Articles | Volume 20, issue 19
https://doi.org/10.5194/acp-20-11305-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-11305-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Electricity savings and greenhouse gas emission reductions from global phase-down of hydrofluorocarbons
Air Quality and Greenhouse Gases (AIR) Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361, Laxenburg, Austria
Lena Höglund-Isaksson
Air Quality and Greenhouse Gases (AIR) Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361, Laxenburg, Austria
John Dulac
International Energy Agency (IEA), 9, Rue de la Fédération, 75015 Paris, France
Nihar Shah
Energy Technology Area, Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720, USA
Max Wei
Energy Technology Area, Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720, USA
Peter Rafaj
Air Quality and Greenhouse Gases (AIR) Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361, Laxenburg, Austria
Wolfgang Schöpp
Air Quality and Greenhouse Gases (AIR) Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361, Laxenburg, Austria
Related authors
Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyoung Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 24, 12465–12493, https://doi.org/10.5194/acp-24-12465-2024, https://doi.org/10.5194/acp-24-12465-2024, 2024
Short summary
Short summary
We constrain the global emissions of the very potent greenhouse gas sulfur hexafluoride (SF6) between 2005 and 2021. We show that SF6 emissions are decreasing in the USA and in the EU, while they are substantially growing in China, leading overall to an increasing global emission trend. The national reports for the USA, EU, and China all underestimated their SF6 emissions. However, stringent mitigation measures can successfully reduce SF6 emissions, as can be seen in the EU emission trend.
Liji M. David, Mary Barth, Lena Höglund-Isaksson, Pallav Purohit, Guus J. M. Velders, Sam Glaser, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 14833–14849, https://doi.org/10.5194/acp-21-14833-2021, https://doi.org/10.5194/acp-21-14833-2021, 2021
Short summary
Short summary
We calculated the expected concentrations of trifluoroacetic acid (TFA) from the atmospheric breakdown of HFO-1234yf (CF3CF=CH2), a substitute for global warming hydrofluorocarbons, emitted now and in the future by India, China, and the Middle East. We used two chemical transport models. We conclude that the projected emissions through 2040 would not be detrimental, given the current knowledge of the effects of TFA on humans and ecosystems.
Zbigniew Klimont, Kaarle Kupiainen, Chris Heyes, Pallav Purohit, Janusz Cofala, Peter Rafaj, Jens Borken-Kleefeld, and Wolfgang Schöpp
Atmos. Chem. Phys., 17, 8681–8723, https://doi.org/10.5194/acp-17-8681-2017, https://doi.org/10.5194/acp-17-8681-2017, 2017
Short summary
Short summary
This paper presents a comprehensive assessment of global anthropogenic emissions of particulate matter for 1990–2010. Global emissions have not changed much in this period, showing a strong decoupling from the increase in energy consumption (and carbon dioxide emissions). Regional trends were different – increase in East Asia and Africa and decline in Europe and North America. In 2010, 60 % of emissions originated in Asia and more than half from cooking and heating stoves.
Pallav Purohit and Lena Höglund-Isaksson
Atmos. Chem. Phys., 17, 2795–2816, https://doi.org/10.5194/acp-17-2795-2017, https://doi.org/10.5194/acp-17-2795-2017, 2017
Short summary
Short summary
Fluorinated gas (F-gas) emissions have increased significantly in recent years and are expected to rise further due to increased demand for cooling services. This study uses a bottom-up approach to assess global F-gas emissions and their abatement potentials and costs for 2005–2050. In the long run F-gas emissions can be almost eliminated using existing alternative options, although achieving deep cuts in emissions is found to be relatively more expensive in developing than developed countries.
Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyoung Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 24, 12465–12493, https://doi.org/10.5194/acp-24-12465-2024, https://doi.org/10.5194/acp-24-12465-2024, 2024
Short summary
Short summary
We constrain the global emissions of the very potent greenhouse gas sulfur hexafluoride (SF6) between 2005 and 2021. We show that SF6 emissions are decreasing in the USA and in the EU, while they are substantially growing in China, leading overall to an increasing global emission trend. The national reports for the USA, EU, and China all underestimated their SF6 emissions. However, stringent mitigation measures can successfully reduce SF6 emissions, as can be seen in the EU emission trend.
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
Maria K. Tenkanen, Aki Tsuruta, Hugo Denier van der Gon, Lena Höglund-Isaksson, Antti Leppänen, Tiina Markkanen, Ana Maria Roxana Petrescu, Maarit Raivonen, and Tuula Aalto
EGUsphere, https://doi.org/10.5194/egusphere-2024-1953, https://doi.org/10.5194/egusphere-2024-1953, 2024
Short summary
Short summary
Accurate national methane (CH4) emission estimates are essential for tracking progress towards climate goals. This study compares estimates from Finland, which use different methods and scales, and shows how well a global model estimates emissions within a country. The bottom-up estimates vary a lot but constraining them with atmospheric CH4 measurements brought the estimates closer together. We also highlight the importance of quantifying natural emissions alongside anthropogenic emissions.
Flora Maria Brocza, Peter Rafaj, Robert Sander, Fabian Wagner, and Jenny Marie Jones
Atmos. Chem. Phys., 24, 7385–7404, https://doi.org/10.5194/acp-24-7385-2024, https://doi.org/10.5194/acp-24-7385-2024, 2024
Short summary
Short summary
To understand how atmospheric mercury levels will change in the future, we model how anthropogenic Hg releases will change following developments in human energy use and mercury use and efforts to reduce pollution and battle climate change. Overall, the findings emphasize that it will be necessary to implement targeted Hg control measures in addition to stringent climate and clean air policies to achieve significant reductions in Hg emissions.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter Raymond, Pierre Regnier, Joseph G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihito Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joel Thanwerdas, Hanquin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido van der Werf, Doug E. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-115, https://doi.org/10.5194/essd-2024-115, 2024
Preprint under review for ESSD
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesize and update the budget of the sources and sinks of CH4. This edition benefits from important progresses in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Terry Keating, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-65, https://doi.org/10.5194/gmd-2024-65, 2024
Revised manuscript under review for GMD
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed to inform the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic and multi-media mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases in the environment.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Liji M. David, Mary Barth, Lena Höglund-Isaksson, Pallav Purohit, Guus J. M. Velders, Sam Glaser, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 14833–14849, https://doi.org/10.5194/acp-21-14833-2021, https://doi.org/10.5194/acp-21-14833-2021, 2021
Short summary
Short summary
We calculated the expected concentrations of trifluoroacetic acid (TFA) from the atmospheric breakdown of HFO-1234yf (CF3CF=CH2), a substitute for global warming hydrofluorocarbons, emitted now and in the future by India, China, and the Middle East. We used two chemical transport models. We conclude that the projected emissions through 2040 would not be detrimental, given the current knowledge of the effects of TFA on humans and ecosystems.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Ana Maria Roxana Petrescu, Glen P. Peters, Greet Janssens-Maenhout, Philippe Ciais, Francesco N. Tubiello, Giacomo Grassi, Gert-Jan Nabuurs, Adrian Leip, Gema Carmona-Garcia, Wilfried Winiwarter, Lena Höglund-Isaksson, Dirk Günther, Efisio Solazzo, Anja Kiesow, Ana Bastos, Julia Pongratz, Julia E. M. S. Nabel, Giulia Conchedda, Roberto Pilli, Robbie M. Andrew, Mart-Jan Schelhaas, and Albertus J. Dolman
Earth Syst. Sci. Data, 12, 961–1001, https://doi.org/10.5194/essd-12-961-2020, https://doi.org/10.5194/essd-12-961-2020, 2020
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up GHG anthropogenic emissions from agriculture, forestry and other land use (AFOLU) in the EU28. The data integrate recent AFOLU emission inventories with ecosystem data and land carbon models, aiming at reconciling GHG budgets with official country-level UNFCCC inventories. We provide comprehensive emission assessments in support to policy, facilitating real-time verification procedures.
Adriana Gómez-Sanabria, Lena Höglund-Isaksson, Peter Rafaj, and Wolfgang Schöpp
Adv. Geosci., 45, 105–113, https://doi.org/10.5194/adgeo-45-105-2018, https://doi.org/10.5194/adgeo-45-105-2018, 2018
Short summary
Short summary
This study shows that global implementation of a circular system to treat waste and wastewater could increase the relative contribution of these sources to global energy demand from 2 % to 9 % by 2040, corresponding to a maximum energy potential of 64 EJ per year. The outcome of the study is the result of compiling and analyzing data on waste and wastewater generation and treatment and developing future scenarios in which carbon flows and energy generation are quantified for 174 country-regions.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
Zbigniew Klimont, Kaarle Kupiainen, Chris Heyes, Pallav Purohit, Janusz Cofala, Peter Rafaj, Jens Borken-Kleefeld, and Wolfgang Schöpp
Atmos. Chem. Phys., 17, 8681–8723, https://doi.org/10.5194/acp-17-8681-2017, https://doi.org/10.5194/acp-17-8681-2017, 2017
Short summary
Short summary
This paper presents a comprehensive assessment of global anthropogenic emissions of particulate matter for 1990–2010. Global emissions have not changed much in this period, showing a strong decoupling from the increase in energy consumption (and carbon dioxide emissions). Regional trends were different – increase in East Asia and Africa and decline in Europe and North America. In 2010, 60 % of emissions originated in Asia and more than half from cooking and heating stoves.
Pallav Purohit and Lena Höglund-Isaksson
Atmos. Chem. Phys., 17, 2795–2816, https://doi.org/10.5194/acp-17-2795-2017, https://doi.org/10.5194/acp-17-2795-2017, 2017
Short summary
Short summary
Fluorinated gas (F-gas) emissions have increased significantly in recent years and are expected to rise further due to increased demand for cooling services. This study uses a bottom-up approach to assess global F-gas emissions and their abatement potentials and costs for 2005–2050. In the long run F-gas emissions can be almost eliminated using existing alternative options, although achieving deep cuts in emissions is found to be relatively more expensive in developing than developed countries.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Analytical approximation of the definite Chapman integral for arbitrary zenith angles
Moist bias in the Pacific upper troposphere and lower stratosphere (UTLS) in climate models affects regional circulation patterns
Evaluation of vertical transport in ERA5 and ERA-Interim reanalysis using high-altitude aircraft measurements in the Asian summer monsoon 2017
Injection strategy – a driver of atmospheric circulation and ozone response to stratospheric aerosol geoengineering
Quantifying stratospheric ozone trends over 1984–2020: a comparison of ordinary and regularized multivariate regression models
Surface ozone over the Tibetan Plateau controlled by stratospheric intrusion
The role of tropical upwelling in explaining discrepancies between recent modeled and observed lower-stratospheric ozone trends
The roles of the Quasi-Biennial Oscillation and El Niño for entry stratospheric water vapor in observations and coupled chemistry–ocean CCMI and CMIP6 models
Improved estimation of volcanic SO2 injections from satellite retrievals and Lagrangian transport simulations: the 2019 Raikoke eruption
Hemispheric asymmetries in recent changes in the stratospheric circulation
A stratospheric prognostic ozone for seamless Earth system models: performance, impacts and future
The 2019 Raikoke volcanic eruption – Part 1: Dispersion model simulations and satellite retrievals of volcanic sulfur dioxide
The stratospheric Brewer–Dobson circulation inferred from age of air in the ERA5 reanalysis
Simulations of anthropogenic bromoform indicate high emissions at the coast of East Asia
Sensitivity of stratospheric water vapour to variability in tropical tropopause temperatures and large-scale transport
Technical note: Lowermost-stratosphere moist bias in ECMWF IFS model diagnosed from airborne GLORIA observations during winter–spring 2016
The response of stratospheric water vapor to climate change driven by different forcing agents
Influence of convection on stratospheric water vapor in the North American monsoon region
Impact of convectively lofted ice on the seasonal cycle of water vapor in the tropical tropopause layer
Simulating the atmospheric response to the 11-year solar cycle forcing with the UM-UKCA model: the role of detection method and natural variability
Transport of trace gases via eddy shedding from the Asian summer monsoon anticyclone and associated impacts on ozone heating rates
Detectability of the impacts of ozone-depleting substances and greenhouse gases upon stratospheric ozone accounting for nonlinearities in historical forcings
Multi-decadal records of stratospheric composition and their relationship to stratospheric circulation change
Brominated VSLS and their influence on ozone under a changing climate
Contribution of different processes to changes in tropical lower-stratospheric water vapor in chemistry–climate models
Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere
A new time-independent formulation of fractional release
The millennium water vapour drop in chemistry–climate model simulations
Impact of major volcanic eruptions on stratospheric water vapour
Variability of water vapour in the Arctic stratosphere
On the hiatus in the acceleration of tropical upwelling since the beginning of the 21st century
Trends in peroxyacetyl nitrate (PAN) in the upper troposphere and lower stratosphere over southern Asia during the summer monsoon season: regional impacts
Spatial regression analysis on 32 years of total column ozone data
Ozone seasonality above the tropical tropopause: reconciling the Eulerian and Lagrangian perspectives of transport processes
Modeling upper tropospheric and lower stratospheric water vapor anomalies
Evolution of Antarctic ozone in September–December predicted by CCMVal-2 model simulations for the 21st century
Assessment of the interannual variability and influence of the QBO and upwelling on tracer–tracer distributions of N2O and O3 in the tropical lower stratosphere
OCS photolytic isotope effects from first principles: sulfur and carbon isotopes, temperature dependence and implications for the stratosphere
On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 2: The effects of the El Niño/Southern Oscillation, volcanic eruptions and contributions of atmospheric dynamics and chemistry to long-term total ozone changes
Relationships between Brewer-Dobson circulation, double tropopauses, ozone and stratospheric water vapour
Simulation of stratospheric water vapor and trends using three reanalyses
Climatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach
Solar response in tropical stratospheric ozone: a 3-D chemical transport model study using ERA reanalyses
Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: modulation of the NAM index
Forecasts and assimilation experiments of the Antarctic ozone hole 2008
Extreme events in total ozone over Arosa – Part 2: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes
Technical Note: Trend estimation from irregularly sampled, correlated data
Modeling the transport of very short-lived substances into the tropical upper troposphere and lower stratosphere
Dongxiao Yue
Atmos. Chem. Phys., 24, 5093–5097, https://doi.org/10.5194/acp-24-5093-2024, https://doi.org/10.5194/acp-24-5093-2024, 2024
Short summary
Short summary
The stunning colors of the sky and clouds result from light scattering in the atmosphere, whose density changes with height. Previously, calculating these colors involves costly, sometimes inaccurate methods. This paper presents a silver bullet: a single elegant formula that simplifies these complex calculations. What is the result? We have faster, more precise predictions of atmospheric colors, from Earth's blue skies and red sunsets to Venus's golden hues.
Felix Ploeger, Thomas Birner, Edward Charlesworth, Paul Konopka, and Rolf Müller
Atmos. Chem. Phys., 24, 2033–2043, https://doi.org/10.5194/acp-24-2033-2024, https://doi.org/10.5194/acp-24-2033-2024, 2024
Short summary
Short summary
We present a novel mechanism of how regional anomalies in water vapour concentrations in the upper troposphere and lower stratosphere impact regional atmospheric circulation systems. These impacts include a displaced upper-level Asian monsoon circulation and strengthened prevailing westerlies in the Pacific region. Current climate models have biases in simulating these regional water vapour anomalies and circulation impacts, but the biases can be avoided by improving the model transport.
Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Jan Clemens, Jens-Uwe Grooß, Gebhard Günther, Lars Hoffmann, Johannes C. Laube, Rolf Müller, Felix Ploeger, and Fred Stroh
Atmos. Chem. Phys., 24, 317–343, https://doi.org/10.5194/acp-24-317-2024, https://doi.org/10.5194/acp-24-317-2024, 2024
Short summary
Short summary
Over the Indian subcontinent, polluted air is rapidly uplifted to higher altitudes during the Asian monsoon season. We present an assessment of vertical transport in this region using different wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), as well as high-resolution aircraft measurements. In general, our findings confirm that the newest ECMWF reanalysis product, ERA5, yields a better representation of transport compared to the predecessor, ERA-Interim.
Ewa M. Bednarz, Amy H. Butler, Daniele Visioni, Yan Zhang, Ben Kravitz, and Douglas G. MacMartin
Atmos. Chem. Phys., 23, 13665–13684, https://doi.org/10.5194/acp-23-13665-2023, https://doi.org/10.5194/acp-23-13665-2023, 2023
Short summary
Short summary
We use a state-of-the-art Earth system model and a set of stratospheric aerosol injection (SAI) strategies to achieve the same level of global mean surface cooling through different combinations of location and/or timing of the injection. We demonstrate that the choice of SAI strategy can lead to contrasting impacts on stratospheric and tropospheric temperatures, circulation, and chemistry (including stratospheric ozone), thereby leading to different impacts on regional surface climate.
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Jianchun Bian, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 23, 13029–13047, https://doi.org/10.5194/acp-23-13029-2023, https://doi.org/10.5194/acp-23-13029-2023, 2023
Short summary
Short summary
For the first time a regularized multivariate regression model is used to estimate stratospheric ozone trends. Regularized regression avoids the over-fitting issue due to correlation among explanatory variables. We demonstrate that there are considerable differences in satellite-based and chemical-model-based ozone trends, highlighting large uncertainties in our understanding about ozone variability. We argue that caution is needed when interpreting results with different methods and datasets.
Xiufeng Yin, Dipesh Rupakheti, Guoshuai Zhang, Jiali Luo, Shichang Kang, Benjamin de Foy, Junhua Yang, Zhenming Ji, Zhiyuan Cong, Maheswar Rupakheti, Ping Li, Yuling Hu, and Qianggong Zhang
Atmos. Chem. Phys., 23, 10137–10143, https://doi.org/10.5194/acp-23-10137-2023, https://doi.org/10.5194/acp-23-10137-2023, 2023
Short summary
Short summary
The monthly mean surface ozone concentrations peaked earlier in the south in April and May and later in the north in June and July over the Tibetan Plateau. The migration of monthly surface ozone peaks was coupled with the synchronous movement of tropopause folds and the westerly jet that created conditions conducive to stratospheric ozone intrusion. Stratospheric ozone intrusion significantly contributed to surface ozone across the Tibetan Plateau.
Sean M. Davis, Nicholas Davis, Robert W. Portmann, Eric Ray, and Karen Rosenlof
Atmos. Chem. Phys., 23, 3347–3361, https://doi.org/10.5194/acp-23-3347-2023, https://doi.org/10.5194/acp-23-3347-2023, 2023
Short summary
Short summary
Ozone in the lower part of the stratosphere has not increased and has perhaps even continued to decline in recent decades. This study demonstrates that the amount of ozone in this region is highly sensitive to the amount of air upwelling into the stratosphere in the tropics and that simulations from a climate model nudged to historical meteorological fields often fail to accurately capture the variations in tropical upwelling that control short-term trends in lower-stratospheric ozone.
Shlomi Ziskin Ziv, Chaim I. Garfinkel, Sean Davis, and Antara Banerjee
Atmos. Chem. Phys., 22, 7523–7538, https://doi.org/10.5194/acp-22-7523-2022, https://doi.org/10.5194/acp-22-7523-2022, 2022
Short summary
Short summary
Stratospheric water vapor is important for Earth's overall greenhouse effect and for ozone chemistry; however the factors governing its variability on interannual timescales are not fully known, and previous modeling studies have indicated that models struggle to capture this interannual variability. We demonstrate that nonlinear interactions are important for determining overall water vapor concentrations and also that models have improved in their ability to capture these connections.
Zhongyin Cai, Sabine Griessbach, and Lars Hoffmann
Atmos. Chem. Phys., 22, 6787–6809, https://doi.org/10.5194/acp-22-6787-2022, https://doi.org/10.5194/acp-22-6787-2022, 2022
Short summary
Short summary
Using AIRS and TROPOMI sulfur dioxide retrievals and the Lagrangian transport model MPTRAC, we present an improved reconstruction of injection parameters of the 2019 Raikoke eruption. Reconstructions agree well between using AIRS nighttime and TROPOMI daytime retrievals, showing the potential of our approach to create a long-term volcanic sulfur dioxide inventory from nearly 20 years of AIRS retrievals.
Felix Ploeger and Hella Garny
Atmos. Chem. Phys., 22, 5559–5576, https://doi.org/10.5194/acp-22-5559-2022, https://doi.org/10.5194/acp-22-5559-2022, 2022
Short summary
Short summary
We investigate hemispheric asymmetries in stratospheric circulation changes in the last 2 decades in model simulations and atmospheric observations. We find that observed trace gas changes can be explained by a structural circulation change related to a deepening circulation in the Northern Hemisphere relative to the Southern Hemisphere. As this asymmetric signal is small compared to internal variability observed circulation trends over the recent past are not in contradiction to climate models.
Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer
Atmos. Chem. Phys., 22, 4277–4302, https://doi.org/10.5194/acp-22-4277-2022, https://doi.org/10.5194/acp-22-4277-2022, 2022
Short summary
Short summary
The stratosphere is emerging as one of the keys to improve tropospheric weather and climate predictions. This study provides evidence of the role the stratospheric ozone layer plays in improving weather predictions at different timescales. Using a new ozone modelling approach suitable for high-resolution global models that provide operational forecasts from days to seasons, we find significant improvements in stratospheric meteorological fields and stratosphere–troposphere coupling.
Johannes de Leeuw, Anja Schmidt, Claire S. Witham, Nicolas Theys, Isabelle A. Taylor, Roy G. Grainger, Richard J. Pope, Jim Haywood, Martin Osborne, and Nina I. Kristiansen
Atmos. Chem. Phys., 21, 10851–10879, https://doi.org/10.5194/acp-21-10851-2021, https://doi.org/10.5194/acp-21-10851-2021, 2021
Short summary
Short summary
Using the NAME dispersion model in combination with high-resolution SO2 satellite data from TROPOMI, we investigate the dispersion of volcanic SO2 from the 2019 Raikoke eruption. NAME accurately simulates the dispersion of SO2 during the first 2–3 weeks after the eruption and illustrates the potential of using high-resolution satellite data to identify potential limitations in dispersion models, which will ultimately help to improve efforts to forecast the dispersion of volcanic clouds.
Felix Ploeger, Mohamadou Diallo, Edward Charlesworth, Paul Konopka, Bernard Legras, Johannes C. Laube, Jens-Uwe Grooß, Gebhard Günther, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 21, 8393–8412, https://doi.org/10.5194/acp-21-8393-2021, https://doi.org/10.5194/acp-21-8393-2021, 2021
Short summary
Short summary
We investigate the global stratospheric circulation (Brewer–Dobson circulation) in the new ECMWF ERA5 reanalysis based on age of air simulations, and we compare it to results from the preceding ERA-Interim reanalysis. Our results show a slower stratospheric circulation and higher age for ERA5. The age of air trend in ERA5 over the 1989–2018 period is negative throughout the stratosphere, related to multi-annual variability and a potential contribution from changes in the reanalysis system.
Josefine Maas, Susann Tegtmeier, Yue Jia, Birgit Quack, Jonathan V. Durgadoo, and Arne Biastoch
Atmos. Chem. Phys., 21, 4103–4121, https://doi.org/10.5194/acp-21-4103-2021, https://doi.org/10.5194/acp-21-4103-2021, 2021
Short summary
Short summary
Cooling-water disinfection at coastal power plants is a known source of atmospheric bromoform. A large source of anthropogenic bromoform is the industrial regions in East Asia. In current bottom-up flux estimates, these anthropogenic emissions are missing, underestimating the global air–sea flux of bromoform. With transport simulations, we show that by including anthropogenic bromoform from cooling-water treatment, the bottom-up flux estimates significantly improve in East and Southeast Asia.
Jacob W. Smith, Peter H. Haynes, Amanda C. Maycock, Neal Butchart, and Andrew C. Bushell
Atmos. Chem. Phys., 21, 2469–2489, https://doi.org/10.5194/acp-21-2469-2021, https://doi.org/10.5194/acp-21-2469-2021, 2021
Short summary
Short summary
This paper informs realistic simulation of stratospheric water vapour by clearly attributing each of the two key influences on water vapour entry to the stratosphere. Presenting modified trajectory models, the results of this paper show temperatures dominate on annual and inter-annual variations; however, transport has a significant effect in reducing the annual cycle maximum. Furthermore, sub-seasonal variations in temperature have an important overall influence.
Wolfgang Woiwode, Andreas Dörnbrack, Inna Polichtchouk, Sören Johansson, Ben Harvey, Michael Höpfner, Jörn Ungermann, and Felix Friedl-Vallon
Atmos. Chem. Phys., 20, 15379–15387, https://doi.org/10.5194/acp-20-15379-2020, https://doi.org/10.5194/acp-20-15379-2020, 2020
Short summary
Short summary
The lowermost-stratosphere moist bias in ECMWF analyses and 12 h forecasts is diagnosed for the Arctic winter-spring 2016 period by using two-dimensional GLORIA water vapor observations. The bias is already present in the initial conditions (i.e., the analyses), and sensitivity forecasts on time scales of < 12 h show hardly any sensitivity to modified spatial resolution and output frequency.
Xun Wang and Andrew E. Dessler
Atmos. Chem. Phys., 20, 13267–13282, https://doi.org/10.5194/acp-20-13267-2020, https://doi.org/10.5194/acp-20-13267-2020, 2020
Short summary
Short summary
We investigate the response of stratospheric water vapor (SWV) to different forcing agents, including greenhouse gases and aerosols. For most forcing agents, the SWV response is dominated by a slow response, which is coupled to surface temperature changes and exhibits a similar sensitivity to the surface temperature across all forcing agents. The fast SWV adjustment due to forcing is important when the forcing agent directly heats the cold-point region, e.g., black carbon.
Wandi Yu, Andrew E. Dessler, Mijeong Park, and Eric J. Jensen
Atmos. Chem. Phys., 20, 12153–12161, https://doi.org/10.5194/acp-20-12153-2020, https://doi.org/10.5194/acp-20-12153-2020, 2020
Short summary
Short summary
The stratospheric water vapor mixing ratio over North America (NA) region is up to ~ 1 ppmv higher when deep convection occurs. We find substantial consistency in the interannual variations of NA water vapor anomaly and deep convection and explain both the summer seasonal cycle and interannual variability of the convective moistening efficiency. We show that the NA anticyclone and tropical upper tropospheric temperature determine how much deep convection moistens the lower stratosphere.
Xun Wang, Andrew E. Dessler, Mark R. Schoeberl, Wandi Yu, and Tao Wang
Atmos. Chem. Phys., 19, 14621–14636, https://doi.org/10.5194/acp-19-14621-2019, https://doi.org/10.5194/acp-19-14621-2019, 2019
Short summary
Short summary
We use a trajectory model to diagnose mechanisms that produce the observed and modeled tropical lower stratospheric water vapor seasonal cycle. We confirm that the seasonal cycle of water vapor is primarily determined by the seasonal cycle of tropical tropopause layer (TTL) temperatures. However, between 10° N and 40° N, we find that evaporation of convective ice in the TTL plays a key role contributing to the water vapor seasonal cycle there. The Asian monsoon region is the most important region.
Ewa M. Bednarz, Amanda C. Maycock, Paul J. Telford, Peter Braesicke, N. Luke Abraham, and John A. Pyle
Atmos. Chem. Phys., 19, 5209–5233, https://doi.org/10.5194/acp-19-5209-2019, https://doi.org/10.5194/acp-19-5209-2019, 2019
Short summary
Short summary
Following model improvements, the atmospheric response to the 11-year solar cycle forcing simulated in the UM-UKCA chemistry–climate model is discussed for the first time. In contrast to most previous studies in the literature, we compare the results diagnosed using both a composite and a MLR methodology, and we show that apparently different signals can be diagnosed in the troposphere. In addition, we look at the role of internal atmospheric variability for the detection of the solar response.
Suvarna Fadnavis, Chaitri Roy, Rajib Chattopadhyay, Christopher E. Sioris, Alexandru Rap, Rolf Müller, K. Ravi Kumar, and Raghavan Krishnan
Atmos. Chem. Phys., 18, 11493–11506, https://doi.org/10.5194/acp-18-11493-2018, https://doi.org/10.5194/acp-18-11493-2018, 2018
Short summary
Short summary
Rapid industrialization, traffic growth and urbanization resulted in a significant increase in the tropospheric trace gases over Asia. There is global concern about rising levels of these trace gases. The monsoon convection transports these gases to the upper-level-anticyclone. In this study, we show transport of these gases to the extratropics via eddy-shedding from the anticyclone. We also deliberate on changes in ozone heating rates due to the transport of Asian trace gases.
Justin Bandoro, Susan Solomon, Benjamin D. Santer, Douglas E. Kinnison, and Michael J. Mills
Atmos. Chem. Phys., 18, 143–166, https://doi.org/10.5194/acp-18-143-2018, https://doi.org/10.5194/acp-18-143-2018, 2018
Short summary
Short summary
We studied the attribution of stratospheric ozone changes and identified similarities between observations and human fingerprints from both emissions of ozone-depleting substances (ODSs) and greenhouse gases (GHGs). We developed an improvement on the traditional pattern correlation method that accounts for nonlinearities in the climate forcing time evolution. Use of the latter resulted in increased S / N ratios for the ODS fingerprint. The GHG fingerprint was not identifiable.
Anne R. Douglass, Susan E. Strahan, Luke D. Oman, and Richard S. Stolarski
Atmos. Chem. Phys., 17, 12081–12096, https://doi.org/10.5194/acp-17-12081-2017, https://doi.org/10.5194/acp-17-12081-2017, 2017
Short summary
Short summary
Data records from instruments on satellites and on the ground are compared with a simulation for 1980–2016 that is made using winds and temperatures that are derived from measurements. The simulation tracks the observations faithfully after about 2000, but there are systematic errors for earlier years. Scientists must take this into account when trying to detect and quantify changes in the stratospheric circulation that are caused by climate change.
Stefanie Falk, Björn-Martin Sinnhuber, Gisèle Krysztofiak, Patrick Jöckel, Phoebe Graf, and Sinikka T. Lennartz
Atmos. Chem. Phys., 17, 11313–11329, https://doi.org/10.5194/acp-17-11313-2017, https://doi.org/10.5194/acp-17-11313-2017, 2017
Short summary
Short summary
Brominated very short-lived source gases (VSLS) contribute significantly to the tropospheric and stratospheric bromine loading. We find an increase of future ocean–atmosphere flux of brominated VSLS of 8–10 % compared to present day. A decrease in the tropospheric mixing ratios of VSLS and an increase in the lower stratosphere are attributed to changes in atmospheric chemistry and transport. Bromine impact on stratospheric ozone at the end of the 21st century is reduced compared to present day.
Kevin M. Smalley, Andrew E. Dessler, Slimane Bekki, Makoto Deushi, Marion Marchand, Olaf Morgenstern, David A. Plummer, Kiyotaka Shibata, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 17, 8031–8044, https://doi.org/10.5194/acp-17-8031-2017, https://doi.org/10.5194/acp-17-8031-2017, 2017
Short summary
Short summary
This paper explains a new way to evaluate simulated lower-stratospheric water vapor. We use a multivariate linear regression to predict 21st century lower stratospheric water vapor within 12 chemistry climate models using tropospheric warming, the Brewer–Dobson circulation, and the quasi-biennial oscillation as predictors. This methodology produce strong fits to simulated water vapor, and potentially represents a superior method to evaluate model trends in lower-stratospheric water vapor.
Felix Ploeger, Paul Konopka, Kaley Walker, and Martin Riese
Atmos. Chem. Phys., 17, 7055–7066, https://doi.org/10.5194/acp-17-7055-2017, https://doi.org/10.5194/acp-17-7055-2017, 2017
Short summary
Short summary
Pollution transport from the surface to the stratosphere within the Asian summer monsoon circulation may cause harmful effects on stratospheric chemistry and climate. We investigate air mass transport from the monsoon anticyclone into the stratosphere, combining model simulations with satellite trace gas measurements. We show evidence for two transport pathways from the monsoon: (i) into the tropical stratosphere and (ii) into the Northern Hemisphere extratropical lower stratosphere.
Jennifer Ostermöller, Harald Bönisch, Patrick Jöckel, and Andreas Engel
Atmos. Chem. Phys., 17, 3785–3797, https://doi.org/10.5194/acp-17-3785-2017, https://doi.org/10.5194/acp-17-3785-2017, 2017
Short summary
Short summary
We analysed the temporal evolution of fractional release factors (FRFs) from EMAC model simulations for several halocarbons and nitrous oxide. The current formulation of FRFs yields values that depend on the tropospheric trend of the species. This is a problematic issue for the application of FRF in the calculation of steady-state quantities (e.g. ODP). Including a loss term in the calculation, we develop a new formulation of FRF and find that the time dependence can almost be compensated.
Sabine Brinkop, Martin Dameris, Patrick Jöckel, Hella Garny, Stefan Lossow, and Gabriele Stiller
Atmos. Chem. Phys., 16, 8125–8140, https://doi.org/10.5194/acp-16-8125-2016, https://doi.org/10.5194/acp-16-8125-2016, 2016
Short summary
Short summary
This study investigates the water vapour decline in the stratosphere beginning in the year 2000 and other similarly strong stratospheric water vapour reductions. The driving forces are tropical sea surface temperature (SST) changes due to coincidence with a preceding ENSO event and supported by the west to east change of the QBO.
There are indications that both SSTs and the specific dynamical state of the atmosphere contribute to the long period of low water vapour values from 2001 to 2006.
Michael Löffler, Sabine Brinkop, and Patrick Jöckel
Atmos. Chem. Phys., 16, 6547–6562, https://doi.org/10.5194/acp-16-6547-2016, https://doi.org/10.5194/acp-16-6547-2016, 2016
Short summary
Short summary
After the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991, stratospheric water vapour is significantly increased. This results from increased stratospheric heating rates due to volcanic aerosol and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as important sources for the additional water vapour in the stratosphere.
Laura Thölix, Leif Backman, Rigel Kivi, and Alexey Yu. Karpechko
Atmos. Chem. Phys., 16, 4307–4321, https://doi.org/10.5194/acp-16-4307-2016, https://doi.org/10.5194/acp-16-4307-2016, 2016
J. Aschmann, J. P. Burrows, C. Gebhardt, A. Rozanov, R. Hommel, M. Weber, and A. M. Thompson
Atmos. Chem. Phys., 14, 12803–12814, https://doi.org/10.5194/acp-14-12803-2014, https://doi.org/10.5194/acp-14-12803-2014, 2014
Short summary
Short summary
This study compares observations and simulation results of ozone in the lower tropical stratosphere. It shows that ozone in this region decreased from 1985 up to about 2002, which is consistent with an increase in tropical upwelling predicted by climate models. However, the decrease effectively stops after 2002, indicating that significant changes in tropical upwelling have occurred. The most important factor appears to be that the vertical ascent in the tropics is no longer accelerating.
S. Fadnavis, M. G. Schultz, K. Semeniuk, A. S. Mahajan, L. Pozzoli, S. Sonbawne, S. D. Ghude, M. Kiefer, and E. Eckert
Atmos. Chem. Phys., 14, 12725–12743, https://doi.org/10.5194/acp-14-12725-2014, https://doi.org/10.5194/acp-14-12725-2014, 2014
Short summary
Short summary
The Asian summer monsoon transports pollutants from local emission sources to the upper troposphere and lower stratosphere (UTLS). The increasing trend of these pollutants may have climatic impact. This study addresses the impact of convectively lifted Indian and Chinese emissions on the ULTS. Sensitivity experiments with emission changes in particular regions show that Chinese emissions have a greater impact on the concentrations of NOY species than Indian emissions.
J. S. Knibbe, R. J. van der A, and A. T. J. de Laat
Atmos. Chem. Phys., 14, 8461–8482, https://doi.org/10.5194/acp-14-8461-2014, https://doi.org/10.5194/acp-14-8461-2014, 2014
M. Abalos, F. Ploeger, P. Konopka, W. J. Randel, and E. Serrano
Atmos. Chem. Phys., 13, 10787–10794, https://doi.org/10.5194/acp-13-10787-2013, https://doi.org/10.5194/acp-13-10787-2013, 2013
M. R. Schoeberl, A. E. Dessler, and T. Wang
Atmos. Chem. Phys., 13, 7783–7793, https://doi.org/10.5194/acp-13-7783-2013, https://doi.org/10.5194/acp-13-7783-2013, 2013
J. M. Siddaway, S. V. Petelina, D. J. Karoly, A. R. Klekociuk, and R. J. Dargaville
Atmos. Chem. Phys., 13, 4413–4427, https://doi.org/10.5194/acp-13-4413-2013, https://doi.org/10.5194/acp-13-4413-2013, 2013
F. Khosrawi, R. Müller, J. Urban, M. H. Proffitt, G. Stiller, M. Kiefer, S. Lossow, D. Kinnison, F. Olschewski, M. Riese, and D. Murtagh
Atmos. Chem. Phys., 13, 3619–3641, https://doi.org/10.5194/acp-13-3619-2013, https://doi.org/10.5194/acp-13-3619-2013, 2013
J. A. Schmidt, M. S. Johnson, S. Hattori, N. Yoshida, S. Nanbu, and R. Schinke
Atmos. Chem. Phys., 13, 1511–1520, https://doi.org/10.5194/acp-13-1511-2013, https://doi.org/10.5194/acp-13-1511-2013, 2013
H. E. Rieder, L. Frossard, M. Ribatet, J. Staehelin, J. A. Maeder, S. Di Rocco, A. C. Davison, T. Peter, P. Weihs, and F. Holawe
Atmos. Chem. Phys., 13, 165–179, https://doi.org/10.5194/acp-13-165-2013, https://doi.org/10.5194/acp-13-165-2013, 2013
J. M. Castanheira, T. R. Peevey, C. A. F. Marques, and M. A. Olsen
Atmos. Chem. Phys., 12, 10195–10208, https://doi.org/10.5194/acp-12-10195-2012, https://doi.org/10.5194/acp-12-10195-2012, 2012
M. R. Schoeberl, A. E. Dessler, and T. Wang
Atmos. Chem. Phys., 12, 6475–6487, https://doi.org/10.5194/acp-12-6475-2012, https://doi.org/10.5194/acp-12-6475-2012, 2012
B. Chen, X. D. Xu, S. Yang, and T. L. Zhao
Atmos. Chem. Phys., 12, 5827–5839, https://doi.org/10.5194/acp-12-5827-2012, https://doi.org/10.5194/acp-12-5827-2012, 2012
S. Dhomse, M. P. Chipperfield, W. Feng, and J. D. Haigh
Atmos. Chem. Phys., 11, 12773–12786, https://doi.org/10.5194/acp-11-12773-2011, https://doi.org/10.5194/acp-11-12773-2011, 2011
A. J. G. Baumgaertner, A. Seppälä, P. Jöckel, and M. A. Clilverd
Atmos. Chem. Phys., 11, 4521–4531, https://doi.org/10.5194/acp-11-4521-2011, https://doi.org/10.5194/acp-11-4521-2011, 2011
J. Flemming, A. Inness, L. Jones, H. J. Eskes, V. Huijnen, M. G. Schultz, O. Stein, D. Cariolle, D. Kinnison, and G. Brasseur
Atmos. Chem. Phys., 11, 1961–1977, https://doi.org/10.5194/acp-11-1961-2011, https://doi.org/10.5194/acp-11-1961-2011, 2011
H. E. Rieder, J. Staehelin, J. A. Maeder, T. Peter, M. Ribatet, A. C. Davison, R. Stübi, P. Weihs, and F. Holawe
Atmos. Chem. Phys., 10, 10033–10045, https://doi.org/10.5194/acp-10-10033-2010, https://doi.org/10.5194/acp-10-10033-2010, 2010
T. von Clarmann, G. Stiller, U. Grabowski, E. Eckert, and J. Orphal
Atmos. Chem. Phys., 10, 6737–6747, https://doi.org/10.5194/acp-10-6737-2010, https://doi.org/10.5194/acp-10-6737-2010, 2010
J. Aschmann, B.-M. Sinnhuber, E. L. Atlas, and S. M. Schauffler
Atmos. Chem. Phys., 9, 9237–9247, https://doi.org/10.5194/acp-9-9237-2009, https://doi.org/10.5194/acp-9-9237-2009, 2009
Cited articles
Abdelaziz, O., Shrestha, S., Shen, B., Elatar, A., Linkous, R., Goetzler, W., Guernsey, M., and Bargach, Y.:
Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A – Alternatives for Rooftop Air Conditioners, ORNL/TM-2016/513,
Oak Ridge National Laboratory (ORNL), Oak Ridge, USA, 2016.
Abel, D., Holloway, T., Kladar, R. M., Meier, P., Ahl, D., Harkey, M., and Patz, J.:
Response of Power Plant Emissions to Ambient Temperature in the Eastern United States,
Environ. Sci. Technol.,
51, 5838–5846, https://doi.org/10.1002/grl.50967, 2017.
Amann, M., Kiesewetter, G., Schoepp, W., Klimont, Z., Winiwarter,W., Cofala, J., Rafaj, P., Hoglund-Isaksson, L., Gomez-Sabriana, A., Heyes, C., Purohit, P., Borken-Kleefeld, J., Wagner, F., Sander, R., Fagerli, H., Nyiri, A., Cozzi, L., and Pavarini, C.: Reducing global air pollution: The scope for further policy interventions, Philos. T. Roy. Soc. A., 378, 27 pp., https://doi.org/10.1098/rsta.2019.0331, 2020.
Anderson, S. O., Bandarra, E., Bhushan, C, Borgford-Parnell, N., Chen, Z., Christensen, J., Devotta, S., Lal Dhasan, M., Dreyfus, G. B., Dulac, J., Elassaad, B., Fahey, D. W., Gallagher, G., Gonzalez, M., Höglund Isaksson, L., Hu, J., Jiang, Y., Lane, K., Mangotra, K., Masson, N., de Oña, A., Oppelt, D., Peters, T., McMahon, J., Picolotti, R., Purohit, P., Schaeffer, M., Shah, N., Siderius, H. P., Wei, M., and Xu, Y.:
Cooling Emissions and Policy Synthesis Report: Benefits of cooling efficiency and the Kigali Amendment,
United Nations Environment Programme and International Energy Agency,
available at: https://www.ccacoalition.org/en/resources/cooling-emissions-and-policy-synthesis-report-benefits-cooling-efficiency-and-kigali, last access: 15 August 2020.
Astrain, D., Merino, A., Catalán, L., Aranguren, P., Araiz, M., Sánchez, D., Cabello, R., and Llopis, R.:
Improvements in the cooling capacity and the COP of a transcritical CO2 refrigeration plant operating with a thermoelectric subcooling system,
Appl. Therm. Eng.,
155, 110–122, https://doi.org/10.1016/j.applthermaleng.2019.03.123, 2019.
Barrault, S., Calmels, O., Clodic, D., and Michineau, T.:
Energy efficiency state of the art of available low-GWP refrigerants and systems,
Study commissioned by the AFCE and carried out by EReIE, the Cemafroid, and the CITEPA,
available at: http://www.afce.asso.fr/wp-content/uploads/2018/10/Final-rapport-energy-efficiency-GWP-2018.pdf (last assess: 27 January 2020), 2018.
Beddington, J., Asaduzzaman, M., Clark, M., Fernández, A., Guillou, M., Jahn, M., Erda, L., Mamo, T., Van Bo, N., Nobre, C. A., Scholes, R., Sharma, R., and Wakhungu, J.:
Achieving food security in the face of climate change: Final report from the Commission on Sustainable Agriculture and Climate Change,
CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, 2012.
Berntsen, T., Fuglestvedt, J., Myhre, G., Stordal, F., and Berglen, T. F.:
Abatement of Greenhouse Gases: Does Location Matter?,
Climatic Change,
74, 377–411, https://doi.org/10.1007/s10584-006-0433-4, 2006.
Beshr, M., Aute, V., Sharma, V., Abdelaziz, O., Fricke, B., and Radermacher, R.:
A comparative study on the environmental impact of supermarket refrigeration systems using low GWP refrigerants,
Int. J. Refrig.,
56, 154–164, https://doi.org/10.1016/j.ijrefrig.2015.03.025, 2015.
Blumberg, K., Isenstadt, A., Taddonio, K. N., Andersen, S. O., and Sherman, N. J.:
Mobile air conditioning: The life-cycle costs and greenhouse-gas benefits of switching to alternative refrigerants and improving system efficiencies,
International Council on Clean Transportation (ICCT), Washington, D.C.,
available at: https://www.theicct.org/sites/default/files/publications/ICCT_mobile-air-cond_CBE_201903.pdf, last access: 15 March 2019.
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., and Klimont, Z.:
A technology-based global inventory of black and organic carbon emissions from combustion,
J. Geophys. Res.-Atmos.,
109, D14203, https://doi.org/10.1029/2003JD003697, 2004.
Borgford-Parnell, N., Beaugrand, M., Andersen, S. O., and Zaelke, D.:
Phasing Down the Use of Hydrofluorocarbons (HFCs),
Contributing paper for Seizing the Global Opportunity: Partnerships for Better Growth and a Better Climate,
New Climate Economy, London and Washington, D.C.,
available at: http://newclimateeconomy.report/misc/working-papers (last access: 19 January 2019), 2015.
Brander, M., Sood, A., Wylie, C., Haughton, A., and Lovell, J.:
Electricity-specific Emission Factors for Grid Electricity,
available at: https://ecometrica.com/assets/Electricity-specific-emission-factors-for-grid-electricity.pdf (last access: 9 August 2017), 2011.
Cain, M., Lynch, J., Allen, M. R., Fuglestvedt, J. S., Frame, D. J., and Macey, A. H.:
Improved calculation of warming-equivalent emissions for short-lived climate pollutants,
npj Clim. Atmos. Sci.,
2, 29, https://doi.org/10.1038/s41612-019-0086-4, 2019.
Calm, J. M.:
Comparative efficiencies and implications for greenhouse gas emissions of chiller refrigerants,
Int. J. Refrig.,
29, 833–841, https://doi.org/10.1016/j.ijrefrig.2005.08.017, 2006.
CCAC:
Lower-GWP Alternatives in Stationary Air Conditioning: A Compilation of Case Studies,
Climate and Clean Air Coalition (CCAC), Paris, October 2019.
Cseh, A.:
Aligning climate action with the self-interest and short-term dominated priorities of decision-makers,
Clim. Policy,
19, 139–146, https://doi.org/10.1080/14693062.2018.1478791, 2019.
Depuru, S. S. S. R., Wang, L., and Devabhaktuni, V.:
Electricity theft: Overview, issues, prevention and a smart meter-based approach to control theft,
Energ. Policy,
39, 1007–1015, https://doi.org/10.1016/j.enpol.2010.11.037, 2011.
Dreyfus, G. B., Andersen, S. O., Kleymayer, A. M., and Zaelke, D.:
Primer on Energy Efficiency,
Institute for Governance and Sustainable Development (IGSD), Washington, D.C., USA,
available at: http://www.igsd.org/wp-content/uploads/2019/10/EE-Primer-11.13.17.pdf (last access: 9 May 2018), 2017.
EIA:
Kigali amendment to the Montreal Protocol – A Crucial Step in the Fight Against Catastrophic Climate Change,
Environmental Investigation Agency (EIA) briefing to the 22nd Conference of the Parties (CoP22) to the United Nations Framework Convention on Climate Change (UNFCCC), Marrakech, Morocco, 7–18 November, 2016.
Fang, X., Velders, G. J. M., Ravishankara, A. R., Molina, M. J., Hu, J., and Prinn, R. G.:
Hydrofluorocarbon (HFC) Emissions in China: An Inventory for 2005–2013 and Projections to 2050,
Environ. Sci. Technol.,
50, 2027–2034, https://doi.org/10.1021/acs.est.5b04376, 2016.
Fang, X., Ravishankara, A. R., Velders, G. J. M., Molina, M. J., Su, S., Zhang, J., Zhou, X., Hu, J., and Prinn, R. G.:
Changes in Emissions of Ozone-Depleting Substances from China Due to Implementation of the Montreal Protocol,
Environ. Sci. Technol.,
52, 11359–11366, https://doi.org/10.1021/acs.est.8b01280, 2018.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.:
Changes in Atmospheric Constituents and in Radiative Forcing,
in: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L.,
Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007.
Gambhir, A., Napp, T., Hawkes, A., Höglund-Isaksson, L., Winiwarter, W., Purohit, P., Wagner, F., Bernie, D., and Lowe, J.:
The contribution of non-CO2 greenhouse gas mitigation to achieving long-term temperature goals,
Energies,
10, 602, https://doi.org/10.3390/en10050602, 2017.
Godwin, D. S. and Ferenchiak, R.:
The implications of residential air conditioning refrigerant choice on future hydrofluorocarbon consumption in the United States,
J. Integr. Environ. Sci., https://doi.org/10.1080/1943815X.2020.1768551, in press, 2020.
Goetzler, W., Guernsey, M., Young, J., Fuhrman, J., and Abdelaziz, O.:
The Future of Air Conditioning for Buildings: Executive Summary,
Oak Ridge National Laboratory, DOE/EE-1394, Oak Ridge,
available at: https://pdfs.semanticscholar.org/eae6/b95997141e62f745290f4ab3eb60d4d7bc39.pdf (last access: 26 January 2019), 2016.
GoI:
Control of emission/venting of Hydrofluorocarbon (HFC)-23, produced as by product while manufacturing of Hydrochlorofluorocarbon (HCFC)-22, in the atmosphere, Ozone Cell,
Ministry of Environment, Forest & Climate Change, Government of India (GoI), New Delhi,
available at: http://www.ozonecell.com/viewsection.jsp?lang=0&id=0,256,743 (last access: 17 December 2018), 2016.
Groll, E. A. and Kim, J.-H.:
Review of Recent Advances toward Transcritical CO2 Cycle Technology, HVAC&R Res.,
13, 499–520, https://doi.org/10.1080/10789669.2007.10390968, 2007.
Gschrey, B., Schwarz, W., Elsner, C., and Engelhardt, R.:
High increase of global F-gas emissions until 2050,
Greenhouse Gas Measurement and Management,
1, 85–92, https://doi.org/10.1080/20430779.2011.579352, 2011.
Hansen, J. and Nazarenko, L.:
Soot climate forcing via snow and ice albedos,
P. Natl. Acad. Sci. USA,
101, 423–428, https://doi.org/10.1073/pnas.2237157100, 2004.
He, H., Hembeck, L., Hosley, K. M., Canty, T. P., Salawitch, R. J., and Dickerson, R. R.:
High ozone concentrations on hot days: The role of electric power demand and NOx emissions,
Geophys. Res. Lett.,
40, 5291–5294, 2013.
Heredia-Aricapa, Y., Belman-Flores, J. M., Mota-Babiloni, A., Serrano-Arellano, J., and García-Pabón, J. J.:
Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A,
Int. J. Refrig.,
111, 13–123, https://doi.org/10.1016/j.ijrefrig.2019.11.012, 2020.
Hiç, C., Pradhan, P., Rybski, D., and Kropp, J. P.:
Food Surplus and Its Climate Burdens,
Environ. Sci. Technol.,
50, 4269–4277, https://doi.org/10.1021/acs.est.5b05088, 2016.
Höglund Isaksson, L., Winiwarter, W., Purohit, P., and Gomez-Sanabria, A.:
Non-CO2 greenhouse gas emissions in the EU-28 from 2005 to 2050: GAINS model methodology,
IIASA Report, Laxenburg, Austria,
available at: http://pure.iiasa.ac.at/id/eprint/13398/ (last access: 17 November 2018), 2016.
Höglund-Isaksson, L., Purohit, P., Amann, M., Bertok, I., Rafaj, P., Schöpp, W., and Borken-Kleefeld, J.:
Cost estimates of the Kigali Amendment to phase-down hydrofluorocarbons,
Environ. Sci. Policy,
75, 138–147, https://doi.org/10.1016/j.envsci.2017.05.006, 2017.
Höglund-Isaksson, L., Gómez-Sanabria, A., Klimont, Z., Rafaj, P., and Schöpp, W.:
Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe – results from the GAINS model,
Environ. Res. Commun., 2, 025004, https://doi.org/10.1088/2515-7620/ab7457, 2020.
IEA:
Transition to Sustainable Buildings: Strategies and Opportunities to 2050,
International Energy Agency (IEA), Paris, France, 2013.
IEA:
Energy and Air Pollution: World Energy Outlook Special Report 2016,
International Energy Agency (IEA), Paris, France, 2016.
IEA:
The Future of Cooling,
International Energy Agency (IEA), Paris, France, 2018.
IEA:
World Energy Outlook 2019,
International Energy Agency (IEA), Paris, France, 2019.
IEA-WEO:
World Energy Outlook (WEO) 2017,
International Energy Agency (IEA), Paris, France, 2017.
IIASA:
SSP Database (Shared Socioeconomic Pathways) – Version 1.1,
International Institute for Applied Systems Analysis, Laxenburg, Austria,
available at: https://secure.iiasa.ac.at/web-apps/ene/SspDb/dsd?Action=htmlpage&page=about (last access: 23 July 2018), 2017.
IIASA-GAINS:
Greenhouse gas Air pollution INteractions and Synergies (GAINS) Model,
International Institute for Applied Systems Analysis, Laxenburg, Austria,
available at: http://gains.iiasa.ac.at/models/gains_models3.html, last access: 28 September 2019.
Ingram, J.:
A food systems approach to researching food security and its interactions with global environmental change,
Food Secur.,
3, 417–431, https://doi.org/10.1007/s12571-011-0149-9, 2011.
IPCC:
Climate Change 2013: The Physical Science Basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC),
Cambridge University Press, Cambridge, UK and New York, USA, 2013.
IPCC:
Global Warming of 1.5 ∘C: An IPCC Special Report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty,
Intergovernmental Panel on Climate Change (IPCC), Geneva,
available at: https://www.ipcc.ch/sr15/ (last access: 13 March 2019), 2018.
IPCC/TEAP:
IPCC/TEAP Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons,
Intergovernmental Panel on Climate Change (IPCC) and Technology and Economic Assessment Panel (TEAP), Cambridge University Press, Cambridge, UK and New York, USA, 2005.
ISO:
Environmental Management – Life Cycle Assessment – Requirements and Guidelines,
ISO-14044, 2006.
Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., and Ward, P. J.:
Lost food wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertilizer use,
Sci. Total Environ.,
438, 477–489, https://doi.org/10.1016/j.scitotenv.2012.08.092, 2012.
Lamb, A., Green, R., Bateman, I., Broadmeadow, M., Bruce, T., Burney, J., Carey, P., Chadwick, D., Crane, E., Field, R., Goulding, K., Griffiths, H., Hastings, A., Kasoar, T., Kindred, D., Phalan, B., Pickett, J., Smith, P., Wall, E., zu Ermgassen, E. K. H. J., and Balmford, A.:
The potential for land sparing to offset greenhouse gas emissions from agriculture,
Nat. Clim. Change,
6, 488–492, https://doi.org/10.1038/nclimate2910, 2016.
Lynch, J., Cain, M., Pierrehumbert, R., and Allen, M.:
Demonstrating GWP: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants,
Environ. Res. Lett.,
15, 044023, https://doi.org/10.1088/1748-9326/ab6d7e, 2020.
Markandya, A., Sampedro, J., Smith, S. J., van Dingenen, R., Pizarro-Irizar, C., Arto, I., and González-Eguino, M.:
Health co-benefits from air pollution and mitigation costs of the Paris Agreement: a modelling study,
Lancet Planet. Health,
2, e126–e133, 2018.
Mastrucci, A., Byers, E., Pachauri, S., and Rao, N. D.:
Improving the SDG energy poverty targets: Residential cooling needs in the Global South,
Energ. Buildings,
186, 405–415, https://doi.org/10.1016/j.enbuild.2019.01.015, 2019.
McLinden, M. O., Brown, J. S., Brignoli, R., Kazakov, A. F., and Domanski, P. A.:
Limited options for low-global warming potential refrigerants,
Nat. Commun.,
8, 14476, https://doi.org/10.1038/ncomms14476, 2017.
Mills, E.:
Building commissioning: a golden opportunity for reducing energy costs and greenhouse gas emissions in the United States,
Energ. Effic.,
4, 145–173, https://doi.org/10.1007/s12053-011-9116-8, 2011.
Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R. C., Bielecki, C. R., Counsell, C. W. W., Dietrich, B. S., Johnston, E. T., Louis, L. V., Lucas, M. P., Mckenzie, M. M., Shea, A. G., Tseng, H., Giambelluca, T. W., Leon, L. R., Hawkins, E., and Trauernicht, C.:
Global risk of deadly heat,
Nat. Clim. Change,
7, 501–506, https://doi.org/10.1038/nclimate3322, 2017.
Mueller, B., Zhang, X., and Zwiers, F. W.:
Historically hottest summers projected to be the norm for more than half of the world's population within 20 years,
Environ. Res. Lett.,
11, 044011, https://doi.org/10.1088/1748-9326/11/4/044011, 2016.
Nemet, G. F., Holloway, T., and Meier, P.:
Implications of incorporating air-quality co-benefits into climate change policymaking,
Environ. Res. Lett.,
5, 014007, https://doi.org/10.1088/1748-9326/5/1/014007, 2010.
Pal, J. S. and Eltahir, E. A. B.:
Future temperature in southwest Asia projected to exceed a threshold for human adaptability,
Nat. Clim. Change,
6, 197–200, https://doi.org/10.1038/nclimate2833, 2016.
Park, J., Hallegatte, S., Bangalore, M., and Sandhoefner, E.:
Households and heat stress estimating the distributional consequences of climate change,
Policy Research Working Paper No. WPS7479,
World Bank Group, Washington, D.C.,
available at: http://documents.worldbank.org/curated/en/103721468000929054/pdf/WPS7479.pdf (last access: 13 March 2019), 2015.
Park, W. Y., Shah, N., and Phadke, A.:
Enabling access to household refrigeration services through cost reductions from energy efficiency improvements,
Energ. Effic.,
12, 1795–1819, https://doi.org/10.1007/s12053-019-09807-w, 2019.
Peters, T:
A Cool World Defining the Energy Conundrum of Cooling for All, University of Birmingham, UK,
available at: https://www.birmingham.ac.uk/Documents/college-eps/energy/Publications/2018-clean-cold-report.pdf (last access: 17 January 2019), 2018.
Petkova, E. P., Vink, J. K., Horton, P. M., Gasparrini, A., Bader, D. A., Francis, J. D., and Kinney, P. L.:
Towards more comprehensive projections of urban heat-related mortality: estimates for New York city under multiple population, adaptation, and climate scenarios,
Environ. Health. Persp.,
125, 47–55, https://doi.org/10.1289/EHP166, 2017.
Phadke, A., Abhyankar, N., and Shah, N.:
Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges,
LBNL-6674e,
Lawrence Berkeley National Laboratory (LBNL), Berkley, June 2014.
Purohit, N., Sharma, V., Sawalha, S., Fricke, B., Llopis, R., and Dasgupta, M. S.:
Integrated supermarket refrigeration for very high ambient temperature,
Energy,
165A, 572–590, https://doi.org/10.1016/j.energy.2018.09.097, 2018.
Purohit, P. and Höglund-Isaksson, L.: Global emissions of fluorinated greenhouse gases 2005–2050 with abatement potentials and costs, Atmos. Chem. Phys., 17, 2795–2816, https://doi.org/10.5194/acp-17-2795-2017, 2017.
Purohit, P., Höglund-Isaksson, L., Bertok, I., Chaturvedi, V., and Sharma, M.:
Scenario Analysis for HFC Emissions in India: Mitigation potential and costs, CEEW-IIASA Report, New Delhi, available at: (last access: 18 November 2018), 2016.
Purohit, P., Höglund-Isaksson, L., and Wagner, F.:
Impacts of the Kigali Amendment to phase-down hydrofluorocarbons (HFCs) in Asia,
International Institute for Applied Systems Analysis (IIASA) Report, Laxenburg, Austria,
available at: http://pure.iiasa.ac.at/id/eprint/15274/1/Impacts%2520of%2520the%2520Kigali%2520Amendment.pdf (last access: 17 November 2019), 2018.
Purohit, P., Amann, M., Kiesewetter, G., Rafaj, P., Chaturvedi, V., Dholakia, H. H., Koti, P. N., Klimont, Z., Borken-Kleefeld, J., Gomez-Sanabria, A., Schöpp, W., and Sander, R.:
Mitigation pathways towards national ambient air quality standards in India,
Environ. Int.,
133A, 105147, https://doi.org/10.1016/j.envint.2019.105147, 2019.
Rafaj, P., Kiesewetter, G., Gül, T., Schöpp, W., Cofala, J., Klimont, Z., Purohit, P., Heyes, C., Amann, M., Borken-Kleefeld, J., and Cozzi, L.:
Outlook for clean air in the context of sustainable development goals,
Global Environ. Chang.,
53, 1–11, https://doi.org/10.1016/j.gloenvcha.2018.08.008, 2018.
Reddy, M. S. and Boucher, O.:
Climate impact of black carbon emitted from energy consumption in the world's regions,
Geophys. Res. Lett.,
34, L11802, https://doi.org/10.1029/2006GL028904, 2007.
Reese, A.:
Slow coolant phaseout could worsen warming,
Science,
359, 1084, https://doi.org/10.1126/science.359.6380.1084, 2018.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B., Fujimori, S., Bauer, N., Calvin, K., Dellink R, Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Samir, K. C., Leimback, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M.:
The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview,
Global Environ. Chang.,
42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L., Séférian, R., and Vilariño, M. V.:
Chapter 2: Mitigation Pathways Compatible with 1.5 ∘C in the Context of Sustainable Development,
in: Global Warming of 1.5 ∘C: An IPCC Special Report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty,
The Intergovernmental Panel on Climate Change (IPCC), Geneva, 2018.
Russo, S., Sillmann, J., and Sterl, A.:
Humid heat waves at different warming levels,
Sci. Rep.-UK,
7, 1–7, https://doi.org/10.1038/s41598-017-07536-7, 2017.
Sailor, D. J.:
Relating residential and commercial sector electricity loads to climate – evaluating state level sensitivities and vulnerabilities,
Energy,
26, 645–657, https://doi.org/10.1016/S0360-5442(01)00023-8, 2001.
Say, D., Ganesan, A. L., Lunt, M. F., Rigby, M., O'Doherty, S., Harth, C., Manning, A. J., Krummel, P. B., and Bauguitte, S.: Emissions of halocarbons from India inferred through atmospheric measurements, Atmos. Chem. Phys., 19, 9865–9885, https://doi.org/10.5194/acp-19-9865-2019, 2019.
Schaeffer, R., Szklo, A. S., Pereira de Lucena, A. F., Moreira Cesar Borba, B. S., Pupo Nogueira, L. P., Fleming, F. P., Troccoli, A., Harrison, M., and Boulahya, M. S.:
Energy sector vulnerability to climate change: A review,
Energy,
38, 1–12, https://doi.org/10.1016/j.energy.2011.11.056, 2012.
Schwarz, W., Gschrey, B., Leisewitz, A., Herold, A., Gores, S., Papst, I., Usinger, J., Oppelt, D., Croiset, I., Pedersen, H., Colbourne, D., Kauffeld, M., Kaar, K., and Lindborg, A.:
Preparatory study for a review of Regulation (EC) No 842/2006 on certain fluorinated greenhouse gases, Final Report Prepared for the European Commission in the context of Service Contract No 070307/2009/548866/SER/C4,
European Commission, Brussels, 2011.
Shah, N., Waide, P., and Phadke, A.:
Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners, LBNL-6164E,
Lawrence Berkeley National Laboratory (LBNL), Berkley, 2013.
Shah, N., Wei, M., Letschert, V. E., and Phadke, A.:
Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning, LBNL-1003671,
Lawrence Berkeley National Laboratory (LBNL), Berkley, CA, 2015.
Shah, N., Wei, M., Letschert, V. E., and Phadke, A.:
Benefits of Energy Efficient and Low-Global Warming Potential Refrigerant Cooling Equipment, LBNL-2001229,
Lawrence Berkeley National Laboratory (LBNL), Berkley, CA, 2019.
Sharma, M., Chaturvedi, V., and Purohit, P.:
Long-term carbon dioxide and hydrofluorocarbon emissions from commercial space cooling and refrigeration in India: a detailed analysis within an integrated assessment modelling framework,
Climatic Change,
143, 503–517, https://doi.org/10.1007/s10584-017-2002-4, 2017.
Sharma, V., Fricke, B., and Bansal, P.:
Comparative analysis of various CO2 configurations in supermarket refrigeration systems,
Int. J. Refrig.,
46, 86–99, https://doi.org/10.1016/j.ijrefrig.2014.07.001, 2014.
Simmonds, P. G., Rigby, M., McCulloch, A., O'Doherty, S., Young, D., Mühle, J., Krummel, P. B., Steele, P., Fraser, P. J., Manning, A. J., Weiss, R. F., Salameh, P. K., Harth, C. M., Wang, R. H. J., and Prinn, R. G.: Changing trends and emissions of hydrochlorofluorocarbons (HCFCs) and their hydrofluorocarbon (HFCs) replacements, Atmos. Chem. Phys., 17, 4641–4655, https://doi.org/10.5194/acp-17-4641-2017, 2017.
UN:
Chapter XXVII – Environment (2.f Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer),
Treaty Section, Office of Legal Affairs, United Nations, New York,
available at: https://treaties.un.org/pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-2-a&chapter=27&lang=en, last access: 12 June 2020.
UNEP:
Report of the task force on HCFC issues and emissions reduction benefits arising from earlier HCFC phase-out and other practical measures,
United Nations Environment Programme (UNEP), Nairobi, Kenya, 2007.
UNEP:
HFCs – A Critical Link in Protecting Climate and the Ozone Layer: A UNEP Synthesis Report,
United Nations Environment Programme (UNEP), Nairobi, Kenya, 2011.
UNEP:
Lower-GWP Alternatives in Commercial and Transport Refrigeration: An expanded compilation of propane, CO2, ammonia and HFO case studies, Climate and Clean Air Coalition (CCAC),
United Nations Environment Programme (UNEP), Paris, France, 2016a.
UNEP:
Further Amendment of the Montreal Protocol: Submitted by the Contact group on HFCs, Twenty-Eighth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer,
United Nations Environment Programme (UNEP), 10–14 October 2016, Kigali, Rwanda, UNEP/OzL.Pro.28/CRP/10, 2016b.
UNEP:
Ozone Secretariat – Data Access Centre, United Nations Environment Programme (UNEP), Nairobi, Kenya,
available at: https://ozone.unep.org/countries/data-table, last access: 5 November 2017a.
UNEP:
The Emissions Gap Report 2017,
United Nations Environment Programme (UNEP), Nairobi, Kenya, 2017b.
UNEP:
Cost-effective options for controlling HFC-23 by-product emissions, UNEP/OzL.Pro/ExCom/82/68, United Nations Environment Programme (UNEP), Nairobi,
available at: http://multilateralfund.org/82/English/1/8268.pdf, last access: 13 December 2018.
UNEP:
Project Proposal China – Executive Committee of the Multilateral Fund for the implementation of the Montreal Protocol,
Eighty-fourth Meeting, 16–20 December 2019, UNEP/OzL.Pro/ExCom/84/42, Montreal, 2019.
UNEP/CCAC:
Integrated Assessment of Short-lived Climate Pollutants in Latin America and the Caribbean,
United Nations Environment Programme (UNEP) and Climate and Clean Air Coalition (CCAC), Paris, 2018.
UNEP/TEAP:
Volume 4 – Decision XXX/5 Task Force Report on Cost and Availability of Low-GWP Technologies/Equipment that Maintain/Enhance Energy Efficiency, Report of the Technology and Economic Assessment Panel (TEAP),
United Nations Environment Programme (UNEP), Nairobi, May 2019.
UNFCCC:
National Inventory Submissions 2017, United Nations Framework Convention on Climate Change (UNFCCC), Bonn,
available at: http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/10116.php, last access: 27 September 2017.
UNFCCC:
Presidency consultations on modalities, procedures and guidelines under the Paris Agreement with a focus on transparency, Draft Report Version 1,
United Nations Framework Convention on Climate Change (UNFCCC), Bonn, Germany, 2018.
Valor, E., Meneu, V., and Caselles, V.:
Daily Air Temperature and Electricity Load in Spain,
J. Appl. Meteorol.,
40, 1413–1421, https://doi.org/10.1175/1520-0450(2001)040<2178:IOLFCT>2.0.CO;2, 2001.
Vandyck, T., Keramidas, K., Kitous, A., Spadaro, J. V., van Dingenen, R., Holland, M., and Saveyn, B.:
Air quality co-benefits for human health and agriculture counterbalance costs to meet Paris Agreement pledges,
Nat. Commun.,
9, 4939, https://doi.org/10.1038/s41467-018-06885-9, 2018.
Velders, G. J. M., Fahey, D. W., Daniel, J. S., McFarland, M., and Andersen, S. O.:
The large contribution of projected HFC emissions to future climate forcing,
P. Natl. Acad. Sci. USA,
106, 10949–10954, https://doi.org/10.1073/pnas.0902817106, 2009.
Velders, G. J. M., Ravishankara, A. R., Miller, M. K., Molina, M. J., Alcamo, J., Daniel, J. S., Fahey, D. W., Montzka, S. A., and Reimann, S.:
Preserving Montreal protocol climate benefits by limiting HFCs,
Science,
335, 922–923, https://doi.org/10.1126/science.1216414, 2012.
Velders, G. J. M., Fahey, D. W., Daniel, J. S., Andersen, S. O., and McFarland, M.:
Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions,
Atmos. Environ.,
123A, 200–209, https://doi.org/10.1016/j.atmosenv.2015.10.071, 2015.
WHO:
Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s,
World Health Organization (WHO), Geneva, Switzerland, 2014.
WMO:
Scientific Assessment of Ozone Depletion 2018: Executive Summary,
World Meteorological Organization (WMO), Geneva, Switzerland, 2018.
World Bank:
World Development Indicators,
The World Bank, Washington, D.C.,
available at: https://data.worldbank.org/data-catalog/world-development-indicators, last access: 24 January 2019.
Zaelke, D. and Borgford-Parnell, N.:
The importance of phasing down hydrofluorocarbons and other short-lived climate pollutants,
J. Environ. Stud. Sci.,
5, 169–175, https://doi.org/10.1007/s13412-014-0215-7, 2015.
Zaelke, D., Borgford-Parnell, N., and Grabiel, D. F.:
Primer on Hydrofluorocarbons – Fast action under the Montreal Protocol can limit growth of HFCs, prevent up to 100 billion tonnes of CO2-eq emissions by 2050, and avoid up to 0.5 ∘C of warming by 2100,
Institute for Governance & Sustainable Development (IGSD) Working Paper,
Washington, DC, October 2013.
Short summary
This study shows that if energy efficiency improvements in cooling technologies are addressed simultaneously with a phase-down of hydrofluorocarbons (HFCs), not only will global warming be mitigated through the elimination of HFCs but also by saving about a fifth of future global electricity consumption. This means preventing between 411 and 631 Pg CO2 equivalent of greenhouse gases between today and 2100, thereby offering a significant contribution towards staying well below 2 °C warming.
This study shows that if energy efficiency improvements in cooling technologies are addressed...
Altmetrics
Final-revised paper
Preprint