Articles | Volume 20, issue 19
https://doi.org/10.5194/acp-20-11305-2020
https://doi.org/10.5194/acp-20-11305-2020
Research article
 | 
05 Oct 2020
Research article |  | 05 Oct 2020

Electricity savings and greenhouse gas emission reductions from global phase-down of hydrofluorocarbons

Pallav Purohit, Lena Höglund-Isaksson, John Dulac, Nihar Shah, Max Wei, Peter Rafaj, and Wolfgang Schöpp

Related authors

Trifluoroacetic acid deposition from emissions of HFO-1234yf in India, China, and the Middle East
Liji M. David, Mary Barth, Lena Höglund-Isaksson, Pallav Purohit, Guus J. M. Velders, Sam Glaser, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 14833–14849, https://doi.org/10.5194/acp-21-14833-2021,https://doi.org/10.5194/acp-21-14833-2021, 2021
Short summary
Global anthropogenic emissions of particulate matter including black carbon
Zbigniew Klimont, Kaarle Kupiainen, Chris Heyes, Pallav Purohit, Janusz Cofala, Peter Rafaj, Jens Borken-Kleefeld, and Wolfgang Schöpp
Atmos. Chem. Phys., 17, 8681–8723, https://doi.org/10.5194/acp-17-8681-2017,https://doi.org/10.5194/acp-17-8681-2017, 2017
Short summary
Global emissions of fluorinated greenhouse gases 2005–2050 with abatement potentials and costs
Pallav Purohit and Lena Höglund-Isaksson
Atmos. Chem. Phys., 17, 2795–2816, https://doi.org/10.5194/acp-17-2795-2017,https://doi.org/10.5194/acp-17-2795-2017, 2017
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
The role of tropical upwelling in explaining discrepancies between recent modeled and observed lower-stratospheric ozone trends
Sean M. Davis, Nicholas Davis, Robert W. Portmann, Eric Ray, and Karen Rosenlof
Atmos. Chem. Phys., 23, 3347–3361, https://doi.org/10.5194/acp-23-3347-2023,https://doi.org/10.5194/acp-23-3347-2023, 2023
Short summary
The roles of the Quasi-Biennial Oscillation and El Niño for entry stratospheric water vapor in observations and coupled chemistry–ocean CCMI and CMIP6 models
Shlomi Ziskin Ziv, Chaim I. Garfinkel, Sean Davis, and Antara Banerjee
Atmos. Chem. Phys., 22, 7523–7538, https://doi.org/10.5194/acp-22-7523-2022,https://doi.org/10.5194/acp-22-7523-2022, 2022
Short summary
Improved estimation of volcanic SO2 injections from satellite retrievals and Lagrangian transport simulations: the 2019 Raikoke eruption
Zhongyin Cai, Sabine Griessbach, and Lars Hoffmann
Atmos. Chem. Phys., 22, 6787–6809, https://doi.org/10.5194/acp-22-6787-2022,https://doi.org/10.5194/acp-22-6787-2022, 2022
Short summary
Hemispheric asymmetries in recent changes in the stratospheric circulation
Felix Ploeger and Hella Garny
Atmos. Chem. Phys., 22, 5559–5576, https://doi.org/10.5194/acp-22-5559-2022,https://doi.org/10.5194/acp-22-5559-2022, 2022
Short summary
A stratospheric prognostic ozone for seamless Earth system models: performance, impacts and future
Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer
Atmos. Chem. Phys., 22, 4277–4302, https://doi.org/10.5194/acp-22-4277-2022,https://doi.org/10.5194/acp-22-4277-2022, 2022
Short summary

Cited articles

Abdelaziz, O., Shrestha, S., Shen, B., Elatar, A., Linkous, R., Goetzler, W., Guernsey, M., and Bargach, Y.: Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A – Alternatives for Rooftop Air Conditioners, ORNL/TM-2016/513, Oak Ridge National Laboratory (ORNL), Oak Ridge, USA, 2016. 
Abel, D., Holloway, T., Kladar, R. M., Meier, P., Ahl, D., Harkey, M., and Patz, J.: Response of Power Plant Emissions to Ambient Temperature in the Eastern United States, Environ. Sci. Technol., 51, 5838–5846, https://doi.org/10.1002/grl.50967, 2017. 
Anderson, S. O., Bandarra, E., Bhushan, C, Borgford-Parnell, N., Chen, Z., Christensen, J., Devotta, S., Lal Dhasan, M., Dreyfus, G. B., Dulac, J., Elassaad, B., Fahey, D. W., Gallagher, G., Gonzalez, M., Höglund Isaksson, L., Hu, J., Jiang, Y., Lane, K., Mangotra, K., Masson, N., de Oña, A., Oppelt, D., Peters, T., McMahon, J., Picolotti, R., Purohit, P., Schaeffer, M., Shah, N., Siderius, H. P., Wei, M., and Xu, Y.: Cooling Emissions and Policy Synthesis Report: Benefits of cooling efficiency and the Kigali Amendment, United Nations Environment Programme and International Energy Agency, available at: https://www.ccacoalition.org/en/resources/cooling-emissions-and-policy-synthesis-report-benefits-cooling-efficiency-and-kigali, last access: 15 August 2020. 
Astrain, D., Merino, A., Catalán, L., Aranguren, P., Araiz, M., Sánchez, D., Cabello, R., and Llopis, R.: Improvements in the cooling capacity and the COP of a transcritical CO2 refrigeration plant operating with a thermoelectric subcooling system, Appl. Therm. Eng., 155, 110–122, https://doi.org/10.1016/j.applthermaleng.2019.03.123, 2019. 
Download
Short summary
This study shows that if energy efficiency improvements in cooling technologies are addressed simultaneously with a phase-down of hydrofluorocarbons (HFCs), not only will global warming be mitigated through the elimination of HFCs but also by saving about a fifth of future global electricity consumption. This means preventing between 411 and 631 Pg CO2 equivalent of greenhouse gases between today and 2100, thereby offering a significant contribution towards staying well below 2 °C warming.
Altmetrics
Final-revised paper
Preprint