Measurement report
11 Dec 2020
Measurement report
| 11 Dec 2020
Measurement report: Source and mixing state of black carbon aerosol in the North China Plain: implications for radiative effect
Qiyuan Wang et al.
Related authors
Jie Tian, Qiyuan Wang, Huikun Liu, Yongyong Ma, Suixin Liu, Yong Zhang, Weikang Ran, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 22, 8369–8384, https://doi.org/10.5194/acp-22-8369-2022, https://doi.org/10.5194/acp-22-8369-2022, 2022
Short summary
Short summary
We investigated aerosol optical properties and the direct radiative effect (DRE) at an urban site in China before and during the COVID-19 lockdown. The total light extinction coefficient (bext) decreased under emission control measures; however, bext from biomass burning increased due to the undiminished need for residential cooking and heating. Biomass burning, rather than traffic-related emissions, became the largest positive effect contributor to aerosol DRE in the lockdown.
Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li
Atmos. Chem. Phys., 22, 7489–7504, https://doi.org/10.5194/acp-22-7489-2022, https://doi.org/10.5194/acp-22-7489-2022, 2022
Short summary
Short summary
Looking at characteristics and δ13C compositions of dicarboxylic acids and related compounds in BB aerosols, we used a combined combustion and aging system to generate fresh and aged aerosols from burning straw. The results showed the emission factors (EFaged) of total diacids of aging experiments were around an order of magnitude higher than EFfresh. This meant that dicarboxylic acids are involved with secondary photochemical processes in the atmosphere rather than primary emissions from BB.
Meng Wang, Yusen Duan, Wei Xu, Qiyuan Wang, Zhuozhi Zhang, Qi Yuan, Xinwei Li, Shuwen Han, Haijie Tong, Juntao Huo, Jia Chen, Shan Gao, Zhongbiao Wu, Long Cui, Yu Huang, Guangli Xiu, Junji Cao, Qingyan Fu, and Shun-cheng Lee
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-289, https://doi.org/10.5194/acp-2022-289, 2022
Preprint under review for ACP
Short summary
Short summary
In this study, we report a long-term measurement of organic carbon (OC) and elementary carbon (EC) in PM2.5 with hourly time resolution conducted at a regional site in Shanghai from 2016 to 2020. The results from this study provide critical information about the long-term trend of carbonaceous aerosol, in particular SOC, in one of the largest megacities in the world and are helpful to develop pollution control measures from a long-term planning perspective.
Huikun Liu, Qiyuan Wang, Suixin Liu, Bianhong Zhou, Yao Qu, Jie Tian, Ting Zhang, Yongming Han, and Junji Cao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-26, https://doi.org/10.5194/acp-2022-26, 2022
Revised manuscript under review for ACP
Short summary
Short summary
Atmospheric motion plays an important role in the mass concentration and the direct radiative effect (DRE) of black carbon (BC). The finding from this study elaborated the impacts of different scales of atmospheric motion on source-specific BCs and their DRE, which revealed the disproportional change between BC mass concentration and its DRE, and highlighted the enhanced DRE efficiency of BC during the regional transport which could lead to greater climatic consequences in receptor regions.
Huikun Liu, Qiyuan Wang, Li Xing, Yong Zhang, Ting Zhang, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 21, 973–987, https://doi.org/10.5194/acp-21-973-2021, https://doi.org/10.5194/acp-21-973-2021, 2021
Short summary
Short summary
We conducted black carbon (BC) source apportionment on the southeastern Tibetan Plateau (TP) by an improved aethalometer model with the site-dependent Ångström exponent and BC mass absorption cross section (MAC). The result shows that the biomass-burning BC on the TP is slightly higher than fossil fuel BC, mainly from cross-border transportation instead of the local region, and the BC radiative effect is lower than that in the southwestern Himalaya but higher than that on the northeastern TP.
Qiyuan Wang, Huikun Liu, Ping Wang, Wenting Dai, Ting Zhang, Youzhi Zhao, Jie Tian, Wenyan Zhang, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 20, 15537–15549, https://doi.org/10.5194/acp-20-15537-2020, https://doi.org/10.5194/acp-20-15537-2020, 2020
Short summary
Short summary
Light-absorbing carbonaceous (LAC) aerosol is an important influencing factor for global climate forcing. In this study, we used a receptor model coupling multi-wavelength absorption with chemical species to explore the source-specific LAC optical properties at a tropical marine monsoon climate zone. The results can improve our understanding of the LAC radiative effects caused by ship emissions.
Jun Zhou, Miriam Elser, Ru-Jin Huang, Manuel Krapf, Roman Fröhlich, Deepika Bhattu, Giulia Stefenelli, Peter Zotter, Emily A. Bruns, Simone M. Pieber, Haiyan Ni, Qiyuan Wang, Yichen Wang, Yaqing Zhou, Chunying Chen, Mao Xiao, Jay G. Slowik, Samuel Brown, Laure-Estelle Cassagnes, Kaspar R. Daellenbach, Thomas Nussbaumer, Marianne Geiser, André S. H. Prévôt, Imad El-Haddad, Junji Cao, Urs Baltensperger, and Josef Dommen
Atmos. Chem. Phys., 19, 14703–14720, https://doi.org/10.5194/acp-19-14703-2019, https://doi.org/10.5194/acp-19-14703-2019, 2019
Short summary
Short summary
Reactive oxygen species (ROS) are believed to contribute to the adverse health effects of aerosols. We measured particle-bound ROS (PB-ROS) with an online instrument in two distinct environments, i.e., Beijing (China) and Bern (Switzerland). In both cities these exogenic ROS are predominantly related to secondary organic aerosol (SOA). PB-ROS content in SOA from various anthropogenic emission sources tested in the laboratory was comparable to that in the ambient measurements.
John G. Watson, Junji Cao, L.-W. Antony Chen, Qiyuan Wang, Jie Tian, Xiaoliang Wang, Steven Gronstal, Steven Sai Hang Ho, Adam C. Watts, and Judith C. Chow
Atmos. Chem. Phys., 19, 14173–14193, https://doi.org/10.5194/acp-19-14173-2019, https://doi.org/10.5194/acp-19-14173-2019, 2019
Short summary
Short summary
Although peat burning is a common global emission source, region-specific emission factors are lacking. This work fills that gap for six peat-bearing regions. It is also shown through simulated aging with an oxidation flow reactor that potential aerosol mass changes during transport.
Judith C. Chow, Junji Cao, L.-W. Antony Chen, Xiaoliang Wang, Qiyuan Wang, Jie Tian, Steven Sai Hang Ho, Adam C. Watts, Tessa B. Carlson, Steven D. Kohl, and John G. Watson
Atmos. Meas. Tech., 12, 5475–5501, https://doi.org/10.5194/amt-12-5475-2019, https://doi.org/10.5194/amt-12-5475-2019, 2019
Short summary
Short summary
Source profiles that allow peat fire contributions to be distinguished from other source contributions using receptor models are lacking for a wide variety of peat fuels and burning conditions. These profiles change with photochemical aging during transport. Fresh and aged profiles for a variety of peat fuels are measured with an oxidation flow reactor to improve source attributions at distant receptors.
Jiarui Wu, Naifang Bei, Bo Hu, Suixin Liu, Meng Zhou, Qiyuan Wang, Xia Li, Lang Liu, Tian Feng, Zirui Liu, Yichen Wang, Junji Cao, Xuexi Tie, Jun Wang, Luisa T. Molina, and Guohui Li
Atmos. Chem. Phys., 19, 8703–8719, https://doi.org/10.5194/acp-19-8703-2019, https://doi.org/10.5194/acp-19-8703-2019, 2019
Short summary
Short summary
In the present study, simulations during a persistent and heavy haze pollution episode from 5 December 2015 to 4 January 2016 in the North China Plain (NCP) were performed using the WRF-Chem model to comprehensively quantify contributions of the aerosol shortwave radiative feedback (ARF) to near-surface PM2.5 mass concentrations. During the episode, the ARF deteriorates the haze pollution, increasing the near-surface PM2.5 concentration in the NCP by 10.2 μg m−3 (7.8 %) on average.
Jiarui Wu, Naifang Bei, Bo Hu, Suixin Liu, Meng Zhou, Qiyuan Wang, Xia Li, Lang Liu, Tian Feng, Zirui Liu, Yichen Wang, Junji Cao, Xuexi Tie, Jun Wang, Luisa T. Molina, and Guohui Li
Atmos. Chem. Phys., 19, 8721–8739, https://doi.org/10.5194/acp-19-8721-2019, https://doi.org/10.5194/acp-19-8721-2019, 2019
Short summary
Short summary
The near-surface PM2.5 contribution of the ALW total effect is 17.5 % in NCP, indicating that ALW plays an important role in the PM2.5 formation during the wintertime haze pollution. Moreover, the ALW-HET overwhelmingly dominates the PM2.5 enhancement due to the ALW. The ALW does not consistently enhance near-surface [PM2.5] with increasing RH. When the RH exceeds 80 %, the contribution of the ALW begins to decrease, which is caused by the high occurrence frequencies of precipitation.
Yang Chen, Mi Tian, Ru-Jin Huang, Guangming Shi, Huanbo Wang, Chao Peng, Junji Cao, Qiyuan Wang, Shumin Zhang, Dongmei Guo, Leiming Zhang, and Fumo Yang
Atmos. Chem. Phys., 19, 3245–3255, https://doi.org/10.5194/acp-19-3245-2019, https://doi.org/10.5194/acp-19-3245-2019, 2019
Short summary
Short summary
Amine-containing particles were characterized in an urban area of Chongqing during both summer and winter using a single-particle aerosol mass spectrometer (SPAMS). Amines were observed to internally mix with elemental carbon (EC), organic carbon (OC), sulfate, and nitrate. Diethylamine (DEA) was the most abundant in both number and peak area among amine-containing particles. Vegetation and traffic were the primary sources of particulate amines.
Qiyuan Wang, Suixin Liu, Nan Li, Wenting Dai, Yunfei Wu, Jie Tian, Yaqing Zhou, Meng Wang, Steven Sai Hang Ho, Yang Chen, Renjian Zhang, Shuyu Zhao, Chongshu Zhu, Yongming Han, Xuexi Tie, and Junji Cao
Atmos. Chem. Phys., 19, 1881–1899, https://doi.org/10.5194/acp-19-1881-2019, https://doi.org/10.5194/acp-19-1881-2019, 2019
Nan Li, Qingyang He, Jim Greenberg, Alex Guenther, Jingyi Li, Junji Cao, Jun Wang, Hong Liao, Qiyuan Wang, and Qiang Zhang
Atmos. Chem. Phys., 18, 7489–7507, https://doi.org/10.5194/acp-18-7489-2018, https://doi.org/10.5194/acp-18-7489-2018, 2018
Short summary
Short summary
O3 pollution has been increasing in most Chinese cities in recent years. Our study reveals that the synergistic impact of individual source contributions to O3 formation should be considered in the formation of air pollution control strategies, especially for big cities in the vicinity of forests.
Qiyuan Wang, Junji Cao, Yongming Han, Jie Tian, Chongshu Zhu, Yonggang Zhang, Ningning Zhang, Zhenxing Shen, Haiyan Ni, Shuyu Zhao, and Jiarui Wu
Atmos. Chem. Phys., 18, 4639–4656, https://doi.org/10.5194/acp-18-4639-2018, https://doi.org/10.5194/acp-18-4639-2018, 2018
Short summary
Short summary
Black carbon (BC) aerosol in the Tibetan Plateau (TP) has important effects on the regional climate and hydrological processes in South and East Asia. We characterized BC at a high-altitude remote site in the southeastern Tibetan Plateau using a single-particle soot photometer and a photoacoustic extinctiometer. Our study provides insight into the sources and evolution of BC aerosol on the TP, and the results will be useful for improving models of the radiative effects in this area.
Miriam Elser, Ru-Jin Huang, Robert Wolf, Jay G. Slowik, Qiyuan Wang, Francesco Canonaco, Guohui Li, Carlo Bozzetti, Kaspar R. Daellenbach, Yu Huang, Renjian Zhang, Zhengqiang Li, Junji Cao, Urs Baltensperger, Imad El-Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 3207–3225, https://doi.org/10.5194/acp-16-3207-2016, https://doi.org/10.5194/acp-16-3207-2016, 2016
Short summary
Short summary
This work represents the first online chemical characterization of the PM2.5 using a high-resolution time-of flight aerosol mass spectrometer during extreme haze events China. The application of novel source apportionment techniques allowed for an improved identification and quantification of the sources of organic aerosols. The main sources and processes driving the extreme haze events are assessed.
Q. Y. Wang, R.-J. Huang, J. J. Cao, X. X. Tie, H. Y. Ni, Y. Q. Zhou, Y. M. Han, T. F. Hu, C. S. Zhu, T. Feng, N. Li, and J. D. Li
Atmos. Chem. Phys., 15, 13059–13069, https://doi.org/10.5194/acp-15-13059-2015, https://doi.org/10.5194/acp-15-13059-2015, 2015
Short summary
Short summary
An intensive campaign was conducted at the Qinghai-Tibetan Plateau using a ground-based single particle soot photometer and a photoacoustic extinctiometer. Significant enhancements of rBC loadings and number fraction of coated rBC were observed during the pollution episode. Biomass burning from N. India is determined to be an important potential source influencing the northeastern Qinghai-Tibetan Plateau. The rBC mixing state is important in determining absorption during the pollution episode.
Zhier Bao, Xinyi Zhang, Qing Li, Jiawei Zhou, Guangming Shi, Li Zhou, Fumo Yang, Shaodong Xie, Dan Zhang, Chongzhi Zhai, Zhenliang Li, Chao Peng, and Yang Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-477, https://doi.org/10.5194/acp-2022-477, 2022
Preprint under review for ACP
Short summary
Short summary
We characterised no-refractory fine particulate matter (PM2.5) during winter in Sichuan Basin (SCB), southwest China. The factors driving severe aerosol pollution were revealed, highlighting the importance of rapid nitrate formation and intensive biomass burning. Nitrate was primarily formed through gas-phase oxidation during daytime and aqueous-phase oxidation during nighttime. Controlling nitrate and biomass burning will benefit the mitigation of haze formation in SCB.
Haobin Zhong, Ru-Jin Huang, Chunshui Lin, Wei Xu, Jing Duan, Yifang Gu, Wei Huang, Haiyan Ni, Chongshu Zhu, Yan You, Yunfei Wu, Renjian Zhang, Jurgita Ovadnevaite, Darius Ceburnis, and Colin D. O'Dowd
Atmos. Chem. Phys., 22, 9513–9524, https://doi.org/10.5194/acp-22-9513-2022, https://doi.org/10.5194/acp-22-9513-2022, 2022
Short summary
Short summary
To investigate the physico-chemical properties of aerosol transported from major pollution regions in China, observations were conducted ~200 m above the ground at the junction location of the two key pollution areas. We found that the formation efficiency, oxidation state and production rate of secondary aerosol were different in the transport sectors from different pollution regions, and they were largely enhanced by the regional long-distance transport.
Jie Tian, Qiyuan Wang, Huikun Liu, Yongyong Ma, Suixin Liu, Yong Zhang, Weikang Ran, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 22, 8369–8384, https://doi.org/10.5194/acp-22-8369-2022, https://doi.org/10.5194/acp-22-8369-2022, 2022
Short summary
Short summary
We investigated aerosol optical properties and the direct radiative effect (DRE) at an urban site in China before and during the COVID-19 lockdown. The total light extinction coefficient (bext) decreased under emission control measures; however, bext from biomass burning increased due to the undiminished need for residential cooking and heating. Biomass burning, rather than traffic-related emissions, became the largest positive effect contributor to aerosol DRE in the lockdown.
Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li
Atmos. Chem. Phys., 22, 7489–7504, https://doi.org/10.5194/acp-22-7489-2022, https://doi.org/10.5194/acp-22-7489-2022, 2022
Short summary
Short summary
Looking at characteristics and δ13C compositions of dicarboxylic acids and related compounds in BB aerosols, we used a combined combustion and aging system to generate fresh and aged aerosols from burning straw. The results showed the emission factors (EFaged) of total diacids of aging experiments were around an order of magnitude higher than EFfresh. This meant that dicarboxylic acids are involved with secondary photochemical processes in the atmosphere rather than primary emissions from BB.
Meng Wang, Yusen Duan, Wei Xu, Qiyuan Wang, Zhuozhi Zhang, Qi Yuan, Xinwei Li, Shuwen Han, Haijie Tong, Juntao Huo, Jia Chen, Shan Gao, Zhongbiao Wu, Long Cui, Yu Huang, Guangli Xiu, Junji Cao, Qingyan Fu, and Shun-cheng Lee
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-289, https://doi.org/10.5194/acp-2022-289, 2022
Preprint under review for ACP
Short summary
Short summary
In this study, we report a long-term measurement of organic carbon (OC) and elementary carbon (EC) in PM2.5 with hourly time resolution conducted at a regional site in Shanghai from 2016 to 2020. The results from this study provide critical information about the long-term trend of carbonaceous aerosol, in particular SOC, in one of the largest megacities in the world and are helpful to develop pollution control measures from a long-term planning perspective.
Liang Ran, Zhaoze Deng, Yunfei Wu, Jiwei Li, Zhixuan Bai, Ye Lu, Deqing Zhuoga, and Jianchun Bian
Atmos. Chem. Phys., 22, 6217–6229, https://doi.org/10.5194/acp-22-6217-2022, https://doi.org/10.5194/acp-22-6217-2022, 2022
Short summary
Short summary
The Tibetan Plateau (TP), the highest plateau in the world, plays a crucial role in regional and global climate. To examine the fingerprint left by human activities on the originally remote atmosphere, size distributions of particles from the ground to about 800 m were measured for the first time in summer 2020 in Lhasa, one of a few urbanized cities on TP. Potential sources of particles at different heights were explored. The contribution of emissions from religious activities was highlighted.
Huikun Liu, Qiyuan Wang, Suixin Liu, Bianhong Zhou, Yao Qu, Jie Tian, Ting Zhang, Yongming Han, and Junji Cao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-26, https://doi.org/10.5194/acp-2022-26, 2022
Revised manuscript under review for ACP
Short summary
Short summary
Atmospheric motion plays an important role in the mass concentration and the direct radiative effect (DRE) of black carbon (BC). The finding from this study elaborated the impacts of different scales of atmospheric motion on source-specific BCs and their DRE, which revealed the disproportional change between BC mass concentration and its DRE, and highlighted the enhanced DRE efficiency of BC during the regional transport which could lead to greater climatic consequences in receptor regions.
Quan Liu, Dantong Liu, Yangzhou Wu, Kai Bi, Wenkang Gao, Ping Tian, Delong Zhao, Siyuan Li, Chenjie Yu, Guiqian Tang, Yunfei Wu, Kang Hu, Shuo Ding, Qian Gao, Fei Wang, Shaofei Kong, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 14749–14760, https://doi.org/10.5194/acp-21-14749-2021, https://doi.org/10.5194/acp-21-14749-2021, 2021
Short summary
Short summary
Through simultaneous online measurements of detailed aerosol compositions at both surface and surface-influenced mountain sites, the evolution of aerosol composition during daytime vertical transport was investigated. The results show that, from surface to the top of the planetary boundary layer, the oxidation state of organic aerosol had been significantly enhanced due to evaporation and further oxidation of these evaporated gases.
Mengdi Song, Xin Li, Suding Yang, Xuena Yu, Songxiu Zhou, Yiming Yang, Shiyi Chen, Huabin Dong, Keren Liao, Qi Chen, Keding Lu, Ningning Zhang, Junji Cao, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 21, 4939–4958, https://doi.org/10.5194/acp-21-4939-2021, https://doi.org/10.5194/acp-21-4939-2021, 2021
Short summary
Short summary
Due to their lower diffusion capacities and higher conversion capacities, urban areas in Xi’an experienced severe ozone pollution in the summer. In this study, a campaign of comprehensive field observations and VOC grid sampling was conducted in Xi’an from 20 June to 20 July 2019. We found that Xi'an has a strong local emission source of VOCs, and vehicle exhaust was the primary VOC source. In addition, alkenes, aromatics, and oxygenated VOCs played a dominant role in secondary transformations.
Wei Yuan, Ru-Jin Huang, Lu Yang, Ting Wang, Jing Duan, Jie Guo, Haiyan Ni, Yang Chen, Qi Chen, Yongjie Li, Ulrike Dusek, Colin O'Dowd, and Thorsten Hoffmann
Atmos. Chem. Phys., 21, 3685–3697, https://doi.org/10.5194/acp-21-3685-2021, https://doi.org/10.5194/acp-21-3685-2021, 2021
Short summary
Short summary
We characterized the seasonal variations in nitrated aromatic compounds (NACs) in composition, sources, and their light absorption contribution to brown carbon (BrC) aerosol in Xi'an, Northwest China. Our results show that secondary formation and vehicular emission were dominant sources in summer (~80 %), and biomass burning and coal combustion were major sources in winter (~75 %), and they indicate that the composition and sources of NACs have a profound impact on the light absorption of BrC
Huikun Liu, Qiyuan Wang, Li Xing, Yong Zhang, Ting Zhang, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 21, 973–987, https://doi.org/10.5194/acp-21-973-2021, https://doi.org/10.5194/acp-21-973-2021, 2021
Short summary
Short summary
We conducted black carbon (BC) source apportionment on the southeastern Tibetan Plateau (TP) by an improved aethalometer model with the site-dependent Ångström exponent and BC mass absorption cross section (MAC). The result shows that the biomass-burning BC on the TP is slightly higher than fossil fuel BC, mainly from cross-border transportation instead of the local region, and the BC radiative effect is lower than that in the southwestern Himalaya but higher than that on the northeastern TP.
Pragati Rai, Jay G. Slowik, Markus Furger, Imad El Haddad, Suzanne Visser, Yandong Tong, Atinderpal Singh, Günther Wehrle, Varun Kumar, Anna K. Tobler, Deepika Bhattu, Liwei Wang, Dilip Ganguly, Neeraj Rastogi, Ru-Jin Huang, Jaroslaw Necki, Junji Cao, Sachchida N. Tripathi, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 21, 717–730, https://doi.org/10.5194/acp-21-717-2021, https://doi.org/10.5194/acp-21-717-2021, 2021
Short summary
Short summary
We present a simple conceptual framework based on elemental size distributions and enrichment factors that allows for a characterization of major sources, site-to-site similarities, and local differences and the identification of key information required for efficient policy development. Absolute concentrations are by far the highest in Delhi, followed by Beijing, and then the European cities.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
Haiyan Ni, Ru-Jin Huang, Max M. Cosijn, Lu Yang, Jie Guo, Junji Cao, and Ulrike Dusek
Atmos. Chem. Phys., 20, 16041–16053, https://doi.org/10.5194/acp-20-16041-2020, https://doi.org/10.5194/acp-20-16041-2020, 2020
Short summary
Short summary
We investigated sources of carbonaceous aerosols in Beijing and Xi'an during severe winter haze. Elemental carbon (EC) was dominated by vehicle emissions in Xi’an and coal burning in Beijing. Organic carbon (OC) increment during haze days was driven by the increase in primary and secondary OC (SOC). SOC was more from fossil sources in Beijing than Xi’an, especially during haze days. In Xi’an, no strong day–night differences in EC or OC sources suggest a large accumulation of particles.
Qiyuan Wang, Huikun Liu, Ping Wang, Wenting Dai, Ting Zhang, Youzhi Zhao, Jie Tian, Wenyan Zhang, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 20, 15537–15549, https://doi.org/10.5194/acp-20-15537-2020, https://doi.org/10.5194/acp-20-15537-2020, 2020
Short summary
Short summary
Light-absorbing carbonaceous (LAC) aerosol is an important influencing factor for global climate forcing. In this study, we used a receptor model coupling multi-wavelength absorption with chemical species to explore the source-specific LAC optical properties at a tropical marine monsoon climate zone. The results can improve our understanding of the LAC radiative effects caused by ship emissions.
Jingsha Xu, Shaojie Song, Roy M. Harrison, Congbo Song, Lianfang Wei, Qiang Zhang, Yele Sun, Lu Lei, Chao Zhang, Xiaohong Yao, Dihui Chen, Weijun Li, Miaomiao Wu, Hezhong Tian, Lining Luo, Shengrui Tong, Weiran Li, Junling Wang, Guoliang Shi, Yanqi Huangfu, Yingze Tian, Baozhu Ge, Shaoli Su, Chao Peng, Yang Chen, Fumo Yang, Aleksandra Mihajlidi-Zelić, Dragana Đorđević, Stefan J. Swift, Imogen Andrews, Jacqueline F. Hamilton, Ye Sun, Agung Kramawijaya, Jinxiu Han, Supattarachai Saksakulkrai, Clarissa Baldo, Siqi Hou, Feixue Zheng, Kaspar R. Daellenbach, Chao Yan, Yongchun Liu, Markku Kulmala, Pingqing Fu, and Zongbo Shi
Atmos. Meas. Tech., 13, 6325–6341, https://doi.org/10.5194/amt-13-6325-2020, https://doi.org/10.5194/amt-13-6325-2020, 2020
Short summary
Short summary
An interlaboratory comparison was conducted for the first time to examine differences in water-soluble inorganic ions (WSIIs) measured by 10 labs using ion chromatography (IC) and by two online aerosol chemical speciation monitor (ACSM) methods. Major ions including SO42−, NO3− and NH4+ agreed well in 10 IC labs and correlated well with ACSM data. WSII interlab variability strongly affected aerosol acidity results based on ion balance, but aerosol pH computed by ISORROPIA II was very similar.
Junfeng Wang, Jianhuai Ye, Dantong Liu, Yangzhou Wu, Jian Zhao, Weiqi Xu, Conghui Xie, Fuzhen Shen, Jie Zhang, Paul E. Ohno, Yiming Qin, Xiuyong Zhao, Scot T. Martin, Alex K. Y. Lee, Pingqing Fu, Daniel J. Jacob, Qi Zhang, Yele Sun, Mindong Chen, and Xinlei Ge
Atmos. Chem. Phys., 20, 14091–14102, https://doi.org/10.5194/acp-20-14091-2020, https://doi.org/10.5194/acp-20-14091-2020, 2020
Short summary
Short summary
We compared the organics in total submicron matter and those coated on BC cores during summertime in Beijing and found large differences between them. Traffic-related OA was associated significantly with BC, while cooking-related OA did not coat BC. In addition, a factor likely originated from primary biomass burning OA was only identified in BC-containing particles. Such a unique BBOA requires further field and laboratory studies to verify its presence and elucidate its properties and impacts.
Yang Chen, Jing Cai, Zhichao Wang, Chao Peng, Xiaojiang Yao, Mi Tian, Yiqun Han, Guangming Shi, Zongbo Shi, Yue Liu, Xi Yang, Mei Zheng, Tong Zhu, Kebin He, Qiang Zhang, and Fumo Yang
Atmos. Chem. Phys., 20, 9231–9247, https://doi.org/10.5194/acp-20-9231-2020, https://doi.org/10.5194/acp-20-9231-2020, 2020
Short summary
Short summary
Patterns of particle transport, accumulation, and evolution in both urban and rural areas of Beijing are investigated. The two sites shared 17 common particle types in different stages of atmospheric processing.
Yang Chen, Guangming Shi, Jing Cai, Zongbo Shi, Zhichao Wang, Xiaojiang Yao, Mi Tian, Chao Peng, Yiqun Han, Tong Zhu, Yue Liu, Xi Yang, Mei Zheng, Fumo Yang, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 20, 9249–9263, https://doi.org/10.5194/acp-20-9249-2020, https://doi.org/10.5194/acp-20-9249-2020, 2020
Short summary
Short summary
Individual particles were observed in two field studies during winter 2016 in the urban and rural areas of Beijing. An online single-particle chemical composition analysis was used as a tracing system to investigate the impact of heating activities and the formation of haze events. During the pollution events, a pattern of transport and accumulation was found with evidence of single particles. The transport from Pinggu to Peking University was significant but PKU to PG occurred occasionally.
Ru-Jin Huang, Yao He, Jing Duan, Yongjie Li, Qi Chen, Yan Zheng, Yang Chen, Weiwei Hu, Chunshui Lin, Haiyan Ni, Wenting Dai, Junji Cao, Yunfei Wu, Renjian Zhang, Wei Xu, Jurgita Ovadnevaite, Darius Ceburnis, Thorsten Hoffmann, and Colin D. O'Dowd
Atmos. Chem. Phys., 20, 9101–9114, https://doi.org/10.5194/acp-20-9101-2020, https://doi.org/10.5194/acp-20-9101-2020, 2020
Short summary
Short summary
We systematically compared the submicron particle (PM1) processes in haze days with low and high relative humidity (RH) in wintertime Beijing. Nitrate had similar daytime growth rates in low-RH and high-RH pollution. OOA had a higher growth rate in low-RH pollution than in high-RH pollution. Sulfate had a decreasing trend in low-RH pollution, while it increased significantly in high-RH pollution. This distinction may be explained by the different processes affected by meteorological conditions.
Jiawei Li, Zhiwei Han, Yunfei Wu, Zhe Xiong, Xiangao Xia, Jie Li, Lin Liang, and Renjian Zhang
Atmos. Chem. Phys., 20, 8659–8690, https://doi.org/10.5194/acp-20-8659-2020, https://doi.org/10.5194/acp-20-8659-2020, 2020
Short summary
Short summary
Aerosol–radiation–climate interaction is one of the least understood mechanisms in air pollution and climate change. A coupled chemistry–climate model is developed to explore the mechanisms of haze evolution and aerosol radiative feedback in north China. The feedback exerts a significant impact on haze evolution. The contributions of physical and chemical processes to the feedback-induced aerosol changes are elucidated and quantified, providing new insights into the feedback mechanism.
Yuan Yang, Yonghong Wang, Putian Zhou, Dan Yao, Dongsheng Ji, Jie Sun, Yinghong Wang, Shuman Zhao, Wei Huang, Shuanghong Yang, Dean Chen, Wenkang Gao, Zirui Liu, Bo Hu, Renjian Zhang, Limin Zeng, Maofa Ge, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Yuesi Wang
Atmos. Chem. Phys., 20, 8181–8200, https://doi.org/10.5194/acp-20-8181-2020, https://doi.org/10.5194/acp-20-8181-2020, 2020
Yonggang Xue, Yu Huang, Steven Sai Hang Ho, Long Chen, Liqin Wang, Shuncheng Lee, and Junji Cao
Atmos. Chem. Phys., 20, 5425–5436, https://doi.org/10.5194/acp-20-5425-2020, https://doi.org/10.5194/acp-20-5425-2020, 2020
Short summary
Short summary
Particulate active metallic oxides in dust were proposed to influence the photochemical reactions of ambient volatile organic compounds (VOCs). A case study investigated the origin and transformation of VOCs during a windblown dust-to-haze pollution episode. In the dust event, a sharp decrease in VOC loading and aging of their components was observed. An increase in Ti and Fe and a fast decrease in trans-/cis-2-butene ratios demonstrated that dust can accelerate the oxidation of ambient VOCs.
Wei Yuan, Ru-Jin Huang, Lu Yang, Jie Guo, Ziyi Chen, Jing Duan, Ting Wang, Haiyan Ni, Yongming Han, Yongjie Li, Qi Chen, Yang Chen, Thorsten Hoffmann, and Colin O'Dowd
Atmos. Chem. Phys., 20, 5129–5144, https://doi.org/10.5194/acp-20-5129-2020, https://doi.org/10.5194/acp-20-5129-2020, 2020
Short summary
Short summary
We characterized light-absorbing properties, chromophore composition and sources of brown carbon (BrC) in Xi'an; identified three groups of light-absorbing organics; and quantified their contribution to overall BrC absorption. Our results showed that vehicle emissions and secondary formation are major sources of BrC in spring, coal combustion and vehicle emissions are major sources in fall, biomass burning and coal combustion become major sources in winter, and secondary BrC dominates in summer.
Jianjun Li, Qi Zhang, Gehui Wang, Jin Li, Can Wu, Lang Liu, Jiayuan Wang, Wenqing Jiang, Lijuan Li, Kin Fai Ho, and Junji Cao
Atmos. Chem. Phys., 20, 4889–4904, https://doi.org/10.5194/acp-20-4889-2020, https://doi.org/10.5194/acp-20-4889-2020, 2020
Short summary
Short summary
We examined light absorption properties and molecular composition of water-soluble (WS) and water-insoluble (WI) BrC in PM2.5 collected from northwest China. We found that photochemical formation contributes significantly to light absorption of WI-BrC in summer, whereas aqueous-phase reactions play an important role in secondary WS-BrC formation in winter. BrC was estimated to account for 1.36 % and 3.74 %, respectively, of total down-welling solar radiation in the UV range in summer and winter.
Jing Duan, Ru-Jin Huang, Yongjie Li, Qi Chen, Yan Zheng, Yang Chen, Chunshui Lin, Haiyan Ni, Meng Wang, Jurgita Ovadnevaite, Darius Ceburnis, Chunying Chen, Douglas R. Worsnop, Thorsten Hoffmann, Colin O'Dowd, and Junji Cao
Atmos. Chem. Phys., 20, 3793–3807, https://doi.org/10.5194/acp-20-3793-2020, https://doi.org/10.5194/acp-20-3793-2020, 2020
Short summary
Short summary
We characterized secondary aerosol formation in Beijing. Our results showed that relative humidity (RH) and Ox have opposite effects on sulfate and nitrate formation in summer and winter. The wintertime more-oxidized OOA (MO-OOA) showed a good correlation with aerosol liquid water content (ALWC). Meanwhile, the dependence of less-oxidized OOA (LO-OOA) and the mass ratio of LO-OOA to MO-OOA in Ox both degraded when RH > 60 %, suggesting that RH or ALWC may also affect LO-OOA formation.
Ping Tian, Dantong Liu, Delong Zhao, Chenjie Yu, Quan Liu, Mengyu Huang, Zhaoze Deng, Liang Ran, Yunfei Wu, Shuo Ding, Kang Hu, Gang Zhao, Chunsheng Zhao, and Deping Ding
Atmos. Chem. Phys., 20, 2603–2622, https://doi.org/10.5194/acp-20-2603-2020, https://doi.org/10.5194/acp-20-2603-2020, 2020
Short summary
Short summary
This study paints a full picture of the evolution of vertical characteristics of aerosol optical properties and shortwave heating impacts of carbonaceous aerosols during different stages of pollution events over the Beijing region and highlights the increased contribution of brown carbon absorption, especially at higher levels, during pollution.
Haiyan Ni, Ru-Jin Huang, Junji Cao, Jie Guo, Haoyue Deng, and Ulrike Dusek
Atmos. Chem. Phys., 19, 15609–15628, https://doi.org/10.5194/acp-19-15609-2019, https://doi.org/10.5194/acp-19-15609-2019, 2019
Short summary
Short summary
We present a 1-year source apportionment record of carbonaceous aerosols in Xi'an, China. Biomass burning strongly increases in winter, while seasonal changes of coal and liquid fossil fuel combustion are moderate. We find strong evidence for fossil secondary OC formation during the warm period that is further enhanced in stagnant, polluted conditions due to longer atmospheric residence times. At the same time we find that water-insoluble (primary) fossil is lost due to photochemical processing.
Jun Zhou, Miriam Elser, Ru-Jin Huang, Manuel Krapf, Roman Fröhlich, Deepika Bhattu, Giulia Stefenelli, Peter Zotter, Emily A. Bruns, Simone M. Pieber, Haiyan Ni, Qiyuan Wang, Yichen Wang, Yaqing Zhou, Chunying Chen, Mao Xiao, Jay G. Slowik, Samuel Brown, Laure-Estelle Cassagnes, Kaspar R. Daellenbach, Thomas Nussbaumer, Marianne Geiser, André S. H. Prévôt, Imad El-Haddad, Junji Cao, Urs Baltensperger, and Josef Dommen
Atmos. Chem. Phys., 19, 14703–14720, https://doi.org/10.5194/acp-19-14703-2019, https://doi.org/10.5194/acp-19-14703-2019, 2019
Short summary
Short summary
Reactive oxygen species (ROS) are believed to contribute to the adverse health effects of aerosols. We measured particle-bound ROS (PB-ROS) with an online instrument in two distinct environments, i.e., Beijing (China) and Bern (Switzerland). In both cities these exogenic ROS are predominantly related to secondary organic aerosol (SOA). PB-ROS content in SOA from various anthropogenic emission sources tested in the laboratory was comparable to that in the ambient measurements.
John G. Watson, Junji Cao, L.-W. Antony Chen, Qiyuan Wang, Jie Tian, Xiaoliang Wang, Steven Gronstal, Steven Sai Hang Ho, Adam C. Watts, and Judith C. Chow
Atmos. Chem. Phys., 19, 14173–14193, https://doi.org/10.5194/acp-19-14173-2019, https://doi.org/10.5194/acp-19-14173-2019, 2019
Short summary
Short summary
Although peat burning is a common global emission source, region-specific emission factors are lacking. This work fills that gap for six peat-bearing regions. It is also shown through simulated aging with an oxidation flow reactor that potential aerosol mass changes during transport.
Lang Liu, Naifang Bei, Jiarui Wu, Suixin Liu, Jiamao Zhou, Xia Li, Qingchuan Yang, Tian Feng, Junji Cao, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 19, 13341–13354, https://doi.org/10.5194/acp-19-13341-2019, https://doi.org/10.5194/acp-19-13341-2019, 2019
Judith C. Chow, Junji Cao, L.-W. Antony Chen, Xiaoliang Wang, Qiyuan Wang, Jie Tian, Steven Sai Hang Ho, Adam C. Watts, Tessa B. Carlson, Steven D. Kohl, and John G. Watson
Atmos. Meas. Tech., 12, 5475–5501, https://doi.org/10.5194/amt-12-5475-2019, https://doi.org/10.5194/amt-12-5475-2019, 2019
Short summary
Short summary
Source profiles that allow peat fire contributions to be distinguished from other source contributions using receptor models are lacking for a wide variety of peat fuels and burning conditions. These profiles change with photochemical aging during transport. Fresh and aged profiles for a variety of peat fuels are measured with an oxidation flow reactor to improve source attributions at distant receptors.
Huizheng Che, Xiangao Xia, Hujia Zhao, Oleg Dubovik, Brent N. Holben, Philippe Goloub, Emilio Cuevas-Agulló, Victor Estelles, Yaqiang Wang, Jun Zhu, Bing Qi, Wei Gong, Honglong Yang, Renjian Zhang, Leiku Yang, Jing Chen, Hong Wang, Yu Zheng, Ke Gui, Xiaochun Zhang, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 11843–11864, https://doi.org/10.5194/acp-19-11843-2019, https://doi.org/10.5194/acp-19-11843-2019, 2019
Short summary
Short summary
A full-scale description of ground-based aerosol microphysical and optical properties over China is presented. Moreover, the results have also provided significant information about optical and radiative aerosol properties for different types of sites covering a broad expanse of China. The results have considerable value for ground-truthing satellite observations and validating aerosol models.
Meng Wang, Ru-Jin Huang, Junji Cao, Wenting Dai, Jiamao Zhou, Chunshui Lin, Haiyan Ni, Jing Duan, Ting Wang, Yang Chen, Yongjie Li, Qi Chen, Imad El Haddad, and Thorsten Hoffmann
Atmos. Meas. Tech., 12, 4779–4789, https://doi.org/10.5194/amt-12-4779-2019, https://doi.org/10.5194/amt-12-4779-2019, 2019
Short summary
Short summary
The analytical performances of SE-GC-MS and TD-GC-MS for the determination of n-alkanes, PAHs and hopanes were evaluated and compared. The two methods show a good agreement with a high correlation efficient (R2 > 0.98) and a slope close to unity. The concentrations of n-alkanes, PAHs and hopanes are found to be much higher in Beijing than those in Chengdu, Shanghai and Guangzhou, most likely due to emissions from coal combustion for wintertime heating in Beijing.
Xin Long, Xuexi Tie, Jiamao Zhou, Wenting Dai, Xueke Li, Tian Feng, Guohui Li, Junji Cao, and Zhisheng An
Atmos. Chem. Phys., 19, 11185–11197, https://doi.org/10.5194/acp-19-11185-2019, https://doi.org/10.5194/acp-19-11185-2019, 2019
Short summary
Short summary
China is undergoing ever-increasing demand for electricity, and launched the Green Light Program (GLP), which is an effective reduction of the coal consumption for power generation. The estimated potential coal saving induced by the GLP can reach a massive value of 120–323 million tons. There was a massive resultant potential emission reduction of air pollutants, which is inherently connected to the haze formation, because the NOx and SO2 are important precursors for the formation of particles.
Haiyan Ni, Ru-Jin Huang, Junji Cao, Wenting Dai, Jiamao Zhou, Haoyue Deng, Anita Aerts-Bijma, Harro A. J. Meijer, and Ulrike Dusek
Atmos. Chem. Phys., 19, 10405–10422, https://doi.org/10.5194/acp-19-10405-2019, https://doi.org/10.5194/acp-19-10405-2019, 2019
Short summary
Short summary
We apply radiocarbon source apportionment of more volatile organic carbon (mvOC) to winter aerosol samples from six Chinese cities. We find a consistently larger contribution of fossil sources to mvOC than to secondary or total organic carbon. Fossil mvOC concentrations are strongly correlated with primary fossil OC but not with secondary fossil OC. The variability in nonfossil mvOC seems to be related to both primary and secondary biomass burning sources.
Jing Duan, Ru-Jin Huang, Chunshui Lin, Wenting Dai, Meng Wang, Yifang Gu, Ying Wang, Haobin Zhong, Yan Zheng, Haiyan Ni, Uli Dusek, Yang Chen, Yongjie Li, Qi Chen, Douglas R. Worsnop, Colin D. O'Dowd, and Junji Cao
Atmos. Chem. Phys., 19, 10319–10334, https://doi.org/10.5194/acp-19-10319-2019, https://doi.org/10.5194/acp-19-10319-2019, 2019
Short summary
Short summary
We present the seasonal distinction of secondary aerosol formation in urban Beijing. Both photochemical oxidation and aqueous-phase processing played important roles in SOA (secondary organic aerosol) formation during all three seasons; while for sulfate formation, gas-phase photochemical oxidation was the major pathway in late summer, aqueous-phase reactions were more responsible during early winter, and both processes had contributions during autumn.
Yunfei Wu, Yunjie Xia, Rujin Huang, Zhaoze Deng, Ping Tian, Xiangao Xia, and Renjian Zhang
Atmos. Meas. Tech., 12, 4347–4359, https://doi.org/10.5194/amt-12-4347-2019, https://doi.org/10.5194/amt-12-4347-2019, 2019
Short summary
Short summary
The morphology and effective density of externally mixed black carbon (extBC) aerosols were studied using a tandem technique coupling a DMA with a SP2. The study extended the mass–mobility relationship to large extBC with a mobility diameter larger than 350 nm, a size range seldom included in previous tandem measurements of BC aggregates. On this basis, quantities such as the mass–mobility scaling exponent were revealed for extBC in urban Beijing.
Jiarui Wu, Naifang Bei, Bo Hu, Suixin Liu, Meng Zhou, Qiyuan Wang, Xia Li, Lang Liu, Tian Feng, Zirui Liu, Yichen Wang, Junji Cao, Xuexi Tie, Jun Wang, Luisa T. Molina, and Guohui Li
Atmos. Chem. Phys., 19, 8703–8719, https://doi.org/10.5194/acp-19-8703-2019, https://doi.org/10.5194/acp-19-8703-2019, 2019
Short summary
Short summary
In the present study, simulations during a persistent and heavy haze pollution episode from 5 December 2015 to 4 January 2016 in the North China Plain (NCP) were performed using the WRF-Chem model to comprehensively quantify contributions of the aerosol shortwave radiative feedback (ARF) to near-surface PM2.5 mass concentrations. During the episode, the ARF deteriorates the haze pollution, increasing the near-surface PM2.5 concentration in the NCP by 10.2 μg m−3 (7.8 %) on average.
Jiarui Wu, Naifang Bei, Bo Hu, Suixin Liu, Meng Zhou, Qiyuan Wang, Xia Li, Lang Liu, Tian Feng, Zirui Liu, Yichen Wang, Junji Cao, Xuexi Tie, Jun Wang, Luisa T. Molina, and Guohui Li
Atmos. Chem. Phys., 19, 8721–8739, https://doi.org/10.5194/acp-19-8721-2019, https://doi.org/10.5194/acp-19-8721-2019, 2019
Short summary
Short summary
The near-surface PM2.5 contribution of the ALW total effect is 17.5 % in NCP, indicating that ALW plays an important role in the PM2.5 formation during the wintertime haze pollution. Moreover, the ALW-HET overwhelmingly dominates the PM2.5 enhancement due to the ALW. The ALW does not consistently enhance near-surface [PM2.5] with increasing RH. When the RH exceeds 80 %, the contribution of the ALW begins to decrease, which is caused by the high occurrence frequencies of precipitation.
Jun Tao, Zhisheng Zhang, Yunfei Wu, Leiming Zhang, Zhijun Wu, Peng Cheng, Mei Li, Laiguo Chen, Renjian Zhang, and Junji Cao
Atmos. Chem. Phys., 19, 8471–8490, https://doi.org/10.5194/acp-19-8471-2019, https://doi.org/10.5194/acp-19-8471-2019, 2019
Short summary
Short summary
Mass-scattering efficiencies (MSE) of dominant chemical species in atmospheric aerosols are important parameters for building the relationships between chemical species and the particle-scattering coefficient. Particle MSE mainly depends on the mass fractions of (NH4)2SO4, NH4NO3, and organic matter and their MSEs in the droplet mode. MSEs of (NH4)2SO4, NH4NO3 and organic matter were determined by their size distributions in the droplet mode.
Lang Liu, Jiarui Wu, Suixin Liu, Xia Li, Jiamao Zhou, Tian Feng, Yang Qian, Junji Cao, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 19, 8189–8207, https://doi.org/10.5194/acp-19-8189-2019, https://doi.org/10.5194/acp-19-8189-2019, 2019
Karena A. McKinney, Daniel Wang, Jianhuai Ye, Jean-Baptiste de Fouchier, Patricia C. Guimarães, Carla E. Batista, Rodrigo A. F. Souza, Eliane G. Alves, Dasa Gu, Alex B. Guenther, and Scot T. Martin
Atmos. Meas. Tech., 12, 3123–3135, https://doi.org/10.5194/amt-12-3123-2019, https://doi.org/10.5194/amt-12-3123-2019, 2019
Short summary
Short summary
Volatile organic compound (VOC) emissions influence air quality and particulate distributions, particularly in major source regions such as the Amazon. A sampler for collecting VOCs from an unmanned aerial vehicle (UAV) is described. Field tests of its performance and an initial example data set collected in the Amazon are also presented. The low cost, ease of use, and maneuverability of UAVs give this method the potential to significantly advance knowledge of the spatial distribution of VOCs.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Tian Feng, Shuyu Zhao, Naifang Bei, Jiarui Wu, Suixin Liu, Xia Li, Lang Liu, Yang Qian, Qingchuan Yang, Yichen Wang, Weijian Zhou, Junji Cao, and Guohui Li
Atmos. Chem. Phys., 19, 7429–7443, https://doi.org/10.5194/acp-19-7429-2019, https://doi.org/10.5194/acp-19-7429-2019, 2019
Short summary
Short summary
The observed ratio of organic carbon to element carbon has increased remarkably in Beijing. Here, based on the measurements and model simulation, we show that the enhanced atmospheric oxidizing capacity is an important contributor to that increase by facilitating the aging process of organic aerosols (add oxygen). Our results indicate a ubiquitous enhancement of secondary organic aerosol formation over Beijing–Tianjin–Hebei, China, in the context of increasing oxidizing capacity.
Hongmei Xu, Jean-François Léon, Cathy Liousse, Benjamin Guinot, Véronique Yoboué, Aristide Barthélémy Akpo, Jacques Adon, Kin Fai Ho, Steven Sai Hang Ho, Lijuan Li, Eric Gardrat, Zhenxing Shen, and Junji Cao
Atmos. Chem. Phys., 19, 6637–6657, https://doi.org/10.5194/acp-19-6637-2019, https://doi.org/10.5194/acp-19-6637-2019, 2019
Short summary
Short summary
This paper discusses the personal exposure characteristics and health implication of PM2.5 and bounded chemical species based on three anthropogenic sources and related populations (domestic fires for women, waste burning for students and motorcycle traffic for drivers) in Abidjan and Cotonou in dry and wet seasons of 2016. This work can be regarded as the first attempt at measuring personal exposure to PM2.5 and its related health risks in underdeveloped countries of Africa.
Long Chen, Yu Huang, Yonggang Xue, Zhenxing Shen, Junji Cao, and Wenliang Wang
Atmos. Chem. Phys., 19, 4075–4091, https://doi.org/10.5194/acp-19-4075-2019, https://doi.org/10.5194/acp-19-4075-2019, 2019
Short summary
Short summary
The present calculations show that the sequential addition of CIs to HHPs affords oligomers containing CIs as chain units. The addition of an –OOH group in HHPs to the central carbon atom of CIs is identified as the most energetically favorable channel, with a barrier height strongly dependent on both CI substituent number (one or two) and position (syn- or anti-). In particular, the introduction of a methyl group into the anti-position significantly increases the rate coefficient.
Yang Chen, Mi Tian, Ru-Jin Huang, Guangming Shi, Huanbo Wang, Chao Peng, Junji Cao, Qiyuan Wang, Shumin Zhang, Dongmei Guo, Leiming Zhang, and Fumo Yang
Atmos. Chem. Phys., 19, 3245–3255, https://doi.org/10.5194/acp-19-3245-2019, https://doi.org/10.5194/acp-19-3245-2019, 2019
Short summary
Short summary
Amine-containing particles were characterized in an urban area of Chongqing during both summer and winter using a single-particle aerosol mass spectrometer (SPAMS). Amines were observed to internally mix with elemental carbon (EC), organic carbon (OC), sulfate, and nitrate. Diethylamine (DEA) was the most abundant in both number and peak area among amine-containing particles. Vegetation and traffic were the primary sources of particulate amines.
Li Xing, Jiarui Wu, Miriam Elser, Shengrui Tong, Suixin Liu, Xia Li, Lang Liu, Junji Cao, Jiamao Zhou, Imad El-Haddad, Rujin Huang, Maofa Ge, Xuexi Tie, André S. H. Prévôt, and Guohui Li
Atmos. Chem. Phys., 19, 2343–2359, https://doi.org/10.5194/acp-19-2343-2019, https://doi.org/10.5194/acp-19-2343-2019, 2019
Short summary
Short summary
We used the WRF-CHEM model to simulate wintertime secondary organic aerosol (SOA) concentrations over Beijing–Tianjin–Hebei (BTH), China. Heterogeneous HONO sources increased the near-surface SOA by 46.3 % in BTH. Direct emissions of glyoxal and methylglyoxal from residential sources contributed 25.5 % to the total SOA mass. Our study highlights the importance of heterogeneous HONO sources and primary residential emissions of glyoxal and methylglyoxal to SOA formation in winter over BTH.
Ru-Jin Huang, Yichen Wang, Junji Cao, Chunshui Lin, Jing Duan, Qi Chen, Yongjie Li, Yifang Gu, Jin Yan, Wei Xu, Roman Fröhlich, Francesco Canonaco, Carlo Bozzetti, Jurgita Ovadnevaite, Darius Ceburnis, Manjula R. Canagaratna, John Jayne, Douglas R. Worsnop, Imad El-Haddad, André S. H. Prévôt, and Colin D. O'Dowd
Atmos. Chem. Phys., 19, 2283–2298, https://doi.org/10.5194/acp-19-2283-2019, https://doi.org/10.5194/acp-19-2283-2019, 2019
Short summary
Short summary
We found that in wintertime Shijiazhuang fine PM was mostly from primary emissions without sufficient atmospheric aging. In addition, secondary inorganic and organic aerosol dominated in pollution events under high-RH conditions, likely due to enhanced aqueous-phase chemistry, whereas primary organic aerosol dominated in pollution events under low-RH and stagnant conditions. Our results also highlighted the importance of meteorological conditions for PM pollution in this highly polluted city.
Qiyuan Wang, Suixin Liu, Nan Li, Wenting Dai, Yunfei Wu, Jie Tian, Yaqing Zhou, Meng Wang, Steven Sai Hang Ho, Yang Chen, Renjian Zhang, Shuyu Zhao, Chongshu Zhu, Yongming Han, Xuexi Tie, and Junji Cao
Atmos. Chem. Phys., 19, 1881–1899, https://doi.org/10.5194/acp-19-1881-2019, https://doi.org/10.5194/acp-19-1881-2019, 2019
Haiyan Ni, Ru-Jin Huang, Junji Cao, Weiguo Liu, Ting Zhang, Meng Wang, Harro A. J. Meijer, and Ulrike Dusek
Atmos. Chem. Phys., 18, 16363–16383, https://doi.org/10.5194/acp-18-16363-2018, https://doi.org/10.5194/acp-18-16363-2018, 2018
Short summary
Short summary
Seasonal changes in organic carbon (OC) and elemental carbon (EC) sources in Xi'an, China, are investigated based on measurements of radiocarbon and the stable isotope 13C. Relative contributions to EC from biomass burning, coal combustion, and vehicle emissions change substantially between different seasons. Biomass burning contributes 60 % to the EC increment in winter. Comparing concentrations and sources of primary OC to total OC suggests non-negligible OC loss due to active photochemistry.
Jingjing Meng, Gehui Wang, Zhanfang Hou, Xiaodi Liu, Benjie Wei, Can Wu, Cong Cao, Jiayuan Wang, Jianjun Li, Junji Cao, Erxun Zhang, Jie Dong, Jiazhen Liu, Shuangshuang Ge, and Yuning Xie
Atmos. Chem. Phys., 18, 15069–15086, https://doi.org/10.5194/acp-18-15069-2018, https://doi.org/10.5194/acp-18-15069-2018, 2018
Jiamao Zhou, Xuexi Tie, Baiqing Xu, Shuyu Zhao, Mo Wang, Guohui Li, Ting Zhang, Zhuzi Zhao, Suixin Liu, Song Yang, Luyu Chang, and Junji Cao
Atmos. Chem. Phys., 18, 13673–13685, https://doi.org/10.5194/acp-18-13673-2018, https://doi.org/10.5194/acp-18-13673-2018, 2018
Short summary
Short summary
A global chemical transportation model (MOZART-4) was used to analyze the BC transport from the source regions and a radiative transfer model (SNICAR) was used to study the effect of BC on snow albedo on the northern Tibetan Plateau. The result provides useful information to study the effect of the upward BC emissions on environmental and climate issues. The radiative effect of BC deposition on the snow melting provides important information regarding the water resources in the region.
Ru-Jin Huang, Junji Cao, Yang Chen, Lu Yang, Jincan Shen, Qihua You, Kai Wang, Chunshui Lin, Wei Xu, Bo Gao, Yongjie Li, Qi Chen, Thorsten Hoffmann, Colin D. O'Dowd, Merete Bilde, and Marianne Glasius
Atmos. Meas. Tech., 11, 3447–3456, https://doi.org/10.5194/amt-11-3447-2018, https://doi.org/10.5194/amt-11-3447-2018, 2018
Nan Li, Qingyang He, Jim Greenberg, Alex Guenther, Jingyi Li, Junji Cao, Jun Wang, Hong Liao, Qiyuan Wang, and Qiang Zhang
Atmos. Chem. Phys., 18, 7489–7507, https://doi.org/10.5194/acp-18-7489-2018, https://doi.org/10.5194/acp-18-7489-2018, 2018
Short summary
Short summary
O3 pollution has been increasing in most Chinese cities in recent years. Our study reveals that the synergistic impact of individual source contributions to O3 formation should be considered in the formation of air pollution control strategies, especially for big cities in the vicinity of forests.
Jianhuai Ye, Jonathan P. D. Abbatt, and Arthur W. H. Chan
Atmos. Chem. Phys., 18, 5549–5565, https://doi.org/10.5194/acp-18-5549-2018, https://doi.org/10.5194/acp-18-5549-2018, 2018
Short summary
Short summary
Synergistic effects between SOA formation and SO2 oxidation through Criegee chemistry and reactive uptake by organic peroxides were observed. The relative importance of these two pathways (Criegee vs. peroxide) varies with relative humidity. The latter SO2 loss mechanism to organic peroxides in SOA has not previously been identified. Our results suggest a new pathway of atmospheric SO2 oxidation, which may contribute to the missing mechanisms of high-sulfate production in the polluted areas.
Qiyuan Wang, Junji Cao, Yongming Han, Jie Tian, Chongshu Zhu, Yonggang Zhang, Ningning Zhang, Zhenxing Shen, Haiyan Ni, Shuyu Zhao, and Jiarui Wu
Atmos. Chem. Phys., 18, 4639–4656, https://doi.org/10.5194/acp-18-4639-2018, https://doi.org/10.5194/acp-18-4639-2018, 2018
Short summary
Short summary
Black carbon (BC) aerosol in the Tibetan Plateau (TP) has important effects on the regional climate and hydrological processes in South and East Asia. We characterized BC at a high-altitude remote site in the southeastern Tibetan Plateau using a single-particle soot photometer and a photoacoustic extinctiometer. Our study provides insight into the sources and evolution of BC aerosol on the TP, and the results will be useful for improving models of the radiative effects in this area.
Jian Sun, Zhenxing Shen, Yu Huang, Junji Cao, Steven Sai Hang Ho, Xinyi Niu, Taobo Wang, Qian Zhang, Yali Lei, Hongmei Xu, and Hongxia Liu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-36, https://doi.org/10.5194/acp-2018-36, 2018
Revised manuscript not accepted
Huanbo Wang, Mi Tian, Yang Chen, Guangming Shi, Yuan Liu, Fumo Yang, Leiming Zhang, Liqun Deng, Jiayan Yu, Chao Peng, and Xuyao Cao
Atmos. Chem. Phys., 18, 865–881, https://doi.org/10.5194/acp-18-865-2018, https://doi.org/10.5194/acp-18-865-2018, 2018
Huizheng Che, Bing Qi, Hujia Zhao, Xiangao Xia, Thomas F. Eck, Philippe Goloub, Oleg Dubovik, Victor Estelles, Emilio Cuevas-Agulló, Luc Blarel, Yunfei Wu, Jun Zhu, Rongguang Du, Yaqiang Wang, Hong Wang, Ke Gui, Jie Yu, Yu Zheng, Tianze Sun, Quanliang Chen, Guangyu Shi, and Xiaoye Zhang
Atmos. Chem. Phys., 18, 405–425, https://doi.org/10.5194/acp-18-405-2018, https://doi.org/10.5194/acp-18-405-2018, 2018
Short summary
Short summary
Sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify aerosols based on size and absorption. This study contributes to our understanding of aerosols and regional climate/air quality, and the results will be useful for validating satellite retrievals and for improving climate models and remote sensing.
Jun Tao, Leiming Zhang, Junji Cao, and Renjian Zhang
Atmos. Chem. Phys., 17, 9485–9518, https://doi.org/10.5194/acp-17-9485-2017, https://doi.org/10.5194/acp-17-9485-2017, 2017
Short summary
Short summary
In this study, studies on PM2.5 chemical composition, source apportionment and its impact on aerosol optical properties across China are thoroughly reviewed, and historical emission control policies in China and their effectiveness in reducing PM2.5 are discussed.
Yunfei Wu, Xiaojia Wang, Jun Tao, Rujin Huang, Ping Tian, Junji Cao, Leiming Zhang, Kin-Fai Ho, Zhiwei Han, and Renjian Zhang
Atmos. Chem. Phys., 17, 7965–7975, https://doi.org/10.5194/acp-17-7965-2017, https://doi.org/10.5194/acp-17-7965-2017, 2017
Short summary
Short summary
As black carbon (BC) aerosols play an important role in the climate and environment, the size distribution of refractory BC (rBC) was investigated. On this basis, the source of rBC was further analyzed. The local traffic exhausts contributed greatly to the rBC in urban areas. However, its contribution decreased significantly in the polluted period compared to the clean period, implying the increasing contribution of other sources, e.g., coal combustion or biomass burning, in the polluted period.
Guohui Li, Naifang Bei, Junji Cao, Jiarui Wu, Xin Long, Tian Feng, Wenting Dai, Suixin Liu, Qiang Zhang, and Xuexi Tie
Atmos. Chem. Phys., 17, 2759–2774, https://doi.org/10.5194/acp-17-2759-2017, https://doi.org/10.5194/acp-17-2759-2017, 2017
Chunpeng Leng, Junyan Duan, Chen Xu, Hefeng Zhang, Yifan Wang, Yanyu Wang, Xiang Li, Lingdong Kong, Jun Tao, Renjian Zhang, Tiantao Cheng, Shuping Zha, and Xingna Yu
Atmos. Chem. Phys., 16, 9221–9234, https://doi.org/10.5194/acp-16-9221-2016, https://doi.org/10.5194/acp-16-9221-2016, 2016
Short summary
Short summary
Meteorological conditions, local anthropogenic emissions and aerosol properties played major roles in this historic winter haze weather formation. Aerosols the size of 600–1400 nm are mostly responsible for the impairment of atmospheric visibility. This study was performed by combining many on-line measurement techniques which were calibrated regularly to ensure reliability, and can act as a reference for forecasting and eliminating the occurrences of regional atmospheric pollutions in China.
Mi Tian, Huanbo Wang, Yang Chen, Fumo Yang, Xiaohua Zhang, Qiang Zou, Renquan Zhang, Yongliang Ma, and Kebin He
Atmos. Chem. Phys., 16, 7357–7371, https://doi.org/10.5194/acp-16-7357-2016, https://doi.org/10.5194/acp-16-7357-2016, 2016
Short summary
Short summary
The discussion was based on high time resolution data which could provide detailed insight into short haze periods. The dominant species in PM2.5 and which were responsible for the visibility reduction were identified in Suzhou.
The formation mechanisms of sulfate and nitrate were explored as high secondary aerosol contributions to particulate pollution during haze events. The impact of local and transport sources on the origin of aerosol pollution in Suzhou was discussed.
Naifang Bei, Guohui Li, Ru-Jin Huang, Junji Cao, Ning Meng, Tian Feng, Suixin Liu, Ting Zhang, Qiang Zhang, and Luisa T. Molina
Atmos. Chem. Phys., 16, 7373–7387, https://doi.org/10.5194/acp-16-7373-2016, https://doi.org/10.5194/acp-16-7373-2016, 2016
Short summary
Short summary
Rapid industrialization and urbanization have caused severe air pollution in the Guanzhong basin, northwestern China with heavy haze events occurring frequently in recent winters. Due to frequent occurrence of unfavorable synoptic situations during wintertime, mitigation of emissions is the optimum approach to mitigate the air pollution in the Guanzhong basin.
James Hansen, Makiko Sato, Paul Hearty, Reto Ruedy, Maxwell Kelley, Valerie Masson-Delmotte, Gary Russell, George Tselioudis, Junji Cao, Eric Rignot, Isabella Velicogna, Blair Tormey, Bailey Donovan, Evgeniya Kandiano, Karina von Schuckmann, Pushker Kharecha, Allegra N. Legrande, Michael Bauer, and Kwok-Wai Lo
Atmos. Chem. Phys., 16, 3761–3812, https://doi.org/10.5194/acp-16-3761-2016, https://doi.org/10.5194/acp-16-3761-2016, 2016
Short summary
Short summary
We use climate simulations, paleoclimate data and modern observations to infer that continued high fossil fuel emissions will yield cooling of Southern Ocean and North Atlantic surfaces, slowdown and shutdown of SMOC & AMOC, increasingly powerful storms and nonlinear sea level rise reaching several meters in 50–150 years, effects missed in IPCC reports because of omission of ice sheet melt and an insensitivity of most climate models, likely due to excessive ocean mixing.
Miriam Elser, Ru-Jin Huang, Robert Wolf, Jay G. Slowik, Qiyuan Wang, Francesco Canonaco, Guohui Li, Carlo Bozzetti, Kaspar R. Daellenbach, Yu Huang, Renjian Zhang, Zhengqiang Li, Junji Cao, Urs Baltensperger, Imad El-Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 3207–3225, https://doi.org/10.5194/acp-16-3207-2016, https://doi.org/10.5194/acp-16-3207-2016, 2016
Short summary
Short summary
This work represents the first online chemical characterization of the PM2.5 using a high-resolution time-of flight aerosol mass spectrometer during extreme haze events China. The application of novel source apportionment techniques allowed for an improved identification and quantification of the sources of organic aerosols. The main sources and processes driving the extreme haze events are assessed.
Q. Y. Wang, R.-J. Huang, J. J. Cao, X. X. Tie, H. Y. Ni, Y. Q. Zhou, Y. M. Han, T. F. Hu, C. S. Zhu, T. Feng, N. Li, and J. D. Li
Atmos. Chem. Phys., 15, 13059–13069, https://doi.org/10.5194/acp-15-13059-2015, https://doi.org/10.5194/acp-15-13059-2015, 2015
Short summary
Short summary
An intensive campaign was conducted at the Qinghai-Tibetan Plateau using a ground-based single particle soot photometer and a photoacoustic extinctiometer. Significant enhancements of rBC loadings and number fraction of coated rBC were observed during the pollution episode. Biomass burning from N. India is determined to be an important potential source influencing the northeastern Qinghai-Tibetan Plateau. The rBC mixing state is important in determining absorption during the pollution episode.
L. Zhang, D. K. Henze, G. A. Grell, G. R. Carmichael, N. Bousserez, Q. Zhang, O. Torres, C. Ahn, Z. Lu, J. Cao, and Y. Mao
Atmos. Chem. Phys., 15, 10281–10308, https://doi.org/10.5194/acp-15-10281-2015, https://doi.org/10.5194/acp-15-10281-2015, 2015
Short summary
Short summary
We attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Despite the limitations and uncertainties, using OMI AAOD to constrain BC sources we are able to improve model representation of BC distributions, particularly over China.
H. Che, X.-Y. Zhang, X. Xia, P. Goloub, B. Holben, H. Zhao, Y. Wang, X.-C. Zhang, H. Wang, L. Blarel, B. Damiri, R. Zhang, X. Deng, Y. Ma, T. Wang, F. Geng, B. Qi, J. Zhu, J. Yu, Q. Chen, and G. Shi
Atmos. Chem. Phys., 15, 7619–7652, https://doi.org/10.5194/acp-15-7619-2015, https://doi.org/10.5194/acp-15-7619-2015, 2015
Short summary
Short summary
This work studied more than 10 years of measurements of aerosol optical depths (AODs) made for 50 sites of CARSNET compiled into a climatology of aerosol optical properties for China. It lets us see a detailed full-scale description of AOD observations over China. The results would benefit us a lot in comprehending the temporal and special distribution aerosol optical property over China. Also the data would be valuable to communities of aerosol satellite retrieval, modelling, etc.
Y.-L. Zhang, R.-J. Huang, I. El Haddad, K.-F. Ho, J.-J. Cao, Y. Han, P. Zotter, C. Bozzetti, K. R. Daellenbach, F. Canonaco, J. G. Slowik, G. Salazar, M. Schwikowski, J. Schnelle-Kreis, G. Abbaszade, R. Zimmermann, U. Baltensperger, A. S. H. Prévôt, and S. Szidat
Atmos. Chem. Phys., 15, 1299–1312, https://doi.org/10.5194/acp-15-1299-2015, https://doi.org/10.5194/acp-15-1299-2015, 2015
Short summary
Short summary
Source apportionment of fine carbonaceous aerosols using radiocarbon and other organic markers measurements during 2013 winter haze episodes was conducted at four megacities in China. Our results demonstrate that fossil emissions predominate EC with a mean contribution of 75±8%, whereas non-fossil sources account for 55±10% of OC; and the increment of TC on heavily polluted days was mainly driven by the increase of secondary OC from both fossil-fuel and non-fossil emissions.
C. Leng, Q. Zhang, D. Zhang, C. Xu, T. Cheng, R. Zhang, J. Tao, J. Chen, S. Zha, Y. Zhang, X. Li, L. Kong, and W. Gao
Atmos. Chem. Phys., 14, 12499–12512, https://doi.org/10.5194/acp-14-12499-2014, https://doi.org/10.5194/acp-14-12499-2014, 2014
C. Leng, Q. Zhang, J. Tao, H. Zhang, D. Zhang, C. Xu, X. Li, L. Kong, T. Cheng, R. Zhang, X. Yang, J. Chen, L. Qiao, S. Lou, H. Wang, and C. Chen
Atmos. Chem. Phys., 14, 11353–11365, https://doi.org/10.5194/acp-14-11353-2014, https://doi.org/10.5194/acp-14-11353-2014, 2014
B. Qu, J. Ming, S.-C. Kang, G.-S. Zhang, Y.-W. Li, C.-D. Li, S.-Y. Zhao, Z.-M. Ji, and J.-J. Cao
Atmos. Chem. Phys., 14, 11117–11128, https://doi.org/10.5194/acp-14-11117-2014, https://doi.org/10.5194/acp-14-11117-2014, 2014
J. Tao, J. Gao, L. Zhang, R. Zhang, H. Che, Z. Zhang, Z. Lin, J. Jing, J. Cao, and S.-C. Hsu
Atmos. Chem. Phys., 14, 8679–8699, https://doi.org/10.5194/acp-14-8679-2014, https://doi.org/10.5194/acp-14-8679-2014, 2014
S.-C. Hsu, G.-C. Gong, F.-K. Shiah, C.-C. Hung, S.-J. Kao, R. Zhang, W.-N. Chen, C.-C. Chen, C. C.-K. Chou, Y.-C. Lin, F.-J. Lin, and S.-H. Lin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-21433-2014, https://doi.org/10.5194/acpd-14-21433-2014, 2014
Revised manuscript has not been submitted
Z. J. Lin, Z. S. Zhang, L. Zhang, J. Tao, R. J. Zhang, J. J. Cao, S. J. Fan, and Y. H. Zhang
Atmos. Chem. Phys., 14, 7631–7644, https://doi.org/10.5194/acp-14-7631-2014, https://doi.org/10.5194/acp-14-7631-2014, 2014
R.-J. Huang, W.-B. Li, Y.-R. Wang, Q. Y. Wang, W. T. Jia, K.-F. Ho, J. J. Cao, G. H. Wang, X. Chen, I. EI Haddad, Z. X. Zhuang, X. R. Wang, A. S. H. Prévôt, C. D. O'Dowd, and T. Hoffmann
Atmos. Meas. Tech., 7, 2027–2035, https://doi.org/10.5194/amt-7-2027-2014, https://doi.org/10.5194/amt-7-2027-2014, 2014
J. J. Li, G. H. Wang, J. J. Cao, X. M. Wang, and R. J. Zhang
Atmos. Chem. Phys., 13, 11535–11549, https://doi.org/10.5194/acp-13-11535-2013, https://doi.org/10.5194/acp-13-11535-2013, 2013
R. Zhang, J. Jing, J. Tao, S.-C. Hsu, G. Wang, J. Cao, C. S. L. Lee, L. Zhu, Z. Chen, Y. Zhao, and Z. Shen
Atmos. Chem. Phys., 13, 7053–7074, https://doi.org/10.5194/acp-13-7053-2013, https://doi.org/10.5194/acp-13-7053-2013, 2013
L. Xing, T.-M. Fu, J. J. Cao, S. C. Lee, G. H. Wang, K. F. Ho, M.-C. Cheng, C.-F. You, and T. J. Wang
Atmos. Chem. Phys., 13, 4307–4318, https://doi.org/10.5194/acp-13-4307-2013, https://doi.org/10.5194/acp-13-4307-2013, 2013
Y. H. Lee, J.-F. Lamarque, M. G. Flanner, C. Jiao, D. T. Shindell, T. Berntsen, M. M. Bisiaux, J. Cao, W. J. Collins, M. Curran, R. Edwards, G. Faluvegi, S. Ghan, L. W. Horowitz, J. R. McConnell, J. Ming, G. Myhre, T. Nagashima, V. Naik, S. T. Rumbold, R. B. Skeie, K. Sudo, T. Takemura, F. Thevenon, B. Xu, and J.-H. Yoon
Atmos. Chem. Phys., 13, 2607–2634, https://doi.org/10.5194/acp-13-2607-2013, https://doi.org/10.5194/acp-13-2607-2013, 2013
J.-J. Cao, C.-S. Zhu, X.-X. Tie, F.-H. Geng, H.-M. Xu, S. S. H. Ho, G.-H. Wang, Y.-M. Han, and K.-F. Ho
Atmos. Chem. Phys., 13, 803–817, https://doi.org/10.5194/acp-13-803-2013, https://doi.org/10.5194/acp-13-803-2013, 2013
G. H. Wang, B. H. Zhou, C. L. Cheng, J. J. Cao, J. J. Li, J. J. Meng, J. Tao, R. J. Zhang, and P. Q. Fu
Atmos. Chem. Phys., 13, 819–835, https://doi.org/10.5194/acp-13-819-2013, https://doi.org/10.5194/acp-13-819-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Vertical aerosol particle exchange in the marine boundary layer estimated from helicopter-borne measurements in the Azores region
Circum-Antarctic abundance and properties of CCN and INPs
The ice-nucleating activity of African mineral dust in the Caribbean boundary layer
Biomass burning and marine aerosol processing over the southeast Atlantic Ocean: a TEM single-particle analysis
Volatility parameterization of ambient organic aerosols at a rural site of the North China Plain
Light absorption by brown carbon over the South-East Atlantic Ocean
Particle size distribution and particulate matter concentrations during synoptic and convective dust events in West Texas
Measurement of light-absorbing particles in surface snow of central and western Himalayan glaciers: spatial variability, radiative impacts, and potential source regions
Seasonal variations in fire conditions are important drivers in the trend of aerosol optical properties over the south-eastern Atlantic
Black carbon aerosol reductions during COVID-19 confinement quantified by aircraft measurements over Europe
Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere
Absorption enhancement of black carbon particles in a Mediterranean city and countryside: effect of particulate matter chemistry, ageing and trend analysis
Characterizing the hygroscopicity of growing particles in the Canadian Arctic summer
Measurement report: Distinct size dependence and diurnal variation in organic aerosol hygroscopicity, volatility, and cloud condensation nuclei activity at a rural site in the Pearl River Delta (PRD) region, China
Measurement report: Atmospheric new particle formation in a coastal agricultural site explained with binPMF analysis of nitrate CI-APi-TOF spectra
Characteristics and evolution of brown carbon in western United States wildfires
Reduced surface fine dust under droughts over the southeastern United States during summertime: observations and CMIP6 model simulations
Strong light scattering of highly oxygenated organic aerosols impacts significantly on visibility degradation
Measurement report: Spectral and statistical analysis of aerosol hygroscopic growth from multi-wavelength lidar measurements in Barcelona, Spain
The diurnal and seasonal variability of ice-nucleating particles at the High Altitude Station Jungfraujoch (3580 m a.s.l.), Switzerland
The impact of large-scale circulation on daily fine particulate matter (PM2.5) over major populated regions of China in winter
New particle formation in coastal New Zealand with a focus on open-ocean air masses
Measurement report: Vertical profiling of particle size distributions over Lhasa, Tibet – tethered balloon-based in situ measurements and source apportionment
Long- and short-term temporal variability in cloud condensation nuclei spectra over a wide supersaturation range in the Southern Great Plains site
Siberian Arctic black carbon: gas flaring and wildfire impact
Smoke in the river: an Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) case study
The impact of temperature inversions on black carbon and particle mass concentrations in a mountainous area
Measurement report: Interpretation of wide-range particulate matter size distributions in Delhi
Understanding aerosol microphysical properties from 10 years of data collected at Cabo Verde based on an unsupervised machine learning classification
Aerosol optical properties calculated from size distributions, filter samples and absorption photometer data at Dome C, Antarctica, and their relationships with seasonal cycles of sources
Measurement report: On the difference in aerosol hygroscopicity between high and low relative humidity conditions in the North China Plain
Observations of particle number size distributions and new particle formation in six Indian locations
Aerodynamic size-resolved composition and cloud condensation nuclei properties of aerosols in a Beijing suburban region
Meteorology impact on PM2.5 change over a receptor region in the regional transport of air pollutants: observational study of recent emission reductions in central China
Occurrence and growth of sub-50 nm aerosol particles in the Amazonian boundary layer
Measurement report: Ice-nucleating particles active ≥ −15 °C in free tropospheric air over western Europe
Columnar and surface urban aerosol in Moscow megacity according to measurements and simulations with COSMO-ART model
Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund
Unveiling atmospheric transport and mixing mechanisms of ice-nucleating particles over the Alps
Interaction between aerosol and thermodynamic stability within the planetary boundary layer during wintertime over the North China Plain: aircraft observation and WRF-Chem simulation
Frequent new particle formation at remote sites in the subboreal forest of North America
Characterizing the volatility and mixing state of ambient fine particles in the summer and winter of urban Beijing
Bimodal distribution of size-resolved particle effective density: results from a short campaign in a rural environment over the North China Plain
The vertical aerosol type distribution above Israel – 2 years of lidar observations at the coastal city of Haifa
Measurement report: Long-term changes in black carbon and aerosol optical properties from 2012 to 2020 in Beijing, China
Aerosol particle characteristics measured in the United Arab Emirates and their response to mixing in the boundary layer
First triple-wavelength lidar observations of depolarization and extinction-to-backscatter ratios of Saharan dust
Airborne observation during KORUS-AQ show aerosol optical depth are more spatially self-consistent than aerosol intensive properties
Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the southeastern Atlantic
Measurement report: Three years of size-resolved eddy-covariance particle number flux measurements in an urban environment
Janine Lückerath, Andreas Held, Holger Siebert, Michel Michalkow, and Birgit Wehner
Atmos. Chem. Phys., 22, 10007–10021, https://doi.org/10.5194/acp-22-10007-2022, https://doi.org/10.5194/acp-22-10007-2022, 2022
Short summary
Short summary
Three different methods were applied to estimate the vertical aerosol particle flux in the marine boundary layer (MBL) and between the MBL and free troposphere. For the first time, aerosol fluxes derived from these three methods were estimated and compared using airborne aerosol measurements using data from the ACORES field campaign in the northeastern Atlantic Ocean in July 2017. The amount of fluxes was small and directed up and down for different cases, but the methods were applicable.
Christian Tatzelt, Silvia Henning, André Welti, Andrea Baccarini, Markus Hartmann, Martin Gysel-Beer, Manuela van Pinxteren, Robin L. Modini, Julia Schmale, and Frank Stratmann
Atmos. Chem. Phys., 22, 9721–9745, https://doi.org/10.5194/acp-22-9721-2022, https://doi.org/10.5194/acp-22-9721-2022, 2022
Short summary
Short summary
We present the abundance and origin of cloud-relevant aerosol particles in the preindustral-like conditions of the Southern Ocean (SO) during austral summer. Cloud condensation nuclei (CCN) and ice-nucleating particles (INP) were measured during a circum-Antarctic scientific cruise with in situ instrumentation and offline filter measurements, respectively. Transport processes were found to play an equally important role as local sources for both the CCN and INP population of the SO.
Alexander D. Harrison, Daniel O'Sullivan, Michael P. Adams, Grace C. E. Porter, Edmund Blades, Cherise Brathwaite, Rebecca Chewitt-Lucas, Cassandra Gaston, Rachel Hawker, Ovid O. Krüger, Leslie Neve, Mira L. Pöhlker, Christopher Pöhlker, Ulrich Pöschl, Alberto Sanchez-Marroquin, Andrea Sealy, Peter Sealy, Mark D. Tarn, Shanice Whitehall, James B. McQuaid, Kenneth S. Carslaw, Joseph M. Prospero, and Benjamin J. Murray
Atmos. Chem. Phys., 22, 9663–9680, https://doi.org/10.5194/acp-22-9663-2022, https://doi.org/10.5194/acp-22-9663-2022, 2022
Short summary
Short summary
The formation of ice in clouds fundamentally alters cloud properties; hence it is important we understand the special aerosol particles that can nucleate ice when immersed in supercooled cloud droplets. In this paper we show that African desert dust that has travelled across the Atlantic to the Caribbean nucleates ice much less well than we might have expected.
Caroline Dang, Michal Segal-Rozenhaimer, Haochi Che, Lu Zhang, Paola Formenti, Jonathan Taylor, Amie Dobracki, Sara Purdue, Pui-Shan Wong, Athanasios Nenes, Arthur Sedlacek III, Hugh Coe, Jens Redemann, Paquita Zuidema, Steven Howell, and James Haywood
Atmos. Chem. Phys., 22, 9389–9412, https://doi.org/10.5194/acp-22-9389-2022, https://doi.org/10.5194/acp-22-9389-2022, 2022
Short summary
Short summary
Transmission electron microscopy was used to analyze aged African smoke particles and how the smoke interacts with the marine atmosphere. We found that the volatility of organic aerosol increases with biomass burning plume age, that black carbon is often mixed with potassium salts and that the marine atmosphere can incorporate Na and Cl into smoke particles. Marine salts are more processed when mixed with smoke plumes, and there are interesting Cl-rich yet Na-absent marine particles.
Siman Ren, Lei Yao, Yuwei Wang, Gan Yang, Yiliang Liu, Yueyang Li, Yiqun Lu, Lihong Wang, and Lin Wang
Atmos. Chem. Phys., 22, 9283–9297, https://doi.org/10.5194/acp-22-9283-2022, https://doi.org/10.5194/acp-22-9283-2022, 2022
Short summary
Short summary
We improved the empirical functions between volatility and chemical formulas of organic aerosols based on lab experiments and field observations. It was found that organic compounds in ambient aerosols can be divided into two groups according to their O / C ratios and that there should be specialized volatility parameterizations for different O / C organic compounds.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Arthur J. Sedlacek III, Ernie R. Lewis, Amie Dobracki, Jenny P. S. Wong, Paola Formenti, Steven G. Howell, and Athanasios Nenes
Atmos. Chem. Phys., 22, 9199–9213, https://doi.org/10.5194/acp-22-9199-2022, https://doi.org/10.5194/acp-22-9199-2022, 2022
Short summary
Short summary
Widespread biomass burning (BB) events occur annually in Africa and contribute ~ 1 / 3 of global BB emissions, which contain a large family of light-absorbing organics, known as brown carbon (BrC), whose absorption of incident radiation is difficult to estimate, leading to large uncertainties in the global radiative forcing estimation. This study quantifies the BrC absorption of aged BB particles and highlights the potential presence of absorbing iron oxides in this climatically important region.
Karin Ardon-Dryer and Mary C. Kelley
Atmos. Chem. Phys., 22, 9161–9173, https://doi.org/10.5194/acp-22-9161-2022, https://doi.org/10.5194/acp-22-9161-2022, 2022
Short summary
Short summary
Changes in the particle size distribution and particulate matter concentrations during different dust events in West Texas were examined. Analysis based on different timescales showed that current common methods used to evaluate the impact of dust events on air quality will not capture the true impact of short (convective) dust events and, therefore, do not provide an insightful understanding of their impact on the environment and human health.
Chaman Gul, Shichang Kang, Siva Praveen Puppala, Xiaokang Wu, Cenlin He, Yangyang Xu, Inka Koch, Sher Muhammad, Rajesh Kumar, and Getachew Dubache
Atmos. Chem. Phys., 22, 8725–8737, https://doi.org/10.5194/acp-22-8725-2022, https://doi.org/10.5194/acp-22-8725-2022, 2022
Short summary
Short summary
This work aims to understand concentrations, spatial variability, and potential source regions of light-absorbing impurities (black carbon aerosols, dust particles, and organic carbon) in the surface snow of central and western Himalayan glaciers and their impact on snow albedo and radiative forcing.
Haochi Che, Michal Segal-Rozenhaimer, Lu Zhang, Caroline Dang, Paquita Zuidema, Arthur J. Sedlacek III, Xiaoye Zhang, and Connor Flynn
Atmos. Chem. Phys., 22, 8767–8785, https://doi.org/10.5194/acp-22-8767-2022, https://doi.org/10.5194/acp-22-8767-2022, 2022
Short summary
Short summary
A 17-month in situ study on Ascension Island found low single-scattering albedo and strong absorption enhancement of the marine boundary layer aerosols during biomass burnings on the African continent, along with apparent patterns of regular monthly variability. We further discuss the characteristics and drivers behind these changes and find that biomass burning conditions in Africa may be the main factor influencing the optical properties of marine boundary aerosols.
Ovid O. Krüger, Bruna A. Holanda, Sourangsu Chowdhury, Andrea Pozzer, David Walter, Christopher Pöhlker, Maria Dolores Andrés Hernández, John P. Burrows, Christiane Voigt, Jos Lelieveld, Johannes Quaas, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 22, 8683–8699, https://doi.org/10.5194/acp-22-8683-2022, https://doi.org/10.5194/acp-22-8683-2022, 2022
Short summary
Short summary
The abrupt reduction in human activities during the first COVID-19 lockdown created unprecedented atmospheric conditions. We took the opportunity to quantify changes in black carbon (BC) as a major anthropogenic air pollutant. Therefore, we measured BC on board a research aircraft over Europe during the lockdown and compared the results to measurements from 2017. With model simulations we account for different weather conditions and find a lockdown-related decrease in BC of 41 %.
Lisa J. Beck, Siegfried Schobesberger, Heikki Junninen, Janne Lampilahti, Antti Manninen, Lubna Dada, Katri Leino, Xu-Cheng He, Iida Pullinen, Lauriane L. J. Quéléver, Anna Franck, Pyry Poutanen, Daniela Wimmer, Frans Korhonen, Mikko Sipilä, Mikael Ehn, Douglas R. Worsnop, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 8547–8577, https://doi.org/10.5194/acp-22-8547-2022, https://doi.org/10.5194/acp-22-8547-2022, 2022
Short summary
Short summary
The presented article introduces an overview of atmospheric ions and their composition above the boreal forest. We provide the results of an extensive airborne measurement campaign with an air ion mass spectrometer and particle measurements, showing their diurnal evolution within the boundary layer and free troposphere. In addition, we compare the airborne dataset with the co-located data from the ground at SMEAR II station, Finland.
Jesús Yus-Díez, Marta Via, Andrés Alastuey, Angeliki Karanasiou, María Cruz Minguillón, Noemí Perez, Xavier Querol, Cristina Reche, Matic Ivančič, Martin Rigler, and Marco Pandolfi
Atmos. Chem. Phys., 22, 8439–8456, https://doi.org/10.5194/acp-22-8439-2022, https://doi.org/10.5194/acp-22-8439-2022, 2022
Short summary
Short summary
This study presents the absorption enhancement of internally and externally mixed black carbon (BC) particles in a Mediterranean city and countryside. We showed the importance of secondary organic aerosols (SOAs) and particle ageing by increasing the BC absorption enhancement. We performed a trend analysis on the absorption enhancement. We found a positive trend of the absorption enhancement at the regional station in summer driven by the increase over time of the relative contribution of SOA.
Rachel Y.-W. Chang, Jonathan P. D. Abbatt, Matthew C. Boyer, Jai Prakash Chaubey, and Douglas B. Collins
Atmos. Chem. Phys., 22, 8059–8071, https://doi.org/10.5194/acp-22-8059-2022, https://doi.org/10.5194/acp-22-8059-2022, 2022
Short summary
Short summary
During summer 2016, the ability of newly formed particles to turn into droplets was measured in the Canadian Arctic. Our observations suggest that these small particles were growing by the condensation of organic vapours likely coming from the surrounding open waters. These particles grew large enough that they could form cloud droplets and therefore affect the earth’s radiation budget. These results are relevant as the Arctic summer rapidly warms with climate change.
Mingfu Cai, Shan Huang, Baoling Liang, Qibin Sun, Li Liu, Bin Yuan, Min Shao, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Zelong Wang, Duohong Chen, Haobo Tan, Hanbin Xu, Fei Li, Xuejiao Deng, Tao Deng, Jiaren Sun, and Jun Zhao
Atmos. Chem. Phys., 22, 8117–8136, https://doi.org/10.5194/acp-22-8117-2022, https://doi.org/10.5194/acp-22-8117-2022, 2022
Short summary
Short summary
This study investigated the size dependence and diurnal variation in organic aerosol hygroscopicity, volatility, and cloud condensation nuclei (CCN) activity. We found that the physical properties of OA could vary in a large range at different particle sizes and affected the number concentration of CCN (NCCN) at all supersaturations. Our results highlight the importance of evaluating the atmospheric evolution processes of OA at different size ranges and their impact on climate effects.
Miska Olin, Magdalena Okuljar, Matti P. Rissanen, Joni Kalliokoski, Jiali Shen, Lubna Dada, Markus Lampimäki, Yusheng Wu, Annalea Lohila, Jonathan Duplissy, Mikko Sipilä, Tuukka Petäjä, Markku Kulmala, and Miikka Dal Maso
Atmos. Chem. Phys., 22, 8097–8115, https://doi.org/10.5194/acp-22-8097-2022, https://doi.org/10.5194/acp-22-8097-2022, 2022
Short summary
Short summary
Atmospheric new particle formation is an important source of the total particle number concentration in the atmosphere. Several parameters for predicting new particle formation events have been suggested before, but the results have been inconclusive. This study proposes an another predicting parameter, related to a specific type of highly oxidized organic molecules, especially for similar locations to the measurement site in this study, which was a coastal agricultural site in Finland.
Linghan Zeng, Jack Dibb, Eric Scheuer, Joseph M. Katich, Joshua P. Schwarz, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Carsten Warneke, Anne E. Perring, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Richard H. Moore, Elizabeth B. Wiggins, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Lu Xu, and Rodney J. Weber
Atmos. Chem. Phys., 22, 8009–8036, https://doi.org/10.5194/acp-22-8009-2022, https://doi.org/10.5194/acp-22-8009-2022, 2022
Short summary
Short summary
Wildfires emit aerosol particles containing brown carbon material that affects visibility and global climate and is toxic. Brown carbon is poorly characterized due to measurement limitations, and its evolution in the atmosphere is not well known. We report on aircraft measurements of brown carbon from large wildfires in the western United States. We compare two methods for measuring brown carbon and study the evolution of brown carbon in the smoke as it moved away from the burning regions.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 22, 7843–7859, https://doi.org/10.5194/acp-22-7843-2022, https://doi.org/10.5194/acp-22-7843-2022, 2022
Short summary
Short summary
Fine dust is an important component of PM2.5 and can be largely modulated by droughts. In contrast to the increase in dust in the southwest USA where major dust sources are located, dust in the southeast USA is affected more by long-range transport from Africa and decreases under droughts. Both the transport and emissions of African dust are weakened when the southeast USA is under droughts, which reveals how regional-scale droughts can influence aerosol abundance through long-range transport.
Li Liu, Ye Kuang, Miaomiao Zhai, Biao Xue, Yao He, Jun Tao, Biao Luo, Wanyun Xu, Jiangchuan Tao, Changqin Yin, Fei Li, Hanbing Xu, Tao Deng, Xuejiao Deng, Haobo Tan, and Min Shao
Atmos. Chem. Phys., 22, 7713–7726, https://doi.org/10.5194/acp-22-7713-2022, https://doi.org/10.5194/acp-22-7713-2022, 2022
Short summary
Short summary
Using simultaneous measurements of a humidified nephelometer system and an aerosol chemical speciation monitor in winter in Guangzhou, the strongest scattering ability of more oxidized oxygenated organic aerosol (MOOA) among aerosol components considering their dry-state scattering ability and water uptake ability was revealed, leading to large impacts of MOOA on visibility degradation. This has important implications for visibility improvement in China and aerosol radiative effect simulation.
Michaël Sicard, Daniel Camilo Fortunato dos Santos Oliveira, Constantino Muñoz-Porcar, Cristina Gil-Díaz, Adolfo Comerón, Alejandro Rodríguez-Gómez, and Federico Dios Otín
Atmos. Chem. Phys., 22, 7681–7697, https://doi.org/10.5194/acp-22-7681-2022, https://doi.org/10.5194/acp-22-7681-2022, 2022
Short summary
Short summary
Atmospheric particles can absorb water vapor, and this water uptake may change their properties, e.g., their size. In the coastal region of Barcelona, Spain, we observe that (1) smaller particles absorb more water vapor, in relative terms, than larger particles and (2) the particle capacity to absorb water vapor has no annual tendency, probably because the site background is quite constant (urban + marine aerosol regime).
Cyril Brunner, Benjamin T. Brem, Martine Collaud Coen, Franz Conen, Martin Steinbacher, Martin Gysel-Beer, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 7557–7573, https://doi.org/10.5194/acp-22-7557-2022, https://doi.org/10.5194/acp-22-7557-2022, 2022
Short summary
Short summary
Microscopic particles called ice-nucleating particles (INPs) are essential for ice crystals to form in clouds. INPs are a tiny proportion of atmospheric aerosol, and their abundance is poorly constrained. We study how the concentration of INPs changes diurnally and seasonally at a mountaintop station in central Europe. Unsurprisingly, a diurnal cycle is only found when considering air masses that have had lower-altitude ground contact. The highest INP concentrations occur in spring.
Zixuan Jia, Ruth M. Doherty, Carlos Ordóñez, Chaofan Li, Oliver Wild, Shipra Jain, and Xiao Tang
Atmos. Chem. Phys., 22, 6471–6487, https://doi.org/10.5194/acp-22-6471-2022, https://doi.org/10.5194/acp-22-6471-2022, 2022
Short summary
Short summary
This study investigates the modulation of daily PM2.5 over three major populated regions in China by regional meteorology and large-scale circulation during winter. These results demonstrate the benefits of considering the large-scale circulation for air quality studies. The novel circulation indices proposed here can explain a considerable fraction of the day-to-day variability of PM2.5 and can be combined with regional meteorology to improve our capability to predict the variability of PM2.5.
Maija Peltola, Clémence Rose, Jonathan V. Trueblood, Sally Gray, Mike Harvey, and Karine Sellegri
Atmos. Chem. Phys., 22, 6231–6254, https://doi.org/10.5194/acp-22-6231-2022, https://doi.org/10.5194/acp-22-6231-2022, 2022
Short summary
Short summary
Despite the importance of marine aerosol measurements for constraining climate models, these measurements are scarce. We measured the aerosol particle number size distribution in coastal New Zealand over a total period of 10 months. This paper analyses the aerosol properties at the site, with a special focus on new particle formation and marine air masses. New particle formation was observed frequently, but in marine air masses it did not follow traditional event criteria.
Liang Ran, Zhaoze Deng, Yunfei Wu, Jiwei Li, Zhixuan Bai, Ye Lu, Deqing Zhuoga, and Jianchun Bian
Atmos. Chem. Phys., 22, 6217–6229, https://doi.org/10.5194/acp-22-6217-2022, https://doi.org/10.5194/acp-22-6217-2022, 2022
Short summary
Short summary
The Tibetan Plateau (TP), the highest plateau in the world, plays a crucial role in regional and global climate. To examine the fingerprint left by human activities on the originally remote atmosphere, size distributions of particles from the ground to about 800 m were measured for the first time in summer 2020 in Lhasa, one of a few urbanized cities on TP. Potential sources of particles at different heights were explored. The contribution of emissions from religious activities was highlighted.
Russell J. Perkins, Peter J. Marinescu, Ezra J. T. Levin, Don R. Collins, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 22, 6197–6215, https://doi.org/10.5194/acp-22-6197-2022, https://doi.org/10.5194/acp-22-6197-2022, 2022
Short summary
Short summary
We used 5 years (2009–2013) of aerosol and cloud condensation nuclei (CCN) data from a total of seven instruments housed at the Southern Great Plains site, which were merged into a quality-controlled, continuous dataset of CCN spectra at ~45 min resolution. The data cover all seasons, are representative of a rural, agricultural mid-continental site, and are useful for model initialization and validation. Our analysis of this dataset focuses on seasonal and hourly variability.
Olga B. Popovicheva, Nikolaos Evangeliou, Vasilii O. Kobelev, Marina A. Chichaeva, Konstantinos Eleftheriadis, Asta Gregorič, and Nikolay S. Kasimov
Atmos. Chem. Phys., 22, 5983–6000, https://doi.org/10.5194/acp-22-5983-2022, https://doi.org/10.5194/acp-22-5983-2022, 2022
Short summary
Short summary
Measurements of black carbon (BC) combined with atmospheric transport modeling reveal that gas flaring from oil and gas extraction in Kazakhstan, Volga-Ural, Komi, Nenets and western Siberia contributes the largest share of surface BC in the Russian Arctic dominating over domestic, industrial and traffic sectors. Pollution episodes show an increasing trend in concentration levels and frequency as the station is in the Siberian gateway of the highest anthropogenic pollution to the Russian Arctic.
Cyrille Flamant, Marco Gaetani, Jean-Pierre Chaboureau, Patrick Chazette, Juan Cuesta, Stuart John Piketh, and Paola Formenti
Atmos. Chem. Phys., 22, 5701–5724, https://doi.org/10.5194/acp-22-5701-2022, https://doi.org/10.5194/acp-22-5701-2022, 2022
Short summary
Short summary
Rivers of smoke extend from tropical southern Africa towards the Indian Ocean during the winter fire season, controlled by the interaction of tropical easterly waves, and westerly waves at mid latitudes. During the AEROCLO-sA field campaign in 2017, a river of smoke was directly observed over Namibia. In this paper, the evolution and atmospheric drivers of the river of smoke are described, and the role of a mid-latitude cut-off low in lifting the smoke to the upper troposphere is highlighted.
Kristina Glojek, Griša Močnik, Honey Dawn C. Alas, Andrea Cuesta-Mosquera, Luka Drinovec, Asta Gregorič, Matej Ogrin, Kay Weinhold, Irena Ježek, Thomas Müller, Martin Rigler, Maja Remškar, Dominik van Pinxteren, Hartmut Herrmann, Martina Ristorini, Maik Merkel, Miha Markelj, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 5577–5601, https://doi.org/10.5194/acp-22-5577-2022, https://doi.org/10.5194/acp-22-5577-2022, 2022
Short summary
Short summary
A pilot study to determine the emissions of wood burning under
real-world laboratoryconditions was conducted. We found that measured black carbon (eBC) and particulate matter (PM) in rural shallow terrain depressions with residential wood burning could be much greater than predicted by models. The exceeding levels are a cause for concern since similar conditions can be expected in numerous hilly and mountainous regions across Europe, where approximately 20 % of the total population lives.
Ülkü Alver Şahin, Roy M. Harrison, Mohammed S. Alam, David C. S. Beddows, Dimitrios Bousiotis, Zongbo Shi, Leigh R. Crilley, William Bloss, James Brean, Isha Khanna, and Rulan Verma
Atmos. Chem. Phys., 22, 5415–5433, https://doi.org/10.5194/acp-22-5415-2022, https://doi.org/10.5194/acp-22-5415-2022, 2022
Short summary
Short summary
Wide-range particle size spectra have been measured in three seasons in Delhi and are interpreted in terms of sources and processes. Condensational growth is a major feature of the fine fraction, and a coarse fraction contributes substantially – but only in summer.
Xianda Gong, Heike Wex, Thomas Müller, Silvia Henning, Jens Voigtländer, Alfred Wiedensohler, and Frank Stratmann
Atmos. Chem. Phys., 22, 5175–5194, https://doi.org/10.5194/acp-22-5175-2022, https://doi.org/10.5194/acp-22-5175-2022, 2022
Short summary
Short summary
We conducted 10 yr measurements to characterize the atmospheric aerosol at Cabo Verde. An unsupervised machine learning algorithm, K-means, was implemented to study the aerosol types. Cloud condensation nuclei number concentrations during dust periods were 2.5 times higher than marine periods. The long-term data sets, together with the aerosol classification, can be used as a basis to improve understanding of annual cycles of aerosol, and aerosol-cloud interactions in the North Atlantic.
Aki Virkkula, Henrik Grythe, John Backman, Tuukka Petäjä, Maurizio Busetto, Christian Lanconelli, Angelo Lupi, Silvia Becagli, Rita Traversi, Mirko Severi, Vito Vitale, Patrick Sheridan, and Elisabeth Andrews
Atmos. Chem. Phys., 22, 5033–5069, https://doi.org/10.5194/acp-22-5033-2022, https://doi.org/10.5194/acp-22-5033-2022, 2022
Short summary
Short summary
Optical properties of surface aerosols at Dome C, Antarctica, in 2007–2013 and their potential source areas are presented. The equivalent black carbon (eBC) mass concentrations were compared with eBC measured at three other Antarctic sites: the South Pole (SPO) and two coastal sites, Neumayer and Syowa. Transport analysis suggests that South American BC emissions are the largest contributor to eBC at Dome C.
Jingnan Shi, Juan Hong, Nan Ma, Qingwei Luo, Yao He, Hanbing Xu, Haobo Tan, Qiaoqiao Wang, Jiangchuan Tao, Yaqing Zhou, Shuang Han, Long Peng, Linhong Xie, Guangsheng Zhou, Wanyun Xu, Yele Sun, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 4599–4613, https://doi.org/10.5194/acp-22-4599-2022, https://doi.org/10.5194/acp-22-4599-2022, 2022
Short summary
Short summary
In this study, we investigated the hygroscopicity of submicron aerosols at a rural site in the North China Plain during the winter of 2018, using a HTDMA and a CV-ToF-ACSM. We observed differences in aerosol hygroscopicity during two distinct episodes with different primary emissions and secondary aerosol formation processes. These results provide an improved understanding of the complex influence of sources and aerosol evolution processes on their hygroscopicity.
Mathew Sebastian, Sobhan Kumar Kompalli, Vasudevan Anil Kumar, Sandhya Jose, S. Suresh Babu, Govindan Pandithurai, Sachchidanand Singh, Rakesh K. Hooda, Vijay K. Soni, Jeffrey R. Pierce, Ville Vakkari, Eija Asmi, Daniel M. Westervelt, Antti-Pekka Hyvärinen, and Vijay P. Kanawade
Atmos. Chem. Phys., 22, 4491–4508, https://doi.org/10.5194/acp-22-4491-2022, https://doi.org/10.5194/acp-22-4491-2022, 2022
Short summary
Short summary
Characteristics of particle number size distributions and new particle formation in six locations in India were analyzed. New particle formation occurred frequently during the pre-monsoon (spring) season and it significantly modulates the shape of the particle number size distributions. The contribution of newly formed particles to cloud condensation nuclei concentrations was ~3 times higher in urban locations than in mountain background locations.
Chenjie Yu, Dantong Liu, Kang Hu, Ping Tian, Yangzhou Wu, Delong Zhao, Huihui Wu, Dawei Hu, Wenbo Guo, Qiang Li, Mengyu Huang, Deping Ding, and James D. Allan
Atmos. Chem. Phys., 22, 4375–4391, https://doi.org/10.5194/acp-22-4375-2022, https://doi.org/10.5194/acp-22-4375-2022, 2022
Short summary
Short summary
In this study, we applied a new technique to investigate the aerosol properties on both a mass and number basis and CCN abilities in Beijing suburban regions. The size-resolved aerosol chemical compositions and CCN activation measurement enable a detailed analysis of BC-containing particle hygroscopicity and its size-dependent contribution to the CCN activation. The results presented in this study will affect future models and human health studies.
Xiaoyun Sun, Tianliang Zhao, Yongqing Bai, Shaofei Kong, Huang Zheng, Weiyang Hu, Xiaodan Ma, and Jie Xiong
Atmos. Chem. Phys., 22, 3579–3593, https://doi.org/10.5194/acp-22-3579-2022, https://doi.org/10.5194/acp-22-3579-2022, 2022
Short summary
Short summary
This study revealed the impact of anthropogenic emissions and meteorological conditions on PM2.5 decline in the regional transport of air pollutants over a receptor region in central China. The meteorological drivers led to upwind accelerating and downward offsetting of the effects of emission reductions over the receptor region in regional PM2.5 transport, and the contribution of gaseous precursor emissions to PM2.5 pollution was enhanced with reduced anthropogenic emissions in recent years.
Marco A. Franco, Florian Ditas, Leslie A. Kremper, Luiz A. T. Machado, Meinrat O. Andreae, Alessandro Araújo, Henrique M. J. Barbosa, Joel F. de Brito, Samara Carbone, Bruna A. Holanda, Fernando G. Morais, Janaína P. Nascimento, Mira L. Pöhlker, Luciana V. Rizzo, Marta Sá, Jorge Saturno, David Walter, Stefan Wolff, Ulrich Pöschl, Paulo Artaxo, and Christopher Pöhlker
Atmos. Chem. Phys., 22, 3469–3492, https://doi.org/10.5194/acp-22-3469-2022, https://doi.org/10.5194/acp-22-3469-2022, 2022
Short summary
Short summary
In Central Amazonia, new particle formation in the planetary boundary layer is rare. Instead, there is the appearance of sub-50 nm aerosols with diameters larger than about 20 nm that eventually grow to cloud condensation nuclei size range. Here, 254 growth events were characterized which have higher predominance in the wet season. About 70 % of them showed direct relation to convective downdrafts, while 30 % occurred partly under clear-sky conditions, evidencing still unknown particle sources.
Franz Conen, Annika Einbock, Claudia Mignani, and Christoph Hüglin
Atmos. Chem. Phys., 22, 3433–3444, https://doi.org/10.5194/acp-22-3433-2022, https://doi.org/10.5194/acp-22-3433-2022, 2022
Short summary
Short summary
Above western Europe, ice typically starts to form in clouds a few kilometres above the ground if suitable aerosol particles are present. In air masses typical for that altitude, we found that such particles most likely originate from bacteria and fungi living on plants. Occasional Saharan dust intrusions seem to contribute little to the number concentration of particles able to freeze cloud droplets between 0°C and −15°C.
Natalia Chubarova, Elizaveta Androsova, Alexander Kirsanov, Olga Popovicheva, Bernhard Vogel, Heike Vogel, and Gdaliy Rivin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-83, https://doi.org/10.5194/acp-2022-83, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
The effects of urban aerosol pollution in Moscow megacity were analyzed using COSMO-ART chemical transport model and intensive measurement campaigns. We show that urban aerosol comprises about 15–20 % of columnar aerosol content consisting mainly of fine aerosol mode. Black Carbon (BC) fraction is about 5 %, depending on particle dispersion intensity (IPD). BC fraction low value explains weak absorbing properties of the Moscow atmosphere. The IPD also defines daily cycle of urban aerosol species.
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
Jörg Wieder, Claudia Mignani, Mario Schär, Lucie Roth, Michael Sprenger, Jan Henneberger, Ulrike Lohmann, Cyril Brunner, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 3111–3130, https://doi.org/10.5194/acp-22-3111-2022, https://doi.org/10.5194/acp-22-3111-2022, 2022
Short summary
Short summary
We investigate the variation in ice-nucleating particles (INPs) relevant for primary ice formation in mixed-phased clouds over the Alps based on simultaneous in situ observations at a mountaintop and a nearby high valley (1060 m height difference). In most cases, advection from the surrounding lower regions was responsible for changes in INP concentration, causing a diurnal cycle at the mountaintop. Our study underlines the importance of the planetary boundary layer as an INP reserve.
Hao Luo, Li Dong, Yichen Chen, Yuefeng Zhao, Delong Zhao, Mengyu Huang, Deping Ding, Jiayuan Liao, Tian Ma, Maohai Hu, and Yong Han
Atmos. Chem. Phys., 22, 2507–2524, https://doi.org/10.5194/acp-22-2507-2022, https://doi.org/10.5194/acp-22-2507-2022, 2022
Short summary
Short summary
Aerosol–planetary boundary layer (PBL) interaction is a key mechanism for stabilizing the atmosphere and exacerbating surface air pollution. Using aircraft measurements and WRF-Chem simulations, we find that the aerosol–PBL interaction of different aerosols under contrasting synoptic patterns, PBL structures, and aerosol vertical distributions vary significantly. We attempt to determine which pollutants to target in different synoptic conditions to attain more precise air pollution control.
Meinrat O. Andreae, Tracey W. Andreae, Florian Ditas, and Christopher Pöhlker
Atmos. Chem. Phys., 22, 2487–2505, https://doi.org/10.5194/acp-22-2487-2022, https://doi.org/10.5194/acp-22-2487-2022, 2022
Short summary
Short summary
Atmospheric aerosol particles are key players in the Earth’s climate system, but there is still considerable uncertainty about where and how these particles are initially formed. We present the first study of new particle formation (NPF) at a pristine site in a subboreal forest region of North America. Our data suggest that, in this environment, there is frequent NPF from biogenic organic precursor compounds, which was likely the predominant source of particles in the preindustrial environment.
Lu Chen, Fang Zhang, Don Collins, Jingye Ren, Jieyao Liu, Sihui Jiang, and Zhanqing Li
Atmos. Chem. Phys., 22, 2293–2307, https://doi.org/10.5194/acp-22-2293-2022, https://doi.org/10.5194/acp-22-2293-2022, 2022
Short summary
Short summary
Understanding the volatility and mixing state of atmospheric aerosols is important for elucidating their formation. Here, the size-resolved volatility of fine particles is characterized using field measurements. On average, the particles are more volatile in the summer. The retrieved mixing state shows that black carbon (BC)-containing particles dominate and contribute 67–77 % toward the total number concentration in the winter, while the non-BC particles accounted for 52–69 % in the summer.
Yaqing Zhou, Nan Ma, Qiaoqiao Wang, Zhibin Wang, Chunrong Chen, Jiangchuan Tao, Juan Hong, Long Peng, Yao He, Linhong Xie, Shaowen Zhu, Yuxuan Zhang, Guo Li, Wanyun Xu, Peng Cheng, Uwe Kuhn, Guangsheng Zhou, Pingqing Fu, Qiang Zhang, Hang Su, and Yafang Cheng
Atmos. Chem. Phys., 22, 2029–2047, https://doi.org/10.5194/acp-22-2029-2022, https://doi.org/10.5194/acp-22-2029-2022, 2022
Short summary
Short summary
This study characterizes size-resolved particle effective densities and their evolution associated with emissions and aging processes in a rural area of the North China Plain. Particle effective density exhibits a high-frequency bimodal distribution, and two density modes exhibit opposite trends with increasing particle size. SIA and BC mass fractions are key factors of particle effective density, and a value of 0.6 g cm−3 is appropriate to represent BC effective density in bulk particles.
Birgit Heese, Athena Augusta Floutsi, Holger Baars, Dietrich Althausen, Julian Hofer, Alina Herzog, Silke Mewes, Martin Radenz, and Yoav Y. Schechner
Atmos. Chem. Phys., 22, 1633–1648, https://doi.org/10.5194/acp-22-1633-2022, https://doi.org/10.5194/acp-22-1633-2022, 2022
Short summary
Short summary
The aerosol distribution over Haifa, Israel, was measured for 2 years by a laser-based vertically resolved measurement technique called lidar. From these data, the aerosol types and their percentages of the observed aerosol mixtures were identified in terms of their size and shape. We found mostly desert dust from the surrounding deserts and sea salt from the close-by Mediterranean Sea. But aerosols from anthropogenic and industrial pollution from local and far away sources were also detected.
Jiaxing Sun, Zhe Wang, Wei Zhou, Conghui Xie, Cheng Wu, Chun Chen, Tingting Han, Qingqing Wang, Zhijie Li, Jie Li, Pingqing Fu, Zifa Wang, and Yele Sun
Atmos. Chem. Phys., 22, 561–575, https://doi.org/10.5194/acp-22-561-2022, https://doi.org/10.5194/acp-22-561-2022, 2022
Short summary
Short summary
We analyzed 9-year measurements of BC and aerosol optical properties from 2012 to 2020 in Beijing, China. Our results showed large reductions in BC and light extinction coefficient due to the Clean Air Action Plan. As a response, both SSA and mass extinction efficiency (MEE) showed considerable increases, demonstrating a future challenge in visibility improvement. The primary and secondary BrC was also separated and quantified, and the changes in radiative forcing of BC and BrC were estimated.
Jutta Kesti, John Backman, Ewan J. O'Connor, Anne Hirsikko, Eija Asmi, Minna Aurela, Ulla Makkonen, Maria Filioglou, Mika Komppula, Hannele Korhonen, and Heikki Lihavainen
Atmos. Chem. Phys., 22, 481–503, https://doi.org/10.5194/acp-22-481-2022, https://doi.org/10.5194/acp-22-481-2022, 2022
Short summary
Short summary
In this study we combined aerosol particle measurements at the surface with a scanning Doppler lidar providing vertical profiles of the atmosphere to study the effect of different boundary layer conditions on aerosol particle properties in the understudied Arabian Peninsula region. The instrumentation used in this study enabled us to identify periods when pollution from remote sources was mixed down to the surface and initiated new particle formation in the growing boundary layer.
Moritz Haarig, Albert Ansmann, Ronny Engelmann, Holger Baars, Carlos Toledano, Benjamin Torres, Dietrich Althausen, Martin Radenz, and Ulla Wandinger
Atmos. Chem. Phys., 22, 355–369, https://doi.org/10.5194/acp-22-355-2022, https://doi.org/10.5194/acp-22-355-2022, 2022
Short summary
Short summary
The irregular shape of dust particles makes it difficult to treat them correctly in optical models. Atmospheric measurements of dust optical properties are therefore of great importance. The present study increases the space of observed parameters from 355 and 532 nm towards 1064 nm, which is of special importance for large dust particles. The lidar ratio influenced by mineralogy and the depolarization ratio influenced by shape are measured for the first time at all three wavelengths.
Samuel E. LeBlanc, Michal Segal-Rozenhaimer, Jens Redemann, Connor J. Flynn, Roy R. Johnson, Stephen E. Dunagan, Robert Dahlgren, Jhoon Kim, Myungje Choi, Arlindo M. da Silva, Patricia Castellanos, Qian Tan, Luke Ziemba, Kenneth Lee Thornhill, and Meloë S. Kacenelenbogen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1012, https://doi.org/10.5194/acp-2021-1012, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Airborne observations of atmospheric particles and pollution over Korea during a field campaign in May–June 2016 showed that the smallest atmospheric particles are present in the lowest 2 km of the atmosphere. The aerosol size is less repeatable over distances than their optical thickness. We show this with remote sensing (4STAR), in-situ (LARGE) observations, satellite measurements (GOCI), and modeled properties (MERRA-2), and it is contrary to current understanding.
Sarah J. Doherty, Pablo E. Saide, Paquita Zuidema, Yohei Shinozuka, Gonzalo A. Ferrada, Hamish Gordon, Marc Mallet, Kerry Meyer, David Painemal, Steven G. Howell, Steffen Freitag, Amie Dobracki, James R. Podolske, Sharon P. Burton, Richard A. Ferrare, Calvin Howes, Pierre Nabat, Gregory R. Carmichael, Arlindo da Silva, Kristina Pistone, Ian Chang, Lan Gao, Robert Wood, and Jens Redemann
Atmos. Chem. Phys., 22, 1–46, https://doi.org/10.5194/acp-22-1-2022, https://doi.org/10.5194/acp-22-1-2022, 2022
Short summary
Short summary
Between July and October, biomass burning smoke is advected over the southeastern Atlantic Ocean, leading to climate forcing. Model calculations of forcing by this plume vary significantly in both magnitude and sign. This paper compares aerosol and cloud properties observed during three NASA ORACLES field campaigns to the same in four models. It quantifies modeled biases in properties key to aerosol direct radiative forcing and evaluates how these biases propagate to biases in forcing.
Agnes Straaten and Stephan Weber
Atmos. Chem. Phys., 21, 18707–18726, https://doi.org/10.5194/acp-21-18707-2021, https://doi.org/10.5194/acp-21-18707-2021, 2021
Short summary
Short summary
Cities show high concentrations of ultrafine particles due to multiple emission sources such as traffic and industry. To analyse turbulent urban surface–atmosphere exchange of particles, we quantified multi-annual size-resolved particle number fluxes in Berlin, Germany. The site was a net source of particles with a dominant contribution of traffic-related emission, especially very small particles < 30 nm. Particle fluxes clearly varied as a function of anthropogenic activity and urban land use.
Cited articles
An, Z., Huang, R.-J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi,
Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of
anthropogenic emissions and atmospheric processes, P. Natl. Acad. Sci. USA, 116, 8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019.
Arndt, J., Sciare, J., Mallet, M., Roberts, G. C., Marchand, N., Sartelet, K., Sellegri, K., Dulac, F., Healy, R. M., and Wenger, J. C.: Sources and mixing state of summertime background aerosol in the north-western Mediterranean basin, Atmos. Chem. Phys., 17, 6975–7001, https://doi.org/10.5194/acp-17-6975-2017, 2017.
Bi, X., Zhang, G., Li, L., Wang, X., Li, M., Sheng, G., Fu, J., and Zhou,
Z.: Mixing state of biomass burning particles by single particle aerosol
mass spectrometer in the urban area of PRD, China, Atmos. Environ., 45,
3447–3453, https://doi.org/10.1016/j.atmosenv.2011.03.034, 2011.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kaercher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Boiyo, R., Kumar, K. R., Zhao, T., and Guo, J.: A 10-year record of aerosol
optical properties and radiative forcing over three environmentally distinct
AERONET sites in Kenya, East Africa, J. Geophys. Res.-Atmos., 124,
1596–1617, https://doi.org/10.1029/2018JD029461, 2019.
Briggs, N. L. and Long, C. M.: Critical review of black carbon and elemental carbon source apportionment in Europe and the United States, Atmos. Environ., 144, 409–427, https://doi.org/10.1016/j.atmosenv.2016.09.002, 2016.
Cheng, Y., Lee, S. C., Ho, K. F., Chow, J. C., Watson, J. G., Louie, P. K.
K., Cao, J. J., and Hai, X.: Chemically-speciated on-road PM2.5 motor
vehicle emission factors in Hong Kong, Sci. Total Environ., 408, 1621–1627,
https://doi.org/10.1016/j.scitotenv.2009.11.061, 2010.
Chou, M. D., Chan, P. K., and Wang, M. H.: Aerosol radiative forcing derived
from SeaWiFS-retrieved aerosol optical properties, J. Atmos. Sci., 59,
748–757, https://doi.org/10.1175/1520-0469(2002)059<0748:Arfdfs>2.0.Co;2, 2002.
Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. M.,
Petäjä, T., Su, H., Cheng, Y. F., Yang, X. Q., Wang, M. H., Chi, X.
G., Wang, J. P., Virkkula, A., Guo, W. D., Yuan, J., Wang, S. Y., Zhang, R.
J., Wu, Y. F., Song, Y., Zhu, T., Zilitinkevich, S., Kulmala, M., and Fu, C.
B.: Enhanced haze pollution by black carbon in megacities in China, Geophys.
Res. Lett., 43, 2873–2879, https://doi.org/10.1002/2016GL067745, 2016.
Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A.: The “dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, 2015.
Eriksson, A. C., Wittbom, C., Roldin, P., Sporre, M., Öström, E.,
Nilsson, P., Martinsson, J., Rissler, J., Nordin, E. Z., Svenningsson, B.,
Pagels, J., and Swietlicki, E.: Diesel soot aging in urban plumes within
hours under cold dark and humid conditions, Sci. Rep., 7, 12364,
https://doi.org/10.1038/s41598-017-12433-0, 2017.
Fierce, L., Bond, T. C., Bauer, S. E., Mena, F., and Riemer, N.: Black
carbon absorption at the global scale is affected by particle-scale
diversity in composition, Nat. Commun., 7, 12361,
https://doi.org/10.1038/ncomms12361, 2016.
Gunsch, M. J., May, N. W., Wen, M., Bottenus, C. L. H., Gardner, D. J., VanReken, T. M., Bertman, S. B., Hopke, P. K., Ault, A. P., and Pratt, K. A.: Ubiquitous influence of wildfire emissions and secondary organic aerosol on summertime atmospheric aerosol in the forested Great Lakes region, Atmos. Chem. Phys., 18, 3701–3715, https://doi.org/10.5194/acp-18-3701-2018, 2018.
Heald, C. L., Ridley, D. A., Kroll, J. H., Barrett, S. R. H., Cady-Pereira, K. E., Alvarado, M. J., and Holmes, C. D.: Contrasting the direct radiative effect and direct radiative forcing of aerosols, Atmos. Chem. Phys., 14, 5513–5527, https://doi.org/10.5194/acp-14-5513-2014, 2014.
Hess, M., Koepke, P., and Schult, I.: Optical Properties of Aerosols and
Clouds: The Software Package OPAC, B. Am. Meteorol. Soc., 79, 831–844, https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2, 1998.
Huang, X. F., Gao, R. S., Schwarz, J. P., He, L. Y., Fahey, D. W., Watts, L.
A., Mccomiskey, A., Cooper, O. R., Sun, T. L., Zeng, L. W., Hu, M., and
Zhang, Y. H.: Black carbon measurements in the Pearl River Delta region of
China, J. Geophys. Res., 116, D12208, https://doi.org/10.1029/2010JD014933, 2011.
Li, K., Liao, H., Mao, Y., and Ridley, D. A.: Source sector and region
contributions to concentration and direct radiative forcing of black carbon
in China, Atmos. Environ., 124, 351–366,
https://doi.org/10.1016/j.atmosenv.2015.06.014, 2016.
Kalogridis, A.-C., Vratolis, S., Liakakou, E., Gerasopoulos, E., Mihalopoulos, N., and Eleftheriadis, K.: Assessment of wood burning versus fossil fuel contribution to wintertime black carbon and carbon monoxide concentrations in Athens, Greece, Atmos. Chem. Phys., 18, 10219–10236, https://doi.org/10.5194/acp-18-10219-2018, 2018.
Kim, J.-H., Kim, S.-W., Ogren, J. A., Sheridan, P. J., Yoon, S.-C., Sharma,
S., and Lin, N.-H.: Multiple scattering correction factor estimation for
aethalometer aerosol absorption coefficient measurement, Aerosol Sci.
Technol., 53, 160–171, https://doi.org/10.1080/02786826.2018.1555368, 2019.
Kopp, R. E. and Mauzerall, D. L.: Assessing the climatic benefits of black
carbon mitigation, P. Natl. Acad. Sci. USA, 107, 11703–11708,
https://doi.org/10.1073/pnas.0909605107, 2010.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric
brown carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167, 2015.
Li, B., Gasser, T., Ciais, P., Piao, S., Tao, S., Balkanski, Y.,
Hauglustaine, D., Boisier, J.-P., Chen, Z., Huang, M., Li, L. Z., Li, Y.,
Liu, H., Liu, J., Peng, S., Shen, Z., Sun, Z., Wang, R., Wang, T., Yin, G.,
Yin, Y., Zeng, H., Zeng, Z., and Zhou, F.: The contribution of China's
emissions to global climate forcing, Nature, 531, 357–361,
https://doi.org/10.1038/nature17165, 2016.
Li, G., Bei, N., Tie, X., and Molina, L. T.: Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign, Atmos. Chem. Phys., 11, 5169–5182, https://doi.org/10.5194/acp-11-5169-2011, 2011.
Li, L., Wang, Q., Zhang, X., She, Y., Zhou, J., Chen, Y., Wang, P., Liu, S.,
Zhang, T., Dai, W., Han, Y., and Cao, J.: Characteristics of single
atmospheric particles in a heavily polluted urban area of China: size
distributions and mixing states, Environ. Sci. Pollut. Res., 26,
11730–11742, https://doi.org/10.1007/s11356-019-04579-3, 2019.
Liou, K. N.: An introduction to atmospheric radiation, 2nd edn., Elsevier Science, Academic press, New York, 583 pp., 2002.
Liu, D., Whitehead, J., Alfarra, M. R., Reyes-Villegas, E., Spracklen,
D. V., Reddington, C. L., Kong, S., Williams, P. I., Ting, Y.-C., Haslett, S., Taylor, J. W., Flynn, M. J., Morgan, W. T., McFiggans, G., Coe, H., and Allan, J. D.: Black-carbon absorption enhancement in the atmosphere determined by particle mixing state, Nat. Geosci., 10, 184–188, https://doi.org/10.1038/ngeo2901, 2017
Liu, J., Mauzerall, D. L., Chen, Q., Zhang, Q., Song, Y., Peng, W., Klimont,
Z., Qiu, X., Zhang, S., Hu, M., Lin, W., Smith, K. R., and Zhu, T.: Air
pollutant emissions from Chinese households: A major and underappreciated
ambient pollution source, P. Natl. Acad. Sci. USA, 113, 7756–7761,
https://doi.org/10.1073/pnas.1604537113, 2016.
May, A. A., Nguyen, N. T., Presto, A. A., Gordon, T. D., Lipsky, E. M.,
Karve, M., Gutierrez, A., Robertson, W. H., Zhang, M., Brandow, C., Chang,
O., Chen, S., Cicero-Fernandez, P., Dinkins, L., Fuentes, M., Huang, S.-M.,
Ling, R., Long, J., Maddox, C., Massetti, J., McCauley, E., Miguel, A., Na,
K., Ong, R., Pang, Y., Rieger, P., Sax, T., Truong, T., Vo, T.,
Chattopadhyay, S., Maldonado, H., Maricq, M. M., and Robinson, A. L.: Gas-
and particle-phase primary emissions from in-use, on-road gasoline and
diesel vehicles, Atmos. Environ., 88, 247–260,
https://doi.org/10.1016/j.atmosenv.2014.01.046, 2014.
NBS (National Bureau of Statistics): China Statistical Yearbook 2018, China
Statistics Press, Beijing, available at: http://www.stats.gov.cn/tjsj/ndsj/ (last access: October 2019), 2018.
Qin, Y., Wagner, F., Scovronick, N., Peng, W., Yang, J., Zhu, T., Smith, K.
R., and Mauzerall, D. L.: Air quality, health, and climate implications of
China's synthetic natural gas development, P. Natl. Acad. Sci. USA, 114,
4887–4892, https://doi.org/10.1073/pnas.1703167114, 2017.
Rajesh, T. A. and Ramachandran, S.: Black carbon aerosols over urban and
high altitude remote regions: Characteristics and radiative implications,
Atmos. Environ., 194, 110–122, https://doi.org/10.1016/j.atmosenv.2018.09.023, 2018.
Ricchiazzi, P., Yang, S. R., Gautier, C., and Sowle, D.: SBDART: A research
and teaching software tool for plane-parallell radiative transfer in the
Earth's atmosphere, B. Am. Meteorol. Soc., 79, 2101–2114,
https://doi.org/10.1175/1520-0477(1998)079<2101:Sarats>2.0.Co;2, 1998.
Sandradewi, J., Prévôt, A. S. H., Szidat, S., Perron, N., Alfarra,
M. R., Lanz, V. A., Weingartner, E., and Baltensperger, U.: Using aerosol
light absorption measurements for the quantitative determination of wood
burning and traffic emission contributions to particulate matter, Environ.
Sci. Technol., 42, 3316–3323, https://doi.org/10.1021/es702253m, 2008.
Sun, J. Z., Zhi, G. R., Jin, W. J., Chen, Y. J., Shen, G. F., Tian, C. G.,
Zhang, Y. Z., Zong, Z., Cheng, M. M., Zhang, X. M., Zhang, Y., Liu, C. Y.,
Lu, J. K., Wang, H. Z., Xiang, J. M., Tong, L. T., and Zhang, X.: Emission
factors of organic carbon and elemental carbon for residential coal and
biomass fuels in China – A new database for 39 fuel-stove combinations,
Atmos. Environ., 190, 241–248,
https://doi.org/10.1016/j.atmosenv.2018.07.032, 2018.
Tian, J., Chow, J. C., Cao, J., Han, Y., Ni, H., Chen, L. W. A., Wang, X.,
Huang, R., Moosmüller, H., and Watson, J. G.: A biomass
combustion chamber: design, evaluation, and a case study of wheat straw
combustion emission tests, Aerosol Air Qual. Res., 15, 2104–2114,
https://doi.org/10.4209/aaqr.2015.03.0167, 2015.
Vignati, E., Karl, M., Krol, M., Wilson, J., Stier, P., and Cavalli, F.: Sources of uncertainties in modelling black carbon at the global scale, Atmos. Chem. Phys., 10, 2595–2611, https://doi.org/10.5194/acp-10-2595-2010, 2010.
Wang, Q., Huang, R. J., Cao, J., Han, Y., Wang, G., Li, G., Wang, Y., Dai,
W., Zhang, R., and Zhou, Y.: Mixing state of black carbon aerosol in a
heavily polluted urban area of China: implications for light absorption
enhancement, Aerosol Sci. Technol., 48, 689–697,
https://doi.org/10.1080/02786826.2014.917758, 2014.
Wang, Q., Cao, J., Han, Y., Tian, J., Zhu, C., Zhang, Y., Zhang, N., Shen, Z., Ni, H., Zhao, S., and Wu, J.: Sources and physicochemical characteristics of black carbon aerosol from the southeastern Tibetan Plateau: internal mixing enhances light absorption, Atmos. Chem. Phys., 18, 4639–4656, https://doi.org/10.5194/acp-18-4639-2018, 2018.
Wang, Q., Liu, S., Li, N., Dai, W., Wu, Y., Tian, J., Zhou, Y., Wang, M., Ho, S. S. H., Chen, Y., Zhang, R., Zhao, S., Zhu, C., Han, Y., Tie, X., and Cao, J.: Impacts of short-term mitigation measures on PM2.5 and radiative effects: a case study at a regional background site near Beijing, China, Atmos. Chem. Phys., 19, 1881–1899, https://doi.org/10.5194/acp-19-1881-2019, 2019a.
Wang, Q., Ye, J., Wang, Y., Zhang, T., Ran, W., Wu, Y., Tian, J., Li, L.,
Zhou, Y., Hang Ho, S. S., Dang, B., Zhang, Q., Zhang, R., Chen, Y., Zhu, C.,
and Cao, J.: Wintertime Optical Properties of Primary and Secondary Brown
Carbon at a Regional Site in the North China Plain, Environ. Sci. Technol.,
53, 12389–12397, https://doi.org/10.1021/acs.est.9b03406, 2019b.
Wang, Q., Li, L., Zhou, J., Ye, J., Dai, W., Liu, H., Zhang, Y., Zhang, R., Tian, J., Chen, Y., Wu, Y., Ran, W., and Cao, J.: Measurement report: Evaluation of sources and mixing state of black carbon aerosol under the background of emission reduction in the North China Plain: implications for radiative effect, Zenodo, https://doi.org/10.5281/zenodo.3923612, 2020.
Yang, M., Howell, S. G., Zhuang, J., and Huebert, B. J.: Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China – interpretations of atmospheric measurements during EAST-AIRE, Atmos. Chem. Phys., 9, 2035–2050, https://doi.org/10.5194/acp-9-2035-2009, 2009.
Zhang, G., Bi, X., He, J., Chen, D., Chan, L. Y., Xie, G., Wang, X., Sheng,
G., Fu, J., and Zhou, Z.: Variation of secondary coatings associated with
elemental carbon by single particle analysis, Atmos. Environ., 92, 162–170,
https://doi.org/10.1016/j.atmosenv.2014.04.018, 2014.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang,
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang,
Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu,
F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu,
Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air
quality in China from 2013 to 2017, P. Natl. Acad. Sci. USA, 116, 24463, https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, Y., Forrister, H., Liu, J., Dibb, J., Anderson, B., Schwarz, J. P.,
Perring, A. E., Jimenez, J. L., Campuzano-Jost, P., Wang, Y., Nenes, A., and
Weber, R. J.: Top-of-atmosphere radiative forcing affected by brown carbon
in the upper troposphere, Nat. Geosci., 10, 486–489,
https://doi.org/10.1038/ngeo2960, 2017.
Zhang, Y.-L., Schnelle-Kreis, J., Abbaszade, G., Zimmermann, R., Zotter, P.,
Shen, R.-R., Schäfer, K., Shao, L., Prévôt, A. S. H., and
Szidat, S.: Source apportionment of elemental carbon in Beijing, China:
insights from radiocarbon and organic marker measurements, Environ. Sci.
Technol., 49, 8408–8415, https://doi.org/10.1021/acs.est.5b01944, 2015.
Zhao, S., Tie, X., Cao, J., Li, N., Li, G., Zhang, Q., Zhu, C., Long, X.,
Li, J., Feng, T., and Su, X.: Seasonal variation and four-year trend of
black carbon in the Mid-west China: The analysis of the ambient measurement
and WRF-Chem modeling, Atmos. Environ., 123, 430–439,
https://doi.org/10.1016/j.atmosenv.2015.05.008, 2015.
Zhao, S., Yu, Y., Yin, D., Yu, Z., Dong, L., Mao, Z., He, J., Yang, J., Li,
P., and Qin, D.: Concentrations, optical and radiative properties of
carbonaceous aerosols over urban Lanzhou, a typical valley city: Results
from in-situ observations and numerical model, Atmos. Environ., 213,
470–484, https://doi.org/10.1016/j.atmosenv.2019.06.046, 2019.
Zheng, H., Kong, S., Wu, F., Cheng, Y., Niu, Z., Zheng, S., Yang, G., Yao, L., Yan, Q., Wu, J., Zheng, M., Chen, N., Xu, K., Yan, Y., Liu, D., Zhao, D., Zhao, T., Bai, Y., Li, S., and Qi, S.: Intra-regional transport of black carbon between the south edge of the North China Plain and central China during winter haze episodes, Atmos. Chem. Phys., 19, 4499–4516, https://doi.org/10.5194/acp-19-4499-2019, 2019.
Zotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Močnik, G., Hüglin, C., Baltensperger, U., Szidat, S., and Prévôt, A. S. H.: Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol, Atmos. Chem. Phys., 17, 4229–4249, https://doi.org/10.5194/acp-17-4229-2017, 2017.
Short summary
Recently, China has promulgated a series of regulations to reduce air pollutants. The decreased black carbon (BC) and co-emitted pollutants could affect the interactions between BC and other aerosols, which in turn results in changes in BC. Herein, we re-assessed the characteristics of BC of a representative pollution site in northern China in the final year of the Chinese
Action Plan for the Prevention and Control of Air Pollution.
Recently, China has promulgated a series of regulations to reduce air pollutants. The decreased...
Altmetrics
Final-revised paper
Preprint