Articles | Volume 20, issue 20
https://doi.org/10.5194/acp-20-12193-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-20-12193-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deep-convective influence on the upper troposphere–lower stratosphere composition in the Asian monsoon anticyclone region: 2017 StratoClim campaign results
Laboratoire de Météorologie Dynamique (LMD), UMR 8539, CNRS, École Normale Supérieure, PSL Research University, École Polytechnique, Sorbonne Université, École des Ponts ParisTech, Institut Pierre Simon Laplace, Paris, France
Laboratoire de Météorologie Dynamique (LMD), UMR 8539, CNRS, École Normale Supérieure, PSL Research University, École Polytechnique, Sorbonne Université, École des Ponts ParisTech, Institut Pierre Simon Laplace, Paris, France
Pasquale Sellitto
Laboratoire Inter-universitaire des Systèmes Atmosphériques (LISA), UMR 7583, CNRS, Universitè Paris-Est-Créteil, Université de Paris, Institut Pierre-Simon Laplace, Créteil, France
Francesco D'Amato
Consiglio Nazionale delle Ricerche – Istituto Nazionale di Ottica (CNR-INO), Area CNR, Via Madonna del Piano 10, 50019 Sesto F. no (FI), Italy
Silvia Viciani
Consiglio Nazionale delle Ricerche – Istituto Nazionale di Ottica (CNR-INO), Area CNR, Via Madonna del Piano 10, 50019 Sesto F. no (FI), Italy
Alessio Montori
Consiglio Nazionale delle Ricerche – Istituto Nazionale di Ottica (CNR-INO), Area CNR, Via Madonna del Piano 10, 50019 Sesto F. no (FI), Italy
Antonio Chiarugi
National Institute of Geophysics and Vulcanology (INGV), Pisa, Italy
present address: SENSIT Technologies, Valparaiso, Indiana, USA
Fabrizio Ravegnani
National Resears Council - Institute for Atmospheric Sciences and Climate
(ISAC-CNR), Bologna and Rome, Italy
Alexey Ulanovsky
Central Aerological Observatory (CAO), Moscow, Russia
Francesco Cairo
National Resears Council - Institute for Atmospheric Sciences and Climate
(ISAC-CNR), Bologna and Rome, Italy
Fred Stroh
Institute of Energy and Climate Research, Stratosphere, Forschungszentrum Jülich, Jülich, Germany
Related authors
Sergey M. Khaykin, Elizabeth Moyer, Martina Krämer, Benjamin Clouser, Silvia Bucci, Bernard Legras, Alexey Lykov, Armin Afchine, Francesco Cairo, Ivan Formanyuk, Valentin Mitev, Renaud Matthey, Christian Rolf, Clare E. Singer, Nicole Spelten, Vasiliy Volkov, Vladimir Yushkov, and Fred Stroh
Atmos. Chem. Phys., 22, 3169–3189, https://doi.org/10.5194/acp-22-3169-2022, https://doi.org/10.5194/acp-22-3169-2022, 2022
Short summary
Short summary
The Asian monsoon anticyclone is the key contributor to the global annual maximum in lower stratospheric water vapour. We investigate the impact of deep convection on the lower stratospheric water using a unique set of observations aboard the high-altitude M55-Geophysica aircraft deployed in Nepal in summer 2017 within the EU StratoClim project. We find that convective plumes of wet air can persist within the Asian anticyclone for weeks, thereby enhancing the occurrence of high-level clouds.
Francesco Cairo, Mauro De Muro, Marcel Snels, Luca Di Liberto, Silvia Bucci, Bernard Legras, Ajil Kottayil, Andrea Scoccione, and Stefano Ghisu
Atmos. Chem. Phys., 21, 7947–7961, https://doi.org/10.5194/acp-21-7947-2021, https://doi.org/10.5194/acp-21-7947-2021, 2021
Short summary
Short summary
A lidar was used in Palau from February–March 2016. Clouds were observed peaking at 3 km below the high cold-point tropopause (CPT). Their occurrence was linked with cold anomalies, while in warm cases, cirrus clouds were restricted to 5 km below the CPT. Thin subvisible cirrus (SVC) near the CPT had distinctive characteristics. They were linked to wave-induced cold anomalies. Back trajectories are mostly compatible with convective outflow, while some distinctive SVC may originate in situ.
Keun-Ok Lee, Brice Barret, Eric L. Flochmoën, Pierre Tulet, Silvia Bucci, Marc von Hobe, Corinna Kloss, Bernard Legras, Maud Leriche, Bastien Sauvage, Fabrizio Ravegnani, and Alexey Ulanovsky
Atmos. Chem. Phys., 21, 3255–3274, https://doi.org/10.5194/acp-21-3255-2021, https://doi.org/10.5194/acp-21-3255-2021, 2021
Short summary
Short summary
This paper focuses on the emission sources and pathways of pollution from the boundary layer to the Asian monsoon anticyclone (AMA) during the StratoClim aircraft campaign period. Simulations with the Meso-NH cloud-chemistry model at a horizontal resolution of 15 km are performed over the Asian region to characterize the impact of monsoon deep convection on the composition of AMA and on the formation of the Asian tropopause aerosol layer during the StratoClim campaign.
Sören Johansson, Michael Höpfner, Oliver Kirner, Ingo Wohltmann, Silvia Bucci, Bernard Legras, Felix Friedl-Vallon, Norbert Glatthor, Erik Kretschmer, Jörn Ungermann, and Gerald Wetzel
Atmos. Chem. Phys., 20, 14695–14715, https://doi.org/10.5194/acp-20-14695-2020, https://doi.org/10.5194/acp-20-14695-2020, 2020
Short summary
Short summary
We present high-resolution measurements of pollutant trace gases (PAN, C2H2, and HCOOH) in the Asian monsoon UTLS from the airborne limb imager GLORIA during StratoClim 2017. Enhancements are observed up to 16 km altitude, and PAN and C2H2 even up to 18 km. Two atmospheric models, CAMS and EMAC, reproduce the pollutant's large-scale structures but not finer structures. Convection is investigated using backward trajectories of the models ATLAS and TRACZILLA with advanced detection of convection.
Bernard Legras and Silvia Bucci
Atmos. Chem. Phys., 20, 11045–11064, https://doi.org/10.5194/acp-20-11045-2020, https://doi.org/10.5194/acp-20-11045-2020, 2020
Short summary
Short summary
The Asian monsoon is the most active region bringing surface compounds by convection to the stratosphere during summer. We study the transport pathways and the trapping within the upper-layer anticyclonic circulation. Above 15 km, the confinement can be represented by a uniform ascent over continental Asia of about 200 m per day and a uniform loss to other regions with a characteristic time of 2 weeks. We rule out the presence of a
chimneyproposed in previous studies over the Tibetan Plateau.
Claudia Di Biagio, Elisa Bru, Avila Orta, Servanne Chevaillier, Clarissa Baldo, Antonin Bergé, Mathieu Cazaunau, Sandra Lafon, Sophie Nowak, Edouard Pangui, Meinrat O. Andreae, Pavla Dagsson-Waldhauserova, Kebonyethata Dintwe, Konrad Kandler, James S. King, Amelie Chaput, Gregory S. Okin, Stuart Piketh, Thuraya Saeed, David Seibert, Zongbo Shi, Earle Williams, Pasquale Sellitto, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2025-3512, https://doi.org/10.5194/egusphere-2025-3512, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Spectroscopy measurements show that the absorbance of dust in the far-infrared up to 25 μm is comparable in intensity to that in the mid-infrared (3–15μm) suggesting its relevance for dust direct radiative effect. Data evidence different absorption signatures for high and low/mid latitude dust, due to differences in mineralogical composition. These differences could be used to characterise the mineralogy and differentiate the origin of airborne dust based on infrared remote sensing observations.
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Irene Bartolome Garcia, Emmanuel Briaud, Rubel Chandra Das, Stéphane Chevrier, Nicolas Dumelié, Lilian Joly, Thomas Lecas, Pauline Marbach, Felix Ploeger, Jean-Baptiste Renard, Jean-Paul Vernier, Frank G. Wienhold, and Michaela I. Hegglin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2091, https://doi.org/10.5194/egusphere-2025-2091, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In October 2022, we detected volcanic particles in the stratosphere over France, linked to the January 2022 Hunga eruption in the South Pacific. Found between 17 and 23 km altitude, they were traced back to the tropics using trajectory simulations and satellite data. Their optical properties matched those in the Southern Hemisphere. The particles spread across the Northern Hemisphere, reflecting sunlight and slightly cooling the surface—a small but non-negligible effect.
Clair Duchamp, Bernard Legras, Aurélien Podglajen, Pasquale Sellitto, Adam E. Bourassa, Alexei Rozanov, Ghassan Taha, and Daniel J. Zawada
EGUsphere, https://doi.org/10.5194/egusphere-2025-3355, https://doi.org/10.5194/egusphere-2025-3355, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We analyzed the stratospheric aerosol plume from the 2022 Hunga eruption using satellite lidar data. We implemented a method to retrieve some aerosol properties, as standard products failed in this case. We found very high optical depth values in the days following the eruption, which decreased rapidly but remained elevated for months. Our results are broadly validated, though some satellite products underestimate the values due, in part, to the unusual aerosol size distribution in the plume.
Pasquale Sellitto, Redha Belhadji, Bernard Legras, Aurélien Podglajen, and Clair Duchamp
Atmos. Chem. Phys., 25, 6353–6364, https://doi.org/10.5194/acp-25-6353-2025, https://doi.org/10.5194/acp-25-6353-2025, 2025
Short summary
Short summary
The Hunga Tonga–Hunga Ha’apai volcano erupted on 15 January 2022, producing the largest stratospheric aerosol perturbation of the last 30 years. Stratospheric volcanic aerosols usually produce a transient climate cooling; these impacts depend on volcanic aerosol composition/size, due to size-dependent interactions with solar/terrestrial radiation. We demonstrate that the Hunga Tonga–Hunga Ha’apai stratospheric aerosols have a larger cooling potential per unit mass than the past climate-relevant El Chichón (1984) and Pinatubo (1991) eruptions.
Pierre Gramme, Cedric Busschots, Emmanuel Dekemper, Didier Pieroux, Noel C. Baker, Stefano Casadio, Anna Maria lannarelli, Nicola Ferrante, Annalisa Di Bernardino, Paolo Pettinari, Elisa Castelli, Luca di Liberto, and Francesco Cairo
EGUsphere, https://doi.org/10.5194/egusphere-2025-2255, https://doi.org/10.5194/egusphere-2025-2255, 2025
Short summary
Short summary
We present a new remote sensing instrument using hyperspectral imaging to observe the variability in space and time of the nitrogen dioxide concentration. We also show the results of its validation campaign in a challenging urban setting in Rome, showing very good agreement with two reference instruments. Having an imaging instrument rather than the currently state-of-the-art unidirectional spectrometers brings promising capability in the context of satellite products validation.
Redha Belhadji, Pasquale Sellitto, Maxim Eremenko, Silvia Bucci, Tran Minh Nguyet, Martin Schwell, and Bernard Legras
EGUsphere, https://doi.org/10.5194/egusphere-2025-1453, https://doi.org/10.5194/egusphere-2025-1453, 2025
Short summary
Short summary
The 2019–2020 Australian wildfires triggered massive Pyro-cumulonimbus clouds, injecting smoke aerosols into the stratosphere and forming a self-sustaining vortex that reached 35 km altitude. This vortex created a transient ozone mini-hole. Using satellite and ground-based observations, we tracked a 30–40 % initial ozone depletion, which decayed to ~7 % within a month. These findings highlight the impact of extreme wildfires on stratospheric dynamics and ozone composition.
Paul Konopka, Felix Ploeger, Francesco D'Amato, Teresa Campos, Marc von Hobe, Shawn B. Honomichl, Peter Hoor, Laura L. Pan, Michelle L. Santee, Silvia Viciani, Kaley A. Walker, and Michaela I. Hegglin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1155, https://doi.org/10.5194/egusphere-2025-1155, 2025
Short summary
Short summary
We present an improved version of the Chemical Lagrangian Model of the Stratosphere (CLaMS-3.0), which better represents transport from the lower atmosphere to the upper troposphere and lower stratosphere. By refining grid resolution and improving convection representation, the model more accurately simulates carbon monoxide transport. Comparisons with satellite and in situ observations highlight its ability to capture seasonal variations and improve our understanding of atmospheric transport.
Pasquale Sellitto, Audrey Gaudel, and Bastien Sauvage
EGUsphere, https://doi.org/10.5194/egusphere-2024-3748, https://doi.org/10.5194/egusphere-2024-3748, 2025
Short summary
Short summary
Tropospheric ozone is a potent greenhouse gas; its anthropogenic levels rise contributes to climate change. We evaluate tropospheric ozone trends and climate impacts with aircraft data and a radiative model, comparing the baseline period (1994–2004) to 2011–2016 and 2019. Tropospheric ozone levels increased significantly but with a smaller trend in 2019 than in 2011–2016. However, ozone radiative forcing did not decrease between these periods because of different vertical distribution evolutions
Michaël Sicard, Alexandre Baron, Marion Ranaivombola, Dominique Gantois, Tristan Millet, Pasquale Sellitto, Nelson Bègue, Hassan Bencherif, Guillaume Payen, Nicolas Marquestaut, and Valentin Duflot
Atmos. Chem. Phys., 25, 367–381, https://doi.org/10.5194/acp-25-367-2025, https://doi.org/10.5194/acp-25-367-2025, 2025
Short summary
Short summary
This study quantifies the radiative impact over Réunion Island (21° S, 55° E) of the aerosols and water vapor injected into the stratosphere by the Hunga volcano in the South Pacific. The overall aerosol and water vapor impact on the Earth’s radiation budget for the whole period is negative (cooling, -0.82 ± 0.35 W m-2) and dominated by the aerosols. At the Earth’s surface, aerosols are the main drivers and produce a negative (cooling, -1.04 ± 0.36 W m-2) radiative impact.
Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Jan Clemens, Jens-Uwe Grooß, Gebhard Günther, Lars Hoffmann, Johannes C. Laube, Rolf Müller, Felix Ploeger, and Fred Stroh
Atmos. Chem. Phys., 24, 317–343, https://doi.org/10.5194/acp-24-317-2024, https://doi.org/10.5194/acp-24-317-2024, 2024
Short summary
Short summary
Over the Indian subcontinent, polluted air is rapidly uplifted to higher altitudes during the Asian monsoon season. We present an assessment of vertical transport in this region using different wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), as well as high-resolution aircraft measurements. In general, our findings confirm that the newest ECMWF reanalysis product, ERA5, yields a better representation of transport compared to the predecessor, ERA-Interim.
Pasquale Sellitto, Redha Belhadji, Juan Cuesta, Aurélien Podglajen, and Bernard Legras
Atmos. Chem. Phys., 23, 15523–15535, https://doi.org/10.5194/acp-23-15523-2023, https://doi.org/10.5194/acp-23-15523-2023, 2023
Short summary
Short summary
Record-breaking wildfires ravaged south-eastern Australia during the fire season 2019–2020. These fires injected a smoke plume in the stratosphere, which dispersed over the whole Southern Hemisphere and interacted with solar and terrestrial radiation. A number of detached smoke bubbles were also observed emanating from this plume and ascending quickly to over 35 km altitude. Here we study how absorption of radiation generated ascending motion of both the the hemispheric plume and the vortices.
Francesco Cairo, Martina Krämer, Armin Afchine, Guido Di Donfrancesco, Luca Di Liberto, Sergey Khaykin, Lorenza Lucaferri, Valentin Mitev, Max Port, Christian Rolf, Marcel Snels, Nicole Spelten, Ralf Weigel, and Stephan Borrmann
Atmos. Meas. Tech., 16, 4899–4925, https://doi.org/10.5194/amt-16-4899-2023, https://doi.org/10.5194/amt-16-4899-2023, 2023
Short summary
Short summary
Cirrus clouds have been observed over the Himalayan region between 10 km and the tropopause at 17–18 km. Data from backscattersonde, hygrometers, and particle cloud spectrometers have been compared to assess their consistency. Empirical relationships between optical parameters accessible with remote sensing lidars and cloud microphysical parameters (such as ice water content, particle number and surface area density, and particle aspherical fraction) have been established.
Paul Konopka, Christian Rolf, Marc von Hobe, Sergey M. Khaykin, Benjamin Clouser, Elisabeth Moyer, Fabrizio Ravegnani, Francesco D'Amato, Silvia Viciani, Nicole Spelten, Armin Afchine, Martina Krämer, Fred Stroh, and Felix Ploeger
Atmos. Chem. Phys., 23, 12935–12947, https://doi.org/10.5194/acp-23-12935-2023, https://doi.org/10.5194/acp-23-12935-2023, 2023
Short summary
Short summary
We studied water vapor in a critical region of the atmosphere, the Asian summer monsoon anticyclone, using rare in situ observations. Our study shows that extremely high water vapor values observed in the stratosphere within the Asian monsoon anticyclone still undergo significant freeze-drying and that water vapor concentrations set by the Lagrangian dry point are a better proxy for the stratospheric water vapor budget than rare observations of enhanced water mixing ratios.
Marc von Hobe, Domenico Taraborrelli, Sascha Alber, Birger Bohn, Hans-Peter Dorn, Hendrik Fuchs, Yun Li, Chenxi Qiu, Franz Rohrer, Roberto Sommariva, Fred Stroh, Zhaofeng Tan, Sergej Wedel, and Anna Novelli
Atmos. Chem. Phys., 23, 10609–10623, https://doi.org/10.5194/acp-23-10609-2023, https://doi.org/10.5194/acp-23-10609-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (OCS) transports sulfur from the troposphere to the stratosphere, where sulfate aerosols are formed that influence climate and stratospheric chemistry. An uncertain OCS source in the troposphere is chemical production form dimethyl sulfide (DMS), a gas released in large quantities from the oceans. We carried out experiments in a large atmospheric simulation chamber to further elucidate the chemical mechanism of OCS production from DMS.
Claudio Belotti, Flavio Barbara, Marco Barucci, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Alessio Montori, Filippo Pratesi, Markus Rettinger, Christian Rolf, Ralf Sussmann, Thomas Trickl, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 16, 2511–2529, https://doi.org/10.5194/amt-16-2511-2023, https://doi.org/10.5194/amt-16-2511-2023, 2023
Short summary
Short summary
FIRMOS (Far-Infrared Radiation Mobile Observation System) is a spectroradiometer measuring in the far-infrared, developed to support the preparation of the FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) satellite mission. In this paper, we describe the instrument, its data products, and the results of the comparison with a suite of observations made from a high-altitude site during a field campaign, in winter 2018–2019.
Francesco Cairo, Terry Deshler, Luca Di Liberto, Andrea Scoccione, and Marcel Snels
Atmos. Meas. Tech., 16, 419–431, https://doi.org/10.5194/amt-16-419-2023, https://doi.org/10.5194/amt-16-419-2023, 2023
Short summary
Short summary
The T-matrix theory was used to compute the backscatter and depolarization of mixed-phase PSC, assuming that particles are solid (NAT or possibly ice) above a threshold radius R and liquid (STS) below, and a single shape is common to all solid particles. We used a dataset of coincident lidar and balloon-borne backscattersonde and OPC measurements. The agreement between modelled and measured backscatter is reasonable and allows us to constrain the parameters R and AR.
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022, https://doi.org/10.5194/acp-22-14957-2022, 2022
Short summary
Short summary
The long-duration atmospheric impact of the Tonga eruption in January 2022 is a plume of water and sulfate aerosols in the stratosphere that persisted for more than 6 months. We study this evolution using several satellite instruments and analyse the unusual behaviour of this plume as sulfates and water first moved down rapidly and then separated into two layers. We also report the self-organization in compact and long-lived patches.
Mathieu Lachatre, Sylvain Mailler, Laurent Menut, Arineh Cholakian, Pasquale Sellitto, Guillaume Siour, Henda Guermazi, Giuseppe Salerno, and Salvatore Giammanco
Atmos. Chem. Phys., 22, 13861–13879, https://doi.org/10.5194/acp-22-13861-2022, https://doi.org/10.5194/acp-22-13861-2022, 2022
Short summary
Short summary
In this study, we have evaluated the predominance of various pathways of volcanic SO2 conversion to sulfates in the upper troposphere. We show that the main conversion pathway was gaseous oxidation by OH, although the liquid pathways were expected to be predominant. These results are interesting with respect to a better understanding of sulfate formation in the middle and upper troposphere and are an important component to help evaluate particulate matter radiative forcing.
Oliver Appel, Franziska Köllner, Antonis Dragoneas, Andreas Hünig, Sergej Molleker, Hans Schlager, Christoph Mahnke, Ralf Weigel, Max Port, Christiane Schulz, Frank Drewnick, Bärbel Vogel, Fred Stroh, and Stephan Borrmann
Atmos. Chem. Phys., 22, 13607–13630, https://doi.org/10.5194/acp-22-13607-2022, https://doi.org/10.5194/acp-22-13607-2022, 2022
Short summary
Short summary
This paper clarifies the chemical composition of the Asian tropopause aerosol layer (ATAL) by means of airborne in situ aerosol mass spectrometry (AMS). Ammonium nitrate and organics are found to significantly contribute to the particle layer, while sulfate does not show a layered structure. An analysis of the single-particle mass spectra suggests that secondary particle formation and subsequent growth dominate the particle composition, rather than condensation on pre-existing primary particles.
Paul Konopka, Mengchu Tao, Marc von Hobe, Lars Hoffmann, Corinna Kloss, Fabrizio Ravegnani, C. Michael Volk, Valentin Lauther, Andreas Zahn, Peter Hoor, and Felix Ploeger
Geosci. Model Dev., 15, 7471–7487, https://doi.org/10.5194/gmd-15-7471-2022, https://doi.org/10.5194/gmd-15-7471-2022, 2022
Short summary
Short summary
Pure trajectory-based transport models driven by meteorology derived from reanalysis products (ERA5) take into account only the resolved, advective part of transport. That means neither mixing processes nor unresolved subgrid-scale advective processes like convection are included. The Chemical Lagrangian Model of the Stratosphere (CLaMS) includes these processes. We show that isentropic mixing dominates unresolved transport. The second most important transport process is unresolved convection.
Clare E. Singer, Benjamin W. Clouser, Sergey M. Khaykin, Martina Krämer, Francesco Cairo, Thomas Peter, Alexey Lykov, Christian Rolf, Nicole Spelten, Armin Afchine, Simone Brunamonti, and Elisabeth J. Moyer
Atmos. Meas. Tech., 15, 4767–4783, https://doi.org/10.5194/amt-15-4767-2022, https://doi.org/10.5194/amt-15-4767-2022, 2022
Short summary
Short summary
In situ measurements of water vapor in the upper troposphere are necessary to study cloud formation and hydration of the stratosphere but challenging due to cold–dry conditions. We compare measurements from three water vapor instruments from the StratoClim campaign in 2017. In clear sky (clouds), point-by-point differences were <1.5±8 % (<1±8 %). This excellent agreement allows detection of fine-scale structures required to understand the impact of convection on stratospheric water vapor.
Pasquale Sellitto, Redha Belhadji, Corinna Kloss, and Bernard Legras
Atmos. Chem. Phys., 22, 9299–9311, https://doi.org/10.5194/acp-22-9299-2022, https://doi.org/10.5194/acp-22-9299-2022, 2022
Short summary
Short summary
As a consequence of extreme heat and drought, record-breaking wildfires ravaged south-eastern Australia during the fire season in 2019–2020. Fires injected a smoke plume very high up to the stratosphere, which dispersed quite quickly to the whole Southern Hemisphere and interacted with solar radiation, reflecting and absorbing part of it – thus producing impacts on the climate system. Here we estimate this impact on radiation and we study how it depends on the properties and ageing of the plume.
Sergey M. Khaykin, Elizabeth Moyer, Martina Krämer, Benjamin Clouser, Silvia Bucci, Bernard Legras, Alexey Lykov, Armin Afchine, Francesco Cairo, Ivan Formanyuk, Valentin Mitev, Renaud Matthey, Christian Rolf, Clare E. Singer, Nicole Spelten, Vasiliy Volkov, Vladimir Yushkov, and Fred Stroh
Atmos. Chem. Phys., 22, 3169–3189, https://doi.org/10.5194/acp-22-3169-2022, https://doi.org/10.5194/acp-22-3169-2022, 2022
Short summary
Short summary
The Asian monsoon anticyclone is the key contributor to the global annual maximum in lower stratospheric water vapour. We investigate the impact of deep convection on the lower stratospheric water using a unique set of observations aboard the high-altitude M55-Geophysica aircraft deployed in Nepal in summer 2017 within the EU StratoClim project. We find that convective plumes of wet air can persist within the Asian anticyclone for weeks, thereby enhancing the occurrence of high-level clouds.
Francesco Cairo, Terry Deshler, Luca Di Liberto, Andrea Scoccione, and Marcel Snels
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-28, https://doi.org/10.5194/amt-2022-28, 2022
Publication in AMT not foreseen
Short summary
Short summary
We study Mie theory on aspherical scatterers, computing on coincident measurements of PSC by lidar and Particle Counters, the backscatter and depolarization of mixed phase PSC. WParticles are assumed solid if larger than R; for these, Mie results are reduced by C < 1 and only a common fraction X < 1 of the backscattering is polarized. We retrieve R, C and X. The match of model and measurement is good for backscattering, poor for depolarization. The hypothesis on X may be not fulfilled.
Gianluca Di Natale, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Marco Gai, Alessio Montori, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 14, 6749–6758, https://doi.org/10.5194/amt-14-6749-2021, https://doi.org/10.5194/amt-14-6749-2021, 2021
Short summary
Short summary
The importance of cirrus and mixed-phase clouds in the Earth radiation budget has been proven by many studies. In this paper the properties that characterize these clouds are retrieved from lidar and far-infrared spectral measurements performed in winter 2018/19 on the Zugspitze (Germany). The synergy of lidar and spectrometer measurements allowed us to assess the exponent k of the power-law relationship between the backscattering and the extinction coefficients.
Christoph Mahnke, Ralf Weigel, Francesco Cairo, Jean-Paul Vernier, Armin Afchine, Martina Krämer, Valentin Mitev, Renaud Matthey, Silvia Viciani, Francesco D'Amato, Felix Ploeger, Terry Deshler, and Stephan Borrmann
Atmos. Chem. Phys., 21, 15259–15282, https://doi.org/10.5194/acp-21-15259-2021, https://doi.org/10.5194/acp-21-15259-2021, 2021
Short summary
Short summary
In 2017, in situ aerosol measurements were conducted aboard the M55 Geophysica in the Asian monsoon region. The vertical particle mixing ratio profiles show a distinct layer (15–18.5 km), the Asian tropopause aerosol layer (ATAL). The backscatter ratio (BR) was calculated based on the aerosol size distributions and compared with the BRs detected by a backscatter probe and a lidar aboard M55, and by the CALIOP lidar. All four methods show enhanced BRs in the ATAL altitude range (max. at 17.5 km).
Ralf Weigel, Christoph Mahnke, Manuel Baumgartner, Martina Krämer, Peter Spichtinger, Nicole Spelten, Armin Afchine, Christian Rolf, Silvia Viciani, Francesco D'Amato, Holger Tost, and Stephan Borrmann
Atmos. Chem. Phys., 21, 13455–13481, https://doi.org/10.5194/acp-21-13455-2021, https://doi.org/10.5194/acp-21-13455-2021, 2021
Short summary
Short summary
In July and August 2017, the StratoClim mission took place in Nepal with eight flights of the M-55 Geophysica at up to 20 km in the Asian monsoon anticyclone. New particle formation (NPF) next to cloud ice was detected in situ by abundant nucleation-mode aerosols (> 6 nm) along with ice particles (> 3 µm). NPF was observed mainly below the tropopause, down to 15 % being non-volatile residues. Observed intra-cloud NPF indicates its importance for the composition in the tropical tropopause layer.
Luca Palchetti, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Bertrand Cluzet, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Dina Khordakova, Alessio Montori, Hilke Oetjen, Markus Rettinger, Christian Rolf, Dirk Schuettemeyer, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Frank Gunther Wienhold
Earth Syst. Sci. Data, 13, 4303–4312, https://doi.org/10.5194/essd-13-4303-2021, https://doi.org/10.5194/essd-13-4303-2021, 2021
Short summary
Short summary
The FIRMOS far-infrared (IR) prototype, developed for the preparation of the ESA FORUM mission, was deployed for the first time at Mt. Zugspitze at 3000 m altitude to measure the far-IR spectrum of atmospheric emissions. The measurements, including co-located radiometers, lidars, radio soundings, weather, and surface properties, provide a unique dataset to study radiative properties of water vapour, cirrus clouds, and snow emissivity over the IR emissions, including the under-explored far-IR.
Ralf Weigel, Christoph Mahnke, Manuel Baumgartner, Antonis Dragoneas, Bärbel Vogel, Felix Ploeger, Silvia Viciani, Francesco D'Amato, Silvia Bucci, Bernard Legras, Beiping Luo, and Stephan Borrmann
Atmos. Chem. Phys., 21, 11689–11722, https://doi.org/10.5194/acp-21-11689-2021, https://doi.org/10.5194/acp-21-11689-2021, 2021
Short summary
Short summary
In July and August 2017, eight StratoClim mission flights of the Geophysica reached up to 20 km in the Asian monsoon anticyclone. New particle formation (NPF) was identified in situ by abundant nucleation-mode aerosols (6–15 nm in diameter) with mixing ratios of up to 50 000 mg−1. NPF occurred most frequently at 12–16 km with fractions of non-volatile residues of down to 15 %. Abundance and productivity of observed NPF indicate its ability to promote the Asian tropopause aerosol layer.
Felix Ploeger, Mohamadou Diallo, Edward Charlesworth, Paul Konopka, Bernard Legras, Johannes C. Laube, Jens-Uwe Grooß, Gebhard Günther, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 21, 8393–8412, https://doi.org/10.5194/acp-21-8393-2021, https://doi.org/10.5194/acp-21-8393-2021, 2021
Short summary
Short summary
We investigate the global stratospheric circulation (Brewer–Dobson circulation) in the new ECMWF ERA5 reanalysis based on age of air simulations, and we compare it to results from the preceding ERA-Interim reanalysis. Our results show a slower stratospheric circulation and higher age for ERA5. The age of air trend in ERA5 over the 1989–2018 period is negative throughout the stratosphere, related to multi-annual variability and a potential contribution from changes in the reanalysis system.
Francesco Cairo, Mauro De Muro, Marcel Snels, Luca Di Liberto, Silvia Bucci, Bernard Legras, Ajil Kottayil, Andrea Scoccione, and Stefano Ghisu
Atmos. Chem. Phys., 21, 7947–7961, https://doi.org/10.5194/acp-21-7947-2021, https://doi.org/10.5194/acp-21-7947-2021, 2021
Short summary
Short summary
A lidar was used in Palau from February–March 2016. Clouds were observed peaking at 3 km below the high cold-point tropopause (CPT). Their occurrence was linked with cold anomalies, while in warm cases, cirrus clouds were restricted to 5 km below the CPT. Thin subvisible cirrus (SVC) near the CPT had distinctive characteristics. They were linked to wave-induced cold anomalies. Back trajectories are mostly compatible with convective outflow, while some distinctive SVC may originate in situ.
Hugo Lestrelin, Bernard Legras, Aurélien Podglajen, and Mikail Salihoglu
Atmos. Chem. Phys., 21, 7113–7134, https://doi.org/10.5194/acp-21-7113-2021, https://doi.org/10.5194/acp-21-7113-2021, 2021
Short summary
Short summary
Following the 2020 Australian fires, it was recently discovered that stratospheric wildfire smoke plumes self-organize as anticyclonic vortices that persist for months and rise by 10 km due to the radiative heating from the absorbing smoke. In this study, we show that smoke-charged vortices previously occurred in the aftermath of the 2017 Canadian fires. We use meteorological analysis to characterize this new object in geophysical fluid dynamics, which likely impacts radiation and climate.
Keun-Ok Lee, Brice Barret, Eric L. Flochmoën, Pierre Tulet, Silvia Bucci, Marc von Hobe, Corinna Kloss, Bernard Legras, Maud Leriche, Bastien Sauvage, Fabrizio Ravegnani, and Alexey Ulanovsky
Atmos. Chem. Phys., 21, 3255–3274, https://doi.org/10.5194/acp-21-3255-2021, https://doi.org/10.5194/acp-21-3255-2021, 2021
Short summary
Short summary
This paper focuses on the emission sources and pathways of pollution from the boundary layer to the Asian monsoon anticyclone (AMA) during the StratoClim aircraft campaign period. Simulations with the Meso-NH cloud-chemistry model at a horizontal resolution of 15 km are performed over the Asian region to characterize the impact of monsoon deep convection on the composition of AMA and on the formation of the Asian tropopause aerosol layer during the StratoClim campaign.
Adriana Bossolasco, Fabrice Jegou, Pasquale Sellitto, Gwenaël Berthet, Corinna Kloss, and Bernard Legras
Atmos. Chem. Phys., 21, 2745–2764, https://doi.org/10.5194/acp-21-2745-2021, https://doi.org/10.5194/acp-21-2745-2021, 2021
Short summary
Short summary
Using the Community Earth System Model, we simulate the surface aerosols lifted to the Asian tropopause (the ATAL layer), its composition and trend, covering a long-term period (2000–2015). We identify a
double-peakaerosol vertical profile that we attribute to
dryand
convectivecloud-borne aerosols. We find that natural aerosol (mineral dust) is the dominant aerosol type and has no long-term trend. ATAL's anthropogenic fraction, by contrast, shows a marked positive trend.
Marcel Snels, Francesco Colao, Francesco Cairo, Ilir Shuli, Andrea Scoccione, Mauro De Muro, Michael Pitts, Lamont Poole, and Luca Di Liberto
Atmos. Chem. Phys., 21, 2165–2178, https://doi.org/10.5194/acp-21-2165-2021, https://doi.org/10.5194/acp-21-2165-2021, 2021
Short summary
Short summary
A total of 5 years of polar stratospheric cloud (PSC) observations by ground-based lidar at Concordia station (Antarctica) are presented. These data have been recorded in coincidence with the overpasses of the CALIOP lidar on the CALIPSO satellite. First we demonstrate that both lidars observe essentially the same thing, in terms of detection and composition of the PSCs. Then we use both datasets to study seasonal and interannual variations in the formation temperature of NAT mixtures.
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021, https://doi.org/10.5194/acp-21-1267-2021, 2021
Short summary
Short summary
The Asian summer monsoon (ASM) is known to foster transport of polluted tropospheric air into the stratosphere. To test and amend our picture of ASM vertical transport, we analyse distributions of airborne trace gas observations up to 20 km altitude near the main ASM vertical conduit south of the Himalayas. We also show that a new high-resolution version of the global chemistry climate model WACCM is able to reproduce the observations well.
Johannes Schneider, Ralf Weigel, Thomas Klimach, Antonis Dragoneas, Oliver Appel, Andreas Hünig, Sergej Molleker, Franziska Köllner, Hans-Christian Clemen, Oliver Eppers, Peter Hoppe, Peter Hoor, Christoph Mahnke, Martina Krämer, Christian Rolf, Jens-Uwe Grooß, Andreas Zahn, Florian Obersteiner, Fabrizio Ravegnani, Alexey Ulanovsky, Hans Schlager, Monika Scheibe, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Martin Zöger, and Stephan Borrmann
Atmos. Chem. Phys., 21, 989–1013, https://doi.org/10.5194/acp-21-989-2021, https://doi.org/10.5194/acp-21-989-2021, 2021
Short summary
Short summary
During five aircraft missions, we detected aerosol particles containing meteoric material in the lower stratosphere. The stratospheric measurements span a latitude range from 15 to 68° N, and we find that at potential temperature levels of more than 40 K above the tropopause; particles containing meteoric material occur at similar abundance fractions across latitudes and seasons. We conclude that meteoric material is efficiently distributed between high and low latitudes by isentropic mixing.
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Ghassan Taha, Mariam Tidiga, Maxim Eremenko, Adriana Bossolasco, Fabrice Jégou, Jean-Baptiste Renard, and Bernard Legras
Atmos. Chem. Phys., 21, 535–560, https://doi.org/10.5194/acp-21-535-2021, https://doi.org/10.5194/acp-21-535-2021, 2021
Short summary
Short summary
The year 2019 was particularly rich for the stratospheric aerosol layer due to two volcanic eruptions (at Raikoke and Ulawun) and wildfire events. With satellite observations and models, we describe the exceptionally complex situation following the Raikoke eruption. The respective plume overwhelmed the Northern Hemisphere stratosphere in terms of aerosol load and resulted in the highest climate impact throughout the past decade.
Sören Johansson, Michael Höpfner, Oliver Kirner, Ingo Wohltmann, Silvia Bucci, Bernard Legras, Felix Friedl-Vallon, Norbert Glatthor, Erik Kretschmer, Jörn Ungermann, and Gerald Wetzel
Atmos. Chem. Phys., 20, 14695–14715, https://doi.org/10.5194/acp-20-14695-2020, https://doi.org/10.5194/acp-20-14695-2020, 2020
Short summary
Short summary
We present high-resolution measurements of pollutant trace gases (PAN, C2H2, and HCOOH) in the Asian monsoon UTLS from the airborne limb imager GLORIA during StratoClim 2017. Enhancements are observed up to 16 km altitude, and PAN and C2H2 even up to 18 km. Two atmospheric models, CAMS and EMAC, reproduce the pollutant's large-scale structures but not finer structures. Convection is investigated using backward trajectories of the models ATLAS and TRACZILLA with advanced detection of convection.
Mathieu Lachatre, Sylvain Mailler, Laurent Menut, Solène Turquety, Pasquale Sellitto, Henda Guermazi, Giuseppe Salerno, Tommaso Caltabiano, and Elisa Carboni
Geosci. Model Dev., 13, 5707–5723, https://doi.org/10.5194/gmd-13-5707-2020, https://doi.org/10.5194/gmd-13-5707-2020, 2020
Short summary
Short summary
Excessive numerical diffusion is a major limitation in the representation of long-range transport in atmospheric models. In the present study, we focus on excessive diffusion in the vertical direction. We explore three possible ways of addressing this problem: increased vertical resolution, an advection scheme with anti-diffusive properties and more accurate representation of vertical wind. This study focused on a particular volcanic eruption event to improve atmospheric transport modeling.
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Short summary
To improve the representations of cirrus clouds in climate predictions, extended knowledge of their properties and geographical distribution is required. This study presents extensive airborne in situ and satellite remote sensing climatologies of cirrus and humidity, which serve as a guide to cirrus clouds. Further, exemplary radiative characteristics of cirrus types and also in situ observations of tropical tropopause layer cirrus and humidity in the Asian monsoon anticyclone are shown.
Bernard Legras and Silvia Bucci
Atmos. Chem. Phys., 20, 11045–11064, https://doi.org/10.5194/acp-20-11045-2020, https://doi.org/10.5194/acp-20-11045-2020, 2020
Short summary
Short summary
The Asian monsoon is the most active region bringing surface compounds by convection to the stratosphere during summer. We study the transport pathways and the trapping within the upper-layer anticyclonic circulation. Above 15 km, the confinement can be represented by a uniform ascent over continental Asia of about 200 m per day and a uniform loss to other regions with a characteristic time of 2 weeks. We rule out the presence of a
chimneyproposed in previous studies over the Tibetan Plateau.
Cited articles
Aung, T. S., Saboori, B., and Rasoulinezhad, E.: Economic growth and
environmental pollution in Myanmar: an analysis of environmental Kuznets
curve, Environ. Sci. Pollut. Res., 24, 20487–20501,
https://doi.org/10.1007/s11356-017-9567-3, 2017. a
Barret, B., Sauvage, B., Bennouna, Y., and Le Flochmoen, E.: Upper-tropospheric
CO and O3; budget during the Asian summer monsoon, Atmos.
Chem. Phys., 16, 9129–9147, https://doi.org/10.5194/acp-16-9129-2016, 2016. a
Bergman, J. W., Fierli, F., Jensen, E. J., Honomichl, S., and Pan, L. L.:
Boundary layer sources for the Asian anticyclone: Regional contributions
to a vertical conduit, J. Geophys. Res.-Atmos., 118,
2560–2575, https://doi.org/10.1002/jgrd.50142, 2013. a
Bergman, J. W., Pfister, L., and Yang, Q.: Identifying robust transport
features of the upper tropical troposphere: transport near the tropical
tropopause, J. Geophys. Res.-Atmos., 120, 6758–6776,
https://doi.org/10.1002/2015JD023523, 2015. a
Bian, J., Pan, L. L., Paulik, L., Vömel, H., Chen, H., and Lu, D.: In situ
water vapor and ozone measurements in Lhasa and Kunming during the
Asian summer monsoon: Measurements within the ASM anticyclone,
Geophys. Res. Lett., 39, L19808, https://doi.org/10.1029/2012GL052996, 2012. a
Chen, B., Xu, X. D., Yang, S., and Zhao, T. L.: Climatological perspectives of
air transport from atmospheric boundary layer to tropopause layer over
Asian monsoon regions during boreal summer inferred from Lagrangian
approach, Atmos. Chem. Phys., 12, 5827–5839,
https://doi.org/10.5194/acp-12-5827-2012, 2012. a
Derrien, M., Le Gleau, H., and Raoul, M.-P.: The use of the high resolution
visible in SAFNWC/MSG cloud mask,
available at: https://hal-meteofrance.archives-ouvertes.fr/meteo-00604325 (last access: 13 November 2019),
2010. a
Diallo, M., Legras, B., and Chédin, A.: Age of stratospheric air in the
ERA-Interim, Atmos. Chem. Phys., 12, 12133–12154,
https://doi.org/10.5194/acp-12-12133-2012, 2012. a
Dvortsov, V. L. and Solomon, S.: Response of the stratospheric temperatures and
ozone to past and future increases in stratospheric humidity, J.
Geophys. Res.-Atmos., 106, 7505–7514,
https://doi.org/10.1029/2000JD900637, 2001. a
Finkensieper, S., Meirink, J.-F., Van Zadelhoff, G.-J., Hanschmann, T., Benas,
N., Stengel, M., Fuchs, P., Hollmann, R., and Werscheck, M.: CLAAS-2: CM
SAF CLoud property dAtAset using SEVIRI-Edition 2,
https://doi.org/10.5676/EUM_SAF_CM/CLAAS/V002,
2016. a
Forster, P. M. D. F. and Shine, K. P.: Assessing the climate impact of trends
in stratospheric water vapor, Geophys. Res. Lett., 29, 10-1–10-4,
https://doi.org/10.1029/2001GL013909, 2002. a
Garny, H. and Randel, W. J.: Transport pathways from the Asian monsoon
anticyclone to the stratosphere, Atmos. Chem. Phys., 16,
2703–2718, https://doi.org/10.5194/acp-16-2703-2016, 2016. a
Gettelman, A., Kinnison, D. E., Dunkerton, T. J., and Brasseur, G. P.: Impact
of monsoon circulations on the upper troposphere and lower stratosphere,
J. Geophys. Res.-Atmos., 109, D22101,
https://doi.org/10.1029/2004JD004878, 2004. a
Hoppe, C. M., Ploeger, F., Konopka, P., and Müller, R.: Kinematic and diabatic
vertical velocity climatologies from a chemistry climate model, Atmos.
Chem. Phys., 16, 6223–6239, https://doi.org/10.5194/acp-16-6223-2016, 2016. a, b
Kloss, C., Berthet, G., Sellitto, P., Ploeger, F., Bucci, S., Khaykin, S., Jégou, F., Taha, G., Thomason, L. W., Barret, B., Le Flochmoen, E., von Hobe, M., Bossolasco, A., Bègue, N., and Legras, B.: Transport of the 2017 Canadian wildfire plume to the tropics via the Asian monsoon circulation, Atmos. Chem. Phys., 19, 13547–13567, https://doi.org/10.5194/acp-19-13547-2019, 2019. a
Konopka, P., Grooß, J.-U., Günther, G., Ploeger, F., Pommrich, R., Müller,
R., and Livesey, N.: Annual cycle of ozone at and above the tropical
tropopause: observations versus simulations with the Chemical Lagrangian
Model of the Stratosphere (CLaMS), Atmos. Chem. Phys.,
10, 121–132, https://doi.org/10.5194/acp-10-121-2010, 2010. a
Kumar, S.: A 10-year climatology of vertical properties of most active
convective clouds over the Indian regions using TRMM PR, Theor.
Appl. Climatol., 127, 429–440, https://doi.org/10.1007/s00704-015-1641-5, 2017. a
Lawrence, M. G.: Asia under a high-level brown cloud: Atmospheric science,
Nat. Geosci., 4, 352–353, https://doi.org/10.1038/ngeo1166, 2011. a
Legras, B. and Bucci, S.: Confinement of air in the Asian monsoon anticyclone and pathways of convective air to the stratosphere during the summer season, Atmos. Chem. Phys., 20, 11045–11064, https://doi.org/10.5194/acp-20-11045-2020, 2020. a
Legras, B., Pisso, I., Berthet, G., and Lefèvre, F.: Variability of the
Lagrangian turbulent diffusion in the lower stratosphere, Atmos.
Chem. Phys., 5, 1605–1622, https://doi.org/10.5194/acp-5-1605-2005, 2005. a
Leibnitz Institut für Troposphärenforschung: HALO database, available at: https://halo-db.pa.op.dlr.de/mission/101, last access: 1 September 2020.
Li, D., Vogel, B., Müller, R., Bian, J., Günther, G., Ploeger, F., Li, Q.,
Zhang, J., Bai, Z., Vömel, H., and Riese, M.: Dehydration and low ozone in
the tropopause layer over the Asian monsoon caused by tropical cyclones:
Lagrangian transport calculations using ERA-Interim and ERA5
reanalysis data, Atmos. Chem. Phys., 20, 4133–4152,
https://doi.org/10.5194/acp-20-4133-2020, 2020. a
Li, M., Zhang, Q., Kurokawa, J.-i., Woo, J.-H., He, K., Lu, Z., Ohara, T.,
Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H.,
Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian
anthropogenic emission inventory under the international collaboration
framework of the MICS-Asia and HTAP, Atmos. Chem. Phys.,
17, 935–963, https://doi.org/10.5194/acp-17-935-2017,
2017. a
Li, Q., Yang, S., Cui, X.-P., and Gao, S.-T.: Investigating the initiation and
propagation processes of convection in heavy precipitation over the western
Sichuan Basin, Atmos. Ocean. Sci. Lett., 10, 235–242,
https://doi.org/10.1080/16742834.2017.1301766,
2017. a
Liu, X., Ma, E., Cao, Z., and Jin, S.: Numerical Study of a Southwest
Vortex Rainstorm Process Influenced by the Eastward Movement of
Tibetan Plateau Vortex, Adv. Meteorol., 2018, 1–10,
https://doi.org/10.1155/2018/9081910, 2018. a
Menzel, W. P., Smith, W. L., and Stewart, T. R.: Improved Cloud Motion
Wind Vector and Altitude Assignment Using VAS, J. Climate
Appl. Meteorol., 22, 377–384,
https://doi.org/10.1175/1520-0450(1983)022<0377:ICMWVA>2.0.CO;2,
1983. a
Meteo-France: Algorithm Theoretical Basis Document for the Cloud
Product Processors of the NWC/GEO,
available at: http://www.nwcsaf.org/documents/20182/30773/NWC-CDOP2-GEO-MFL-SCI-ATBD-Cloud_v1.1.pdf (last access: 13 November 2019),
2016. a
Ning, G., Wang, S., Ma, M., Ni, C., Shang, Z., Wang, J., and Li, J.:
Characteristics of air pollution in different zones of Sichuan Basin,
China, Sci. Total Environ., 612, 975–984,
https://doi.org/10.1016/j.scitotenv.2017.08.205,
2018. a
Pan, L. L., Honomichl, S. B., Kinnison, D. E., Abalos, M., Randel, W. J.,
Bergman, J. W., and Bian, J.: Transport of chemical tracers from the boundary
layer to stratosphere associated with the dynamics of the Asian summer
monsoon, J. Geophys. Res.-Atmos., 121, 14159–14174,
https://doi.org/10.1002/2016JD025616, 2016. a
Park, M., Randel, W. J., Emmons, L. K., Bernath, P. F., Walker, K. A., and
Boone, C. D.: Chemical isolation in the Asian monsoon anticyclone observed
in Atmospheric Chemistry Experiment (ACE-FTS) data, Atmos.
Chem. Phys., 8, 757–764, https://doi.org/10.5194/acp-8-757-2008, 2008. a
Park, S.: Measurements of N2O isotopologues in the stratosphere: Influence
of transport on the apparent enrichment factors and the isotopologue fluxes
to the troposphere, J. Geophys. Res., 109, D01305,
https://doi.org/10.1029/2003JD003731,2004. a
Pisso, I. and Legras, B.: Turbulent vertical diffusivity in the sub-tropical
stratosphere, Atmos. Chem. Phys., 8, 697–707,
https://doi.org/10.5194/acp-8-697-2008, 2008. a, b
Ploeger, F., Konopka, P., Günther, G., Grooß, J.-U., and Müller, R.: Impact
of the vertical velocity scheme on modeling transport in the tropical
tropopause layer, J. Geophys. Res., 115, D03301,
https://doi.org/10.1029/2009JD012023, 2010. a, b
Ploeger, F., Fueglistaler, S., Grooß, J.-U., Günther, G., Konopka, P., Liu,
Y., Müller, R., Ravegnani, F., Schiller, C., Ulanovski, A., and Riese, M.:
Insight from ozone and water vapour on transport in the tropical tropopause
layer (TTL), Atmos. Chem. Phys., 11, 407–419,
https://doi.org/10.5194/acp-11-407-2011, 2011. a, b
Ploeger, F., Konopka, P., Müller, R., Fueglistaler, S., Schmidt, T., Manners,
J. C., Grooß, J.-U., Günther, G., Forster, P. M., and Riese, M.: Horizontal
transport affecting trace gas seasonality in the Tropical Tropopause
Layer (TTL), J. Geophys. Res.-Atmos., 117, D09303,
https://doi.org/10.1029/2011JD017267,
2012. a
Ploeger, F., Günther, G., Konopka, P., Fueglistaler, S., Müller, R., Hoppe,
C., Kunz, A., Spang, R., Grooß, J.-U., and Riese, M.: Horizontal water vapor
transport in the lower stratosphere from subtropics to high latitudes during
boreal summer, J. Geophys. Res.-Atmos., 118, 8111–8127,
https://doi.org/10.1002/jgrd.50636, 2013. a
Qiao, X., Guo, H., Tang, Y., Wang, P., Deng, W., Zhao, X., Hu, J., Ying, Q.,
and Zhang, H.: Local and regional contributions to fine particulate matter in
the 18 cities of Sichuan Basin, southwestern China, Atmos.
Chem. Phys., 19, 5791–5803, https://doi.org/10.5194/acp-19-5791-2019, 2019. a
Randel, W. J. and Park, M.: Deep convective influence on the Asian summer
monsoon anticyclone and associated tracer variability observed with
Atmospheric Infrared Sounder (AIRS), J. Geophys. Res.,
111, https://doi.org/10.1029/2005JD006490, 2006. a
Randel, W. J., Park, M., Emmons, L., Kinnison, D., Bernath, P., Walker, K. A.,
Boone, C., and Pumphrey, H.: Asian Monsoon Transport of Pollution to
the Stratosphere, Science, 328, 611–613, https://doi.org/10.1126/science.1182274,
2010. a, b, c
Romatschke, U. and Houze, R. A.: Characteristics of Precipitating
Convective Systems in the South Asian Monsoon, J.
Hydrometeorol., 12, 3–26, https://doi.org/10.1175/2010JHM1289.1,
2011. a
Santee, M. L., Manney, G. L., Livesey, N. J., Schwartz, M. J., Neu, J. L., and
Read, W. G.: A comprehensive overview of the climatological composition of
the Asian summer monsoon anticyclone based on 10 years of Aura
Microwave Limb Sounder measurements: MLS CHARACTERIZES ASIAN
SUMMER MONSOON, J. Geophys. Res.-Atmospheres, 122,
5491–5514, https://doi.org/10.1002/2016JD026408, 2017. a, b
Saunders, R., Matricardi, M., and Brunel, P.: An improved fast radiative
transfer model for assimilation of satellite radiance observations, Q.
J. Roy. Meteorol. Soc., 125, 1407–1425,
https://doi.org/10.1002/qj.1999.49712555615, 1999. a
Schmetz, J., Holmlund, K., Hoffman, J., Strauss, B., Mason, B., Gaertner, V.,
Koch, A., and Van De Berg, L.: Operational Cloud-Motion Winds from
Meteosat Infrared Images, J. Appl. Meteorol., 32,
1206–1225, https://doi.org/10.1175/1520-0450(1993)032<1206:OCMWFM>2.0.CO;2,
1993. a
Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., and
Ratier, A.: An Introduction to Meteosat Second Generation (MSG),
Bull. Am. Meteorol. Soc., 83, 977–992,
https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2,
2002. a
Schoeberl, M. R. and Dessler, A. E.: Dehydration of the stratosphere,
Atmos. Chem. Phys., 11, 8433–8446,
https://doi.org/10.5194/acp-11-8433-2011, 2011. a, b
Schulz, J., Albert, P., Behr, H.-D., Caprion, D., Deneke, H., Dewitte, S.,
Dürr, B., Fuchs, P., Gratzki, A., Hechler, P., Hollmann, R., Johnston, S.,
Karlsson, K.-G., Manninen, T., Müller, R., Reuter, M., Riihelä, A.,
Roebeling, R., Selbach, N., Tetzlaff, A., Thomas, W., Werscheck, M., Wolters,
E., and Zelenka, A.: Operational climate monitoring from space: the
EUMETSAT Satellite Application Facility on Climate Monitoring
(CM-SAF), Atmos. Chem. Phys., 9, 1687–1709,
https://doi.org/10.5194/acp-9-1687-2009, 2009. a
Sèze, G., Pelon, J., Derrien, M., Le Gléau, H., and Six, B.: Evaluation
against CALIPSO lidar observations of the multi-geostationary cloud cover
and type dataset assembled in the framework of the Megha-Tropiques
mission: Evaluation of a Multi-Geostationary Cloud Cover Set
using CALIOP Data, Q. J. Roy. Meteorol. Soc.,
141, 774–797, https://doi.org/10.1002/qj.2392, 2015. a
Sherwood, S. C., Roca, R., Weckwerth, T. M., and Andronova, N. G.: Tropospheric
water vapor, convection, and climate, Rev. Geophys., 48, L12807,
https://doi.org/10.1029/2009RG000301, 2010. a
Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M.,
Sanford, T. J., and Plattner, G.-K.: Contributions of Stratospheric Water
Vapor to Decadal Changes in the Rate of Global Warming, Science,
327, 1219–1223, https://doi.org/10.1126/science.1182488,
2010.
a
Stengel, M., Kniffka, A., Meirink, J. F., Lockhoff, M., Tan, J., and Hollmann,
R.: CLAAS: the CM SAF cloud property data set using SEVIRI,
Atmos. Chem. Phys., 14, 4297–4311,
https://doi.org/10.5194/acp-14-4297-2014, 2014. a
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note:
The Lagrangian particle dispersion model FLEXPART version 6.2,
Atmos. Chem. Phys., 5, 2461–2474,
https://doi.org/10.5194/acp-5-2461-2005, 2005. a
Tissier, A.-S. and Legras, B.: Convective sources of trajectories traversing
the tropical tropopause layer, Atmos. Chem. Phys., 16,
3383–3398, https://doi.org/10.5194/acp-16-3383-2016, 2016. a, b
Vernier, J.-P., Thomason, L. W., Pommereau, J.-P., Bourassa, A., Pelon, J.,
Garnier, A., Hauchecorne, A., Blanot, L., Trepte, C., Degenstein, D., and
Vargas, F.: Major influence of tropical volcanic eruptions on the
stratospheric aerosol layer during the last decade, Geophys. Res.
Lett., 38, RG2001, https://doi.org/10.1029/2011GL047563, 2011. a, b
Vernier, J.-P., Fairlie, T. D., Natarajan, M., Wienhold, F. G., Bian, J.,
Martinsson, B. G., Crumeyrolle, S., Thomason, L. W., and Bedka, K. M.:
Increase in upper tropospheric and lower stratospheric aerosol levels and its
potential connection with Asian pollution: ATAL nature and origin,
J. Geophys. Res.-Atmos., 120, 1608–1619,
https://doi.org/10.1002/2014JD022372, 2015. a
Viciani, S., Montori, A., Chiarugi, A., and D’Amato, F.: A Portable
Quantum Cascade Laser Spectrometer for Atmospheric Measurements
of Carbon Monoxide, Sensors, 18, 2380, https://doi.org/10.3390/s18072380, 2018. a
Vogel, B., Feck, T., Grooß, J.-U., and Riese, M.: Impact of a possible future
global hydrogen economy on Arctic stratospheric ozone loss, Energ.
Environ. Sci., 5, 6445, https://doi.org/10.1039/c2ee03181g, 2012. a
Vogel, B., Günther, G., Müller, R., Grooß, J.-U., and Riese, M.: Impact of
different Asian source regions on the composition of the Asian monsoon
anticyclone and of the extratropical lowermost stratosphere, Atmos.
Chem. Phys., 15, 13699–13716, https://doi.org/10.5194/acp-15-13699-2015, 2015. a, b
Vogel, B., Müller, R., Günther, G., Spang, R., Hanumanthu, S., Li, D., Riese,
M., and Stiller, G. P.: Lagrangian simulations of the transport of young air
masses to the top of the Asian monsoon anticyclone and into the tropical
pipe, Atmos. Chem. Phys., 19, 6007–6034,
https://doi.org/10.5194/acp-19-6007-2019, 2019. a
Wright, J. S. and Fueglistaler, S.: Large differences in reanalyses of diabatic
heating in the tropical upper troposphere and lower stratosphere, Atmos.
Chem. Phys., 13, 9565–9576, https://doi.org/10.5194/acp-13-9565-2013, 2013. a
Yushkov, V., Oulanovsky, A., Lechenuk, N., Roudakov, I., Arshinov, K.,
Tikhonov, F., Stefanutti, L., Ravegnani, F., Bonafé, U., and Georgiadis, T.:
A Chemiluminescent Analyzer for Stratospheric Measurements of the
Ozone Concentration (FOZAN), J. Atmos. Ocean.
Technol., 16, 1345–1350,
https://doi.org/10.1175/1520-0426(1999)016<1345:ACAFSM>2.0.CO;2,
1999. a
Short summary
The paper presents and evaluates a transport analysis method to study the convective injection of air in the upper troposphere–lower stratosphere of the Asian monsoon anticyclone region. The approach is thereby used to analyse the trace gas data collected during the StratoClim aircraft campaign. The results showed that fresh convective air can be injected fast at a high level of the atmosphere (above 17 km), with potential impacts on the stratospheric chemistry of the Northern Hemisphere.
The paper presents and evaluates a transport analysis method to study the convective injection...
Altmetrics
Final-revised paper
Preprint