047, 2014.
Mkoma, S. L.: Physico-Chemical characterisation of atmospheric aerosols in
Tanzania, with emphasis on the carbonaceous aerosol components and on
chemical mass closure, PhD, Ghent University, Ghent, Belguim, 2008.
Mmari, A. G., Potgieter-Vermaak, S. S., Bencs, L., McCrindle, R. I., and Van
Grieken, R.: Elemental and ionic components of atmospheric aerosols and
associated gaseous pollutants in and near Dar es Salaam, Tanzania,
Atmos. Environ., 77, 51–61, https://doi.org/10.1016/j.atmosenv.2013.04.061,
2013.
MMEH (Ministère des Mines de l'Energie et d'Hydraulique): Tableau de
bord de l'Energie 2002 au Bénin, Direction Générale de
l'Energie, 2002.
Ngo, N. S., Asseko, S. V. J., Ebanega, M. O., Allo'o Allo'o, S. M., and
Hystad, P.: The relationship among PM2.5, traffic emissions, and
socioeconomic status: Evidence from Gabon using low-cost, portable air
quality monitors, Transport. Res. Pt. D,
68, 2–9, https://doi.org/10.1016/j.trd.2018.01.029, 2019.
Ozer, P.: Estimation de la pollution particulaire naturelle de l'air en 2003
à Niamey (Niger) à partir de données de visibilité
horizontale, 2005.
Pachauri, T., Singla, V., Satsangi, A., Lakhani, A., and Kumari, K. M.:
Characterization of carbonaceous aerosols with special reference to episodic
events at Agra, India, Atmos. Res., 128, 98–110, https://doi.org/10.1016/j.atmosres.2013.03.010, 2013.
Park, J. H., Mudunkotuwa, I. A., Mines, L. W. D., Anthony, T. R., Grassian,
V. H., and Peters, T. M.: A Granular Bed for Use in a Nanoparticle
Respiratory Deposition Sampler, Aerosol Sci. Technol., 49,
179–187, https://doi.org/10.1080/02786826.2015.1013521, 2015.
Person, A. and Tymen, G.: Mesurage des particules en suspension dans l'air
en relation avec la santé, Pollution atmosphèrique, 271–285, 2005.
Pipal, A. S., Jan, R., Satsangi, P. G., Tiwari, S., and Taneja, A.: Study of
Surface Morphology, Elemental Composition and Origin of Atmospheric Aerosols
(PM2.5 and PM10) over Agra, India, Aerosol Air Qual. Res., 14,
1685–1700, https://doi.org/10.4209/aaqr.2014.01.0017, 2014.
Pipal, A. S., Singh, S., and Satsangi, G. P.: Study on bulk to single
particle analysis of atmospheric aerosols at urban region, Urban Clim.,
27, 243–258, https://doi.org/10.1016/j.uclim.2018.12.008, 2019.
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E.:
Environmental characterization of global sources of atmospheric soil dust
identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS)
absorbing aerosol product, Rev. Geophys., 40, 1002, https://doi.org/10.1029/2000RG000095, 2002.
Qin, Y., Chan, C. K., and Chan, L. Y.: Characteristics of chemical
compositions of atmospheric aerosols in Hong Kong: spatial and seasonal
distributions, Sci. Total Environ., 206, 25–37, https://doi.org/10.1016/S0048-9697(97)00214-3, 1997.
Ramgolam, K., Favez, O., Cachier, H., Gaudichet, A., Marano, F., Martinon, L., and
Baeza-Squiban, A.: Size-partitioning of an urban aerosol to identify particle
determinants involved in the proinflammatory response induced in airway
epithelial cells, Part Fibre Toxicol., 6, 10, https://doi.org/10.1186/1743-8977-6-10, 2009.
Rengarajan, R., Sudheer, A. K., and Sarin, M. M.: Aerosol acidity and
secondary organic aerosol formation during wintertime over urban environment
in western India, Atmos. Environ., 45, 1940–1945, https://doi.org/10.1016/j.atmosenv.2011.01.026, 2011.
Samara, C., Kouimtzis, T., Tsitouridou, R., Kanias, G., and Simeonov, V.:
Chemical mass balance source apportionment of PM10 in an industrialized
urban area of Northern Greece, Atmos. Environ., 37, 41–54,
https://doi.org/10.1016/S1352-2310(02)00772-0, 2003.
Satsangi, A., Pachauri, T., Singla, V., Lakhani, A., and Kumari, K. M.:
Organic and elemental carbon aerosols at a suburban site, Atmos.
Res., 113, 13–21, https://doi.org/10.1016/j.atmosres.2012.04.012, 2012.
Saxena, P. and Hildemann, L. M.: Water-soluble organics in atmospheric
particles: a critical review of the literature and application of
thermodynamics to identify candidate compounds, J. Atmos. Chem., 24,
57–109, 1996.
Sciare, J., Oikonomou, K., Cachier, H., Mihalopoulos, N., Andreae, M. O.,
Maenhaut, W., and Sarda-Estève, R.: Aerosol mass closure and
reconstruction of the light scattering coefficient over the Eastern
Mediterranean Sea during the MINOS campaign, Atmos. Chem. Phys., 5,
2253–2265, https://doi.org/10.5194/acp-5-2253-2005, 2005.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: from
Air Pollution to Climate Change, John Wiley and Sons, Inc. New York, 1998.
Sempére, R. and Kawamura, K.: Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere, Atmos. Environ., 28, 449–459, https://doi.org/10.1016/1352-2310(94)90123-6, 1994.
Shahsavani, A., Naddafi, K., Jaafarzadeh Haghighifard, N., Mesdaghinia, A.,
Yunesian, M., Nabizadeh, R., Arhami, M., Yarahmadi, M., Sowlat, M. H.,
Ghani, M., Jonidi Jafari, A., Alimohamadi, M., Motevalian, S. A., and
Soleimani, Z.: Characterization of ionic composition of TSP and PM10 during
the Middle Eastern Dust (MED) storms in Ahvaz, Iran, Environ. Monit. Assess.,
184, 6683–6692, https://doi.org/10.1007/s10661-011-2451-6, 2012.
Stone, R. S., Herber, A., Vitale, V., Mazzola, M., Lupi, A., Schnell, R. C.,
Dutton, E. G., Liu, P. S. K., Li, S.-M., Dethloff, K., Lampert, A., Ritter,
C., Stock, M., Neuber, R., and Maturilli, M.: A three-dimensional
characterization of Arctic aerosols from airborne Sun photometer
observations: PAM-ARCMIP, April 2009, J. Geophys. Res., 115, D13203,
https://doi.org/10.1029/2009JD013605, 2010.
Sullivan, A. P., Weber, R. J., Clements, A. L., Turner, J. R., Bae, M. S.,
and Schauer, J. J.: A method for on-line measurement of water-soluble
organic carbon in ambient aerosol particles: Results from an urban site:
on-line measurement of WSOC in aerosols, Geophys. Res. Lett., 31, L13105, https://doi.org/10.1029/2004GL019681, 2004.
Sun, Y., Zhuang, G., Wang, Y., Han, L., Guo, J., Dan, M., Zhang, W., Wang,
Z., and Hao, Z.: The airborne particulate pollution in Beijing –
concentration, composition, distribution and sources, Atmos.
Environ., 38, 5991–6004, https://doi.org/10.1016/j.atmosenv.2004.07.009, 2004.
Tang, X., Zhang, X., Ci, Z., Guo, J., and Wang, J.: Speciation of the major
inorganic salts in atmospheric aerosols of Beijing, China: Measurements and
comparison with model, Atmos. Environ., 133, 123–134, https://doi.org/10.1016/j.atmosenv.2016.03.013, 2016.
Tapsoba, D.: Caractérisation événementielle des régimes
pluviométriques ouestafricains et de leur récent changement,
Thèse de Doctorat, Univ. Paris-XI (Orsay), 100 pp., 1997.
Taylor, S. R.: Abundance of chemical elements in the continental crust: a
new table, Geochim. Cosmochim. Ac., 28, 1273–1285, https://doi.org/10.1016/0016-7037(64)90129-2, 1964.
Terzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K.,
and Samara, C.: Chemical composition and mass closure of ambient PM10 at
urban sites, Atmos. Environ., 44, 2231–2239, https://doi.org/10.1016/j.atmosenv.2010.02.019, 2010.
Tunno, B., Longley, I., Somervell, E., Edwards, S., Olivares, G., Gray, S.,
Cambal, L., Chubb, L., Roper, C., Coulson, G., and Clougherty, J. E.:
Separating spatial patterns in pollution attributable to woodsmoke and other
sources, during daytime and nighttime hours, in Christchurch, New Zealand,
Environ. Res., 171, 228–238, https://doi.org/10.1016/j.envres.2019.01.033,
2019.
Turpin, B. J., Cary, R. A., and Huntzicker, J. J.: An In Situ, Time-Resolved
Analyzer for Aerosol Organic and Elemental Carbon, Aerosol Sci.
Technol., 12, 161–171, https://doi.org/10.1080/02786829008959336, 1990.
United Nations: Department of Economic and Social Affairs, Population
Division (2019), World Population Prospects 2019, Vol. II: Demographic
Profiles, Made available under a Creative Commons license, available at:
http://creativecommons.org/licenses/by/3.0/igo/ (last access: 25 March 2020), 2019.
Val, S., Liousse, C., Doumbia, E. H. T., Galy-Lacaux, C., Cachier, H.,
Marchand, N., Badel, A., Gardrat, E., Sylvestre, A., and Baeza-Squiban, A.:
Physico-chemical characterization of African urban aerosols (Bamako in Mali
and Dakar in Senegal) and their toxic effects in human bronchial epithelial
cells: description of a worrying situation, Part Fibre Toxicol., 10, 10,
https://doi.org/10.1186/1743-8977-10-10, 2013.
Viana, M., Maenhaut, W., ten Brink, H. M., Chi, X., Weijers, E., Querol, X.,
Alastuey, A., Mikuška, P., and Večeřa, Z.: Comparative analysis
of organic and elemental carbon concentrations in carbonaceous aerosols in
three European cities, Atmos. Environ., 41, 5972–5983, https://doi.org/10.1016/j.atmosenv.2007.03.035, 2007.
Viana, M., López, J. M., Querol, X., Alastuey, A., García-Gacio,
D., Blanco-Heras, G., López-Mahía, P., Piñeiro-Iglesias, M.,
Sanz, M. J., Sanz, F., Chi, X., and Maenhaut, W.: Tracers and impact of open
burning of rice straw residues on PM in Eastern Spain, Atmos.
Environ., 42, 1941–1957, https://doi.org/10.1016/j.atmosenv.2007.11.012, 2008.
Viidanoja, J., Sillanpää, M., Laakia, J., Kerminen, V.-M., Hillamo,
R., Aarnio, P., and Koskentalo, T.: Organic and black carbon in PM2.5 and
PM10: 1 year of data from an urban site in Helsinki, Finland, Atmos.
Environ., 36, 3183–3193, https://doi.org/10.1016/S1352-2310(02)00205-4, 2002.
Wang, X., Bi, X., Sheng, G., and Fu, J.: Chemical Composition and Sources of
PM10 and PM2.5 Aerosols in Guangzhou, China, Environ. Monit. Assess.,
119, 425–439, https://doi.org/10.1007/s10661-005-9034-3, 2006.
Washington, R., Todd, M., Middleton, N. J., and Goudie, A. S.: Dust-Storm
Source Areas Determined by the Total Ozone Monitoring Spectrometer and
Surface Observations, Ann. Assoc. Am. Geogr.,
93, 297–313, https://doi.org/10.1111/1467-8306.9302003, 2003.
Watson, J. G. and Chow, J. C.: Estimating middle-, neighborhood-, and
urban-scale contributions to elemental carbon in Mexico City with a rapid
response aethalometer, J. Air Waste Manag. Assoc., 51, 1522–1528, 2001.
Watson, J. G., Chow, J. C., and Houck, J. E.: PM2.5 chemical source
profiles for vehicle exhaust, vegetative burning, geological material, and
coal burning in Northwestern Colorado during 1995, Chemosphere, 43,
1141–1151, https://doi.org/10.1016/S0045-6535(00)00171-5, 2001.
WHO (World Health Organization): 7 million premature deaths annually linked
to air pollution. Media Centre news release, Geneva: World Health
Organization, available at: http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/ (last access: 14 November 2018), 2014.
Wilson, M. R., Lightbody, J. H., Donaldson, K., Sales, J., and Stone, V.:
Interactions between ultrafine particles and transition metals in vivo and
in vitro, Toxicol. Appl. Pharmacol., 184, 172–179, 2002.
Xiang, P., Zhou, X., Duan, J., Tan, J., He, K., Yuan, C., Ma, Y., and Zhang,
Y.: Chemical characteristics of water-soluble organic compounds (WSOC) in
PM2.5 in Beijing, China: 2011–2012, Atmos. Res., 183, 104–112, https://doi.org/10.1016/j.atmosres.2016.08.020, 2017.
Xie, Y., Wang, Y., Bilal, M., and Dong, W.: Mapping daily PM2.5 at 500 m resolution over Beijing with improved hazy day performance, Sci.
Total Environ., 659, 410–418, https://doi.org/10.1016/j.scitotenv.2018.12.365, 2019.
Xu, H., Léon, J.-F., Liousse, C., Guinot, B., Yoboué, V., Akpo, A. B., Adon, J., Ho, K. F., Ho, S. S. H., Li, L., Gardrat, E., Shen, Z., and Cao, J.: Personal exposure to PM2.5 emitted from typical anthropogenic sources in southern West Africa: chemical characteristics and associated health risks, Atmos. Chem. Phys., 19, 6637–6657, https://doi.org/10.5194/acp-19-6637-2019, 2019.
Xu, J., Zhang, Y., Zheng, S., and He, Y.: Aerosol effects on ozone
concentrations in Beijing: a model sensitivity study, J. Environ. Sci. (China),
24, 645–656, 2012.
Yu, P., Froyd, K. D., Portmann, R. W., Toon, O. B., Freitas, S. R., Bardeen,
C. G., Katich, J. M., Schwarz, J. P., Williamson, C., Kupc, A., Brock, C.,
Liu, S., Gao, R.-S., Schill, G., Fan, T., Rosenlof, K. H., and Murphy, D.
M.: An improved treatment of aerosol convective transport and removal in a
chemistry-climate model, Geophys. Res. Lett., submitted, 2020.
Zghaid, M., Noack, Y., Bounakla, M., and Benyaich, F.: Pollution
atmosphérique particulaire dans la ville de Kenitra (Maroc), Pollution
atmosphérique [En ligne], no. 203, mis à jour le
12 October 2015, https://doi.org/10.4267/pollution-atmospherique.1184, 2009.
Zhang, X. Y., Gong, S. L., Shen, Z. X., Mei, F. M., Xi, X. X., Liu, L.C.,
Zhou, Z. J., Wang, D., Wang, Y. Q., and Cheng, Y.: Characterization of soil
dust aerosol in China and its transport and distribution during 2001
ACE-Asia: 1. Network observations, J. Geophys. Res.-Atmos., 108, 4261,
https://doi.org/10.1029/2002JD002632, 2003.
Short summary
It is our responsibility to establish a link between emissions, air pollution, and health impacts for urban combustion sources, typical of Africa.
Our results show that the particulate concentrations observed at all sites far exceed the recommendations of WHO. The site influenced by domestic fires is the most polluted site, dominated by a significant fraction of ultrafine particles. These studies will eventually lead to the implementation of emission reduction solutions to improve air quality.
It is our responsibility to establish a link between emissions, air pollution, and health...
Altmetrics
Final-revised paper
Preprint