Articles | Volume 20, issue 4
https://doi.org/10.5194/acp-20-2221-2020
https://doi.org/10.5194/acp-20-2221-2020
Research article
 | 
26 Feb 2020
Research article |  | 26 Feb 2020

Photochemical modeling of molecular and atomic oxygen based on multiple nightglow emissions measured in situ during the Energy Transfer in the Oxygen Nightglow rocket campaign

Olexandr Lednyts'kyy and Christian von Savigny

Related authors

Atomic oxygen retrievals in the MLT region from SCIAMACHY nightglow limb measurements
O. Lednyts'kyy, C. von Savigny, K.-U. Eichmann, and M. G. Mlynczak
Atmos. Meas. Tech., 8, 1021–1041, https://doi.org/10.5194/amt-8-1021-2015,https://doi.org/10.5194/amt-8-1021-2015, 2015
Short summary

Related subject area

Subject: Radiation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Chemistry (chemical composition and reactions)
Technical Note: On the possibly missing mechanism of 15 μm emission in the mesosphere–lower thermosphere (MLT)
R. D. Sharma
Atmos. Chem. Phys., 15, 1661–1667, https://doi.org/10.5194/acp-15-1661-2015,https://doi.org/10.5194/acp-15-1661-2015, 2015
Short summary
Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics
M. Calisto, P. T. Verronen, E. Rozanov, and T. Peter
Atmos. Chem. Phys., 12, 8679–8686, https://doi.org/10.5194/acp-12-8679-2012,https://doi.org/10.5194/acp-12-8679-2012, 2012
Influence of Galactic Cosmic Rays on atmospheric composition and dynamics
M. Calisto, I. Usoskin, E. Rozanov, and T. Peter
Atmos. Chem. Phys., 11, 4547–4556, https://doi.org/10.5194/acp-11-4547-2011,https://doi.org/10.5194/acp-11-4547-2011, 2011

Cited articles

Ångström, J. A.: Spectrum des Nordlichts, Ann. Phys., 213, 161–163, https://doi.org/10.1002/andp.18692130510, 1869. a
Atkinson, R. and Welge, K. H.: Temperature Dependence of O(1S). Deactivation by CO2, O2, N2, and Ar, J. Chem. Phys., 57, 3689–3693, https://doi.org/10.1063/1.1678829, 1972. a, b
Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VI. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref. Data, 26, 1329–1499, 1997. a, b
Bates, D. R.: Rate of Formation of Molecules by Radiative Association, Mon. Not. R. Astron. Soc., 111, 303, https://doi.org/10.1093/mnras/111.3.303, 1951. a, b
Bates, D. R.: On the proposals of Chapman and of Barth for O(1S) formation in the upper atmosphere, Planet. Space Sci., 27, 717–718, https://doi.org/10.1016/0032-0633(79)90168-5, 1979. a, b, c
Download
Short summary
Atomic oxygen is a chemically active trace gas and a critical component of the energy balance of the mesosphere and lower thermosphere (MLT). By sequentially applying continuity equations of low degree, a new model representing the airglow and photochemistry of oxygen in the MLT is implemented, enabling comparisons with airglow observations at each step. The most effective data sets required to derive the abundance of atomic oxygen are the O2 atmospheric band emission, temperature, N2 and O2.
Altmetrics
Final-revised paper
Preprint