Articles | Volume 20, issue 4
Atmos. Chem. Phys., 20, 2471–2487, 2020
https://doi.org/10.5194/acp-20-2471-2020
Atmos. Chem. Phys., 20, 2471–2487, 2020
https://doi.org/10.5194/acp-20-2471-2020

Research article 02 Mar 2020

Research article | 02 Mar 2020

Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – implications for the origin

Zoran Kitanovski et al.

Related authors

Snow scavenging and phase partitioning of nitrated and oxygenated aromatic hydrocarbons in polluted and remote environments in central Europe and the European Arctic
Pourya Shahpoury, Zoran Kitanovski, and Gerhard Lammel
Atmos. Chem. Phys., 18, 13495–13510, https://doi.org/10.5194/acp-18-13495-2018,https://doi.org/10.5194/acp-18-13495-2018, 2018

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Spatiotemporal variability in the oxidative potential of ambient fine particulate matter in the Midwestern United States
Haoran Yu, Joseph Varghese Puthussery, Yixiang Wang, and Vishal Verma
Atmos. Chem. Phys., 21, 16363–16386, https://doi.org/10.5194/acp-21-16363-2021,https://doi.org/10.5194/acp-21-16363-2021, 2021
Short summary
Measurement report: Spatiotemporal and policy-related variations of PM2.5 composition and sources during 2015–2019 at multiple sites in a Chinese megacity
Xinyao Feng, Yingze Tian, Qianqian Xue, Danlin Song, Fengxia Huang, and Yinchang Feng
Atmos. Chem. Phys., 21, 16219–16235, https://doi.org/10.5194/acp-21-16219-2021,https://doi.org/10.5194/acp-21-16219-2021, 2021
Short summary
Contribution of combustion Fe in marine aerosols over the northwestern Pacific estimated by Fe stable isotope ratios
Minako Kurisu, Kohei Sakata, Mitsuo Uematsu, Akinori Ito, and Yoshio Takahashi
Atmos. Chem. Phys., 21, 16027–16050, https://doi.org/10.5194/acp-21-16027-2021,https://doi.org/10.5194/acp-21-16027-2021, 2021
Short summary
Fluorescent biological aerosol particles over the central Pacific Ocean: covariation with ocean surface biological activity indicators
Kaori Kawana, Kazuhiko Matsumoto, Fumikazu Taketani, Takuma Miyakawa, and Yugo Kanaya
Atmos. Chem. Phys., 21, 15969–15983, https://doi.org/10.5194/acp-21-15969-2021,https://doi.org/10.5194/acp-21-15969-2021, 2021
Short summary
Dramatic changes in Harbin aerosol during 2018–2020: the roles of open burning policy and secondary aerosol formation
Yuan Cheng, Qin-qin Yu, Jiu-meng Liu, Xu-bing Cao, Ying-jie Zhong, Zhen-yu Du, Lin-lin Liang, Guan-nan Geng, Wan-li Ma, Hong Qi, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 21, 15199–15211, https://doi.org/10.5194/acp-21-15199-2021,https://doi.org/10.5194/acp-21-15199-2021, 2021
Short summary

Cited articles

Albinet, A., Leoz-Garziandia, E., Budzinski, H., Villenave, E., and Jaffrezo, J.-L.: Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys Part 2: particle size distribution, Atmos. Environ., 42, 55–64, https://doi.org/10.1016/j.atmosenv.2007.10.008, 2008. 
Albinet, A., Nalin, F., Tomaz, S., Beaumont, J., and Lestremau, F.: A simple QuEChERS-like extraction approach for molecular chemical characterization of organic aerosols: application to nitrated and oxygenated PAH derivatives (NPAH and OPAH) quantified by GC–NICIMS, Anal. Bioanal. Chem., 406, 3131–3148, https://doi.org/10.1007/s00216-014-7760-5, 2014. 
Allen, J. O., Dookeran, N. M., Taghizadeh, K., Lafleur, K. L., Smitz, K. A., and Sarofim, A. F.: Measurement of oxygenated polycyclic aromatic hydrocarbons associated with a size-segregated urban aerosol, Environ. Sci. Technol., 31, 2064–2070, https://doi.org/10.1021/es960894g, 1997. 
al-Naiema, I. M. and Stone, E. A.: Evaluation of anthropogenic secondary organic aerosol tracers from aromatic hydrocarbons, Atmos. Chem. Phys., 17, 2053–2065, https://doi.org/10.5194/acp-17-2053-2017, 2017. 
Download
Altmetrics
Final-revised paper
Preprint