Articles | Volume 20, issue 22
https://doi.org/10.5194/acp-20-14237-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-20-14237-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of regional aerosol radiative effects under the SWAAMI campaign – Part 2: Clear-sky direct shortwave radiative forcing using multi-year assimilated data over the Indian subcontinent
Harshavardhana Sunil Pathak
CORRESPONDING AUTHOR
Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru, India
Sreedharan Krishnakumari Satheesh
Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru, India
DST-Centre of Excellence in Climate Change, Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru, India
Krishnaswamy Krishna Moorthy
Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru, India
Ravi Shankar Nanjundiah
Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru, India
DST-Centre of Excellence in Climate Change, Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru, India
Indian Institute of Tropical Meteorology, Pune, India
Related authors
Nair K. Kala, Narayana Sarma Anand, Mohanan R. Manoj, Harshavardhana S. Pathak, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 6067–6085, https://doi.org/10.5194/acp-22-6067-2022, https://doi.org/10.5194/acp-22-6067-2022, 2022
Short summary
Short summary
We present the 3-D distribution of atmospheric aerosols and highlight its variation with respect to longitudes over the Indian mainland and the surrounding oceans using long-term satellite observations and realistic synthesised data. The atmospheric heating due to the 3-D distribution of aerosols is estimated using radiative transfer calculations. We believe that our findings will have strong implications for aerosol–radiation interactions in regional climate simulations.
Archana Devi, Sreedharan K Satheesh, and Jayaraman Srinivasan
EGUsphere, https://doi.org/10.5194/egusphere-2025-4146, https://doi.org/10.5194/egusphere-2025-4146, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study compares aerosol single scattering albedo data from two algorithms, CERES-MODIS and OMI, across different regions like forests, oceans, land, and deserts. It finds that CERES-MODIS tracks aerosol absorption more accurately, especially in areas with smoke and pollution. In clean regions, both algorithms perform similarly. The study helps scientists understand which satellite gives better data in different conditions, supporting improved climate and air quality research.
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
Nair Krishnan Kala, Narayana Sarma Anand, Mohanan R. Manoj, Srinivasan Prasanth, Harshavardhana S. Pathak, Thara Prabhakaran, Pramod D. Safai, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 23, 12801–12819, https://doi.org/10.5194/acp-23-12801-2023, https://doi.org/10.5194/acp-23-12801-2023, 2023
Short summary
Short summary
We present a 3D data set of aerosol black carbon over the Indian mainland by assimilating data from surface, aircraft, and balloon measurements, along with multi-satellite observations. Radiative transfer computations using height-resolved aerosol absorption show higher warming in the free troposphere and will have large implications for atmospheric stability. This data set will help reduce the uncertainty in aerosol radiative effects in climate model simulations over the Indian region.
Nair K. Kala, Narayana Sarma Anand, Mohanan R. Manoj, Harshavardhana S. Pathak, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 6067–6085, https://doi.org/10.5194/acp-22-6067-2022, https://doi.org/10.5194/acp-22-6067-2022, 2022
Short summary
Short summary
We present the 3-D distribution of atmospheric aerosols and highlight its variation with respect to longitudes over the Indian mainland and the surrounding oceans using long-term satellite observations and realistic synthesised data. The atmospheric heating due to the 3-D distribution of aerosols is estimated using radiative transfer calculations. We believe that our findings will have strong implications for aerosol–radiation interactions in regional climate simulations.
Archana Devi and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 5365–5376, https://doi.org/10.5194/acp-22-5365-2022, https://doi.org/10.5194/acp-22-5365-2022, 2022
Short summary
Short summary
Global maps of aerosol absorption were generated using a multi-satellite retrieval algorithm. The retrieved values were validated with available aircraft-based measurements and compared with other global datasets. Seasonal and spatial distributions of aerosol absorption over various regions are also presented. The global maps of single scattering albedo with improved accuracy provide important input to climate models for assessing the climatic impact of aerosols on regional and global scales.
Priyanka Banerjee, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 21, 17665–17685, https://doi.org/10.5194/acp-21-17665-2021, https://doi.org/10.5194/acp-21-17665-2021, 2021
Short summary
Short summary
We show that the Atlantic Ocean is the major driver of interannual variability in dust over South Asia since the second decade of the 21st century. This is a shift from the previously important role played by the Pacific Ocean in controlling dust over this region. Following the end of the recent global warming hiatus, anomalies of the North Atlantic sea surface temperature have remotely invoked a weakening of the South Asian monsoon and a strengthening of the dust-bearing northwesterlies.
S. Arora, A. V. Kulkarni, P. Ghosh, and S. K. Satheesh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 431–436, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-431-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-431-2021, 2021
Mohanan R. Manoj, Sreedharan K. Satheesh, Krishnaswamy K. Moorthy, Jamie Trembath, and Hugh Coe
Atmos. Chem. Phys., 21, 8979–8997, https://doi.org/10.5194/acp-21-8979-2021, https://doi.org/10.5194/acp-21-8979-2021, 2021
Short summary
Short summary
Vertical distributions of atmospheric aerosols across the Indo-Gangetic Plain (IGP) and their ability to form clouds have been studied based on airborne measurements during the SWAAMI field campaign. The ability of the aerosols to act as cloud-forming nuclei exhibited large spatial variation across the IGP and strong seasonality with increase in this ability with increase in altitude prior to the onset of monsoon and decrease with increase in altitude during the active phase of the monsoon.
Cited articles
Babu, S. S. and Moorthy, K. K.: Aerosol black carbon over a tropical coastal
station in India, Geophys. Res. Lett., 29, 13-1–13-4,
https://doi.org/10.1029/2002GL015662,
2002. a
Babu, S. S., Manoj, M. R., Moorthy, K. K., Gogoi, M. M., Nair, V. S., Kompalli, S. K., Satheesh, S. K., Niranjan, K., Ramagopal, K., Bhuyan, P. K., and Singh, D.: Trends in aerosol optical depth over Indian region: Potential
causes and impact indicators, J. Geophys. Res.-Atmos.,
118, 11794–11806, https://doi.org/10.1002/2013JD020507,
2013. a
Babu, S. S., Nair, V. S., Gogoi, M. M., and Moorthy, K. K.: Seasonal variation of vertical distribution of aerosol single scattering albedo over Indian sub-continent: RAWEX aircraft observations, Atmos. Environ., 125, 312–323, https://doi.org/10.1016/j.atmosenv.2015.09.041, 2016. a, b
Banerjee, P., Satheesh, S. K., Moorthy, K. K., Nanjundiah, R. S., and Nair,
V. S.: Long-Range Transport of Mineral Dust to the Northeast Indian Ocean:
Regional versus Remote Sources and the Implications, J. Climate, 32,
1525–1549, https://doi.org/10.1175/JCLI-D-18-0403.1, 2019. a
Boucher, O. and Anderson, T. L.: General circulation model assessment of the
sensitivity of direct climate forcing by anthropogenic sulfate aerosols to
aerosol size and chemistry, J. Geophys. Res.-Atmos.,
100, 26117–26134, https://doi.org/10.1029/95JD02531,
1995. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S., Sherwood, S., Stevens, B., and Zhang, X.: Clouds and Aerosols, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/CBO9781107415324.016, 2013. a
Chand, D., Wood, R., L. Anderson, T., K. Satheesh, S., and Charlson, R.:
Satellite-derived direct radiative effect of aerosols dependent on cloud
cover, Nat. Geosci., 2, 181–184, https://doi.org/10.1038/ngeo437, 2009. a
Chung, C. E., Ramanathan, V., Kim, D., and Podgorny, I. A.: Global
anthropogenic aerosol direct forcing derived from satellite and ground-based
observations, J. Geophys. Res.-Atmos., 110, D24,
https://doi.org/10.1029/2005jd006356, 2005. a, b, c
Chung, C. E., Ramanathan, V., Carmichael, G., Kulkarni, S., Tang, Y., Adhikary, B., Leung, L. R., and Qian, Y.: Anthropogenic aerosol radiative forcing in Asia derived from regional models with atmospheric and aerosol data assimilation, Atmos. Chem. Phys., 10, 6007–6024, https://doi.org/10.5194/acp-10-6007-2010, 2010. a
Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E.,
Kahn, R. A., Martonchik, J. V., Ackerman, T. P., Davies, R., Gerstl, S.
A. W., Gordon, H. R., Muller, J. P., Myneni, R. B., Sellers, P. J., Pinty,
B., and Verstraete, M. M.: Multi-angle Imaging SpectroRadiometer (MISR)
instrument description and experiment overview, IEEE T.
Geosci. Remote, 36, 1072–1087, https://doi.org/10.1109/36.700992, 1998. a
Gao, B.-C. and Kaufman, Y. J.: Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels, J. Geophys. Res.-Atmos., 108, D13, https://doi.org/10.1029/2002JD003023, 2003. a
Haywood, J. M. and Shine, K. P.: The effect of anthropogenic sulfate and soot
aerosol on the clear sky planetary radiation budget, Geophys. Res.
Lett., 22, 603–606, https://doi.org/10.1029/95GL00075, 1995. a
Haywood, J. M. and Shine, K. P.: Multi-spectral calculations of the direct
radiative forcing of tropospheric sulphate and soot aerosols using a column
model, Q. J. Roy. Meteor. Soc., 123,
1907–1930, https://doi.org/10.1002/qj.49712354307, 1997. a
Heintzenberg, J., Charlson, R., Clarke, A., Liousse, C., Ramaswamy, V., Shine, K., Wendisch, M., and Helas, G.: Measurements and modelling of aerosol
single-scattering albedo: Progress, problems and prospects, Contributions to
Atmospheric Physics, 70, 249–263, 1997. a
Hsu, N., Jeong, M.-J., Bettenhausen, C., Sayer, A., Hansell, R., Seftor, C.,
Huang, J., and Tsay, S.-C.: Enhanced Deep Blue aerosol retrieval algorithm:
The second generation, J. Geophys. Res.-Atmos., 118,
9296–9315, 2013. a
Ignatov, A., Laszlo, I., Harrod, E. D., Kidwell, K. B., and Goodrum, G. P.:
Equator crossing times for NOAA, ERS and EOS sun-synchronous satellites,
Int. J. Remote Sens., 25, 5255–5266,
https://doi.org/10.1080/01431160410001712981, 2004. a
Jacobson, M. Z.: Global direct radiative forcing due to multicomponent
anthropogenic and natural aerosols, J. Geophys. Res.-Atmos., 106, 1551–1568, 2001. a
Jethva, H., Satheesh, S. K., and Srinivasan, J.: Seasonal variability of
aerosols over the Indo-Gangetic basin, J. Geophys. Res.-Atmos., 110, D21204, https://doi.org/10.1029/2005JD005938, 2005. a
Jethva, H., Satheesh, S., Srinivasan, J., and Moorthy, K. K.: How good is the
assumption about visible surface reflectance in MODIS aerosol retrieval over
land? A comparison with aircraft measurements over an urban site in India,
IEEE T. Geosci. Remote, 47, 1990–1998, 2009. a
Jethva, H., Torres, O., and Ahn, C.: Global assessment of OMI aerosol
single-scattering albedo using ground-based AERONET inversion, J.
Geophys. Res.-Atmos., 119, 9020–9040,
https://doi.org/10.1002/2014JD021672,
2014. a, b, c, d
Kim, S.-W., Berthier, S., Raut, J.-C., Chazette, P., Dulac, F., and Yoon, S.-C.: Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea, Atmos. Chem. Phys., 8, 3705–3720, https://doi.org/10.5194/acp-8-3705-2008, 2008. a
Kompalli, S. K., Babu, S. S., Moorthy, K. K., Manoj, M., Kumar, N. K., Shaeb,
K. H. B., and Joshi, A. K.: Aerosol black carbon characteristics over Central
India: Temporal variation and its dependence on mixed layer height,
Atmos. Res., 147, 27–37, 2014. a
Krishna Moorthy, K., Suresh Babu, S., and Satheesh, S. K.: Temporal heterogeneity in aerosol characteristics and the resulting radiative impact at a tropical coastal station – Part 1: Microphysical and optical properties, Ann. Geophys., 25, 2293–2308, https://doi.org/10.5194/angeo-25-2293-2007, 2007. a, b
Levelt, P. F., Hilsenrath, E., Leppelmeier, G. W., van den Oord, G. H. J.,
Bhartia, P. K., Tamminen, J., de Haan, J. F., and Veefkind, J. P.: Science
objectives of the ozone monitoring instrument, IEEE T.
Geosci. Remote, 44, 1199–1208,
https://doi.org/10.1109/TGRS.2006.872336, 2006. a
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013. a
Loeb, N. G. and Su, W.: Direct Aerosol Radiative Forcing Uncertainty Based on a Radiative Perturbation Analysis, J. Climate, 23, 5288–5293,
https://doi.org/10.1175/2010JCLI3543.1, 2010. a
Loeb, N. G., Manalo-Smith, N., Kato, S., Miller, W. F., Gupta, S. K., Minnis,
P., and Wielicki, B. A.: Angular Distribution Models for Top-of-Atmosphere
Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy
System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part I: Methodology, J. Appl. Meteorol., 42, 240–265,
https://doi.org/10.1175/1520-0450(2003)042<0240:ADMFTO>2.0.CO;2,
2003. a
Moorthy, K. K., Sunilkumar, S. V., Pillai, P. S., Parameswaran, K., Nair,
P. R., Ahmed, Y. N., Ramgopal, K., Narasimhulu, K., Reddy, R. R., Vinoj, V.,
Satheesh, S. K., Niranjan, K., Rao, B. M., Brahmanandam, P. S., Saha, A.,
Badarinath, K. V. S., Kiranchand, T. R., and Latha, K. M.: Wintertime spatial
characteristics of boundary layer aerosols over peninsular India, J.
Geophys. Res.-Atmos., 110, D08207, https://doi.org/10.1029/2004JD005520, 2005. a, b
Müller, D., Franke, K., Wagner, F., Althausen, D., Ansmann, A., Heintzenberg,
J., and Verver, G.: Vertical profiling of optical and physical particle
properties over the tropical Indian Ocean with six-wavelength lidar: 2. Case
studies, J. Geophys. Res.-Atmos., 106, 28577–28595,
https://doi.org/10.1029/2000JD900785,
2001. a
Myhre, G., Bellouin, N., Berglen, T. F., Berntsen, T. K., Boucher, O., Grini, A., Isaksen, I. S. A., Johnsrud, M., Mishchenko, M. I., Stordal, F., and Tanré, D.:
Comparison of the radiative properties and direct radiative effect of
aerosols from a global aerosol model and remote sensing data over ocean,
Tellus B, 59, 115–129, 2007. a
Myhre, G., Berglen, T. F., Johnsrud, M., Hoyle, C. R., Berntsen, T. K., Christopher, S. A., Fahey, D. W., Isaksen, I. S. A., Jones, T. A., Kahn, R. A., Loeb, N., Quinn, P., Remer, L., Schwarz, J. P., and Yttri, K. E.: Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation, Atmos. Chem. Phys., 9, 1365–1392, https://doi.org/10.5194/acp-9-1365-2009, 2009. a
Niranjan, K., Sreekanth, V., Madhavan, B. L., and Krishna Moorthy, K.: Aerosol physical properties and Radiative forcing at the outflow region from the Indo-Gangetic plains during typical clear and hazy periods of wintertime,
Geophys. Res. Lett., 34, 19, https://doi.org/10.1029/2007GL031224,
2007. a, b
Parameswaran, K., Vijayakumar, G., Krishna Murthy, B. V., and Krishna Moorthy, K.: Effect of Wind Speed on Mixing Region Aerosol Concentrations at a Tropical Coastal Station, J. Appl. Meteorol., 34, 1392–1397, https://doi.org/10.1175/1520-0450(1995)034<1392:EOWSOM>2.0.CO;2,
1995. a
Pathak, B., Kalita, G., Bhuyan, K., Bhuyan, P. K., and Moorthy, K. K.: Aerosol temporal characteristics and its impact on shortwave radiative forcing at a location in the northeast of India, J. Geophys. Res.-Atmos., 115, D19, https://doi.org/10.1029/2009JD013462, 2010. a
Pathak, H. S., Satheesh, S. K., Nanjundiah, R. S., Moorthy, K. K., Lakshmivarahan, S., and Babu, S. N. S.: Assessment of regional aerosol radiative effects under the SWAAMI campaign – Part 1: Quality-enhanced estimation of columnar aerosol extinction and absorption over the Indian subcontinent, Atmos. Chem. Phys., 19, 11865–11886, https://doi.org/10.5194/acp-19-11865-2019, 2019. a, b, c, d, e, f, g, h, i, j, k
Penner, J. E., Charlson, R. J., Hales, J. M., Laulainen, N. S., Leifer, R.,
Novakov, T., Ogren, J., Radke, L. F., Schwartz, S. E., and Travis, L.:
Quantifying and Minimizing Uncertainty of Climate Forcing by Anthropogenic
Aerosols, B. Am. Meteorol. Soc., 75, 375–400,
https://doi.org/10.1175/1520-0477(1994)075<0375:QAMUOC>2.0.CO;2,
1994. a
Price, J. C.: Timing of NOAA afternoon passes, Int. J. Remote Sens., 12, 193–198, https://doi.org/10.1080/01431169108929644, 1991. a
Prijith, S., Suresh Babu, S., Lakshmi, N., Satheesh, S., and Krishna
Moorthy, K.: Meridional gradients in aerosol vertical distribution over
Indian Mainland: Observations and model simulations, Atmos. Environ.,
125, 337–345, https://doi.org/10.1016/j.atmosenv.2015.10.066, 2016. a
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to
black carbon, Nat. Geosci., 1, 221–227, 2008. a
Ricchiazzi, P., Yang, S., Gautier, C., and Sowle, D.: SBDART: A
Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in
the Earth's Atmosphere, B. Am. Meteorol. Soc., 79,
2101–2114, https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2, 1998. a, b
Russell, P., Redemann, J., Schmid, B., Bergstrom, R., Livingston, J., McIntosh, D., Hartley, S., Hobbs, P., Quinn, P., Carrico, C., and Hipskind, R.: Comparison of Aerosol Single Scattering Albedos Derived By Diverse Techniques in Two North Atlantic Experiments, J. Atmos. Sci., 59, 609–619,
https://doi.org/10.1175/1520-0469(2002)059<0609:COASSA>2.0.CO;2, 2000. a
Satheesh, S., Srinivasan, J., and Moorthy, K.: Spatial and temporal
heterogeneity in aerosol properties and radiative forcing over Bay of Bengal:
Sources and role of aerosol transport, J. Geophys. Res.-Atmos., 111, D8, https://doi.org/10.1029/2005JD006374, 2006. a
Sayer, A. M., Hsu, N. C., Bettenhausen, C., and Jeong, M.-J.: Validation and
uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data,
J. Geophys. Res.-Atmos., 118, 7864–7872, https://doi.org/10.1002/jgrd.50600, 2013. a, b
Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Dentener, F., Guibert, S., Isaksen, I. S. A., Iversen, T., Koch, D., Kirkevåg, A., Liu, X., Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, S., Seland, Ø., Stier, P., and Takemura, T.: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations, Atmos. Chem. Phys., 6, 5225–5246, https://doi.org/10.5194/acp-6-5225-2006, 2006. a
Schwartz, S. E.: Uncertainty Requirements in Radiative Forcing of Climate
Change, J. Air Waste Manage., 54, 1351–1359,
https://doi.org/10.1080/10473289.2004.10471006, 2004.
a, b
Sinha, P. R., Dumka, U. C., Manchanda, R. K., Kaskaoutis, D. G., Sreenivasan,
S., Krishna Moorthy, K., and Suresh Babu, S.: Contrasting aerosol
characteristics and radiative forcing over Hyderabad, India due to seasonal
mesoscale and synoptic-scale processes, Q. J. Roy.
Meteor. Soc., 139, 434–450, https://doi.org/10.1002/qj.1963, 2013. a
Su, W., Corbett, J., Eitzen, Z., and Liang, L.: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: validation, Atmos. Meas. Tech., 8, 3297–3313, https://doi.org/10.5194/amt-8-3297-2015, 2015. a
Suresh Babu, S., Krishna Moorthy, K., and Satheesh, S. K.: Temporal heterogeneity in aerosol characteristics and the resulting radiative impacts at a tropical coastal station – Part 2: Direct short wave radiative forcing, Ann. Geophys., 25, 2309–2320, https://doi.org/10.5194/angeo-25-2309-2007, 2007. a
Takemura, T., Nakajima, T., Dubovik, O., Holben, B. N., and Kinne, S.:
Single-Scattering Albedo and Radiative Forcing of Various Aerosol Species
with a Global Three-Dimensional Model, J. Climate, 15, 333–352,
https://doi.org/10.1175/1520-0442(2002)015<0333:SSAARF>2.0.CO;2,
2002. a, b
Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P. K., Veefkind, P., and Levelt, P.: Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview, J. Geophys. Res.-Atmos., 112, D24S47, https://doi.org/10.1029/2007JD008809, 2007. a
Vaishya, A., Babu, S. N. S., Jayachandran, V., Gogoi, M. M., Lakshmi, N. B., Moorthy, K. K., and Satheesh, S. K.: Large contrast in the vertical distribution of aerosol optical properties and radiative effects across the Indo-Gangetic Plain during the SWAAMI–RAWEX campaign, Atmos. Chem. Phys., 18, 17669–17685, https://doi.org/10.5194/acp-18-17669-2018, 2018. a, b, c
Zhang, J. and Reid, J. S.: MODIS aerosol product analysis for data
assimilation: Assessment of over-ocean level 2 aerosol optical thickness
retrievals, J. Geophys. Res.-Atmos., 111, D22207,
https://doi.org/10.1029/2005JD006898, 2006. a, b
Ziemke, J. R., Chandra, S., Duncan, B. N., Froidevaux, L., Bhartia, P. K.,
Levelt, P. F., and Waters, J. W.: Tropospheric ozone determined from Aura OMI
and MLS: Evaluation of measurements and comparison with the Global Modeling
Initiative's Chemical Transport Model, J. Geophys. Res.-Atmos., 111, D19, https://doi.org/10.1029/2006JD007089, 2006. a
Short summary
We have estimated the aerosol radiative forcing (ARF) by employing the assimilated, gridded aerosol datasets over the Indian region. The present ARF estimates are more accurate and certain than those estimated using the currently available, latest satellite-retrieved aerosol products. Therefore, the present ARF estimates and corresponding assimilated aerosol products emerge as potential candidates for improving the aerosol climate impact assessment at regional, subregional and seasonal scales.
We have estimated the aerosol radiative forcing (ARF) by employing the assimilated, gridded...
Altmetrics
Final-revised paper
Preprint