Articles | Volume 19, issue 6
Atmos. Chem. Phys., 19, 3481–3492, 2019
https://doi.org/10.5194/acp-19-3481-2019
Atmos. Chem. Phys., 19, 3481–3492, 2019
https://doi.org/10.5194/acp-19-3481-2019

Research article 20 Mar 2019

Research article | 20 Mar 2019

Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, c-C4F8O) in the atmosphere

Martin K. Vollmer et al.

Related authors

Evidence of a recent decline in UK emissions of hydrofluorocarbons determined by the InTEM inverse model and atmospheric measurements
Alistair J. Manning, Alison L. Redington, Daniel Say, Simon O'Doherty, Dickon Young, Peter G. Simmonds, Martin K. Vollmer, Jens Mühle, Jgor Arduini, Gerard Spain, Adam Wisher, Michela Maione, Tanja J. Schuck, Kieran Stanley, Stefan Reimann, Andreas Engel, Paul B. Krummel, Paul J. Fraser, Christina M. Harth, Peter K. Salameh, Ray F. Weiss, Ray Gluckman, Peter N. Brown, John D. Watterson, and Tim Arnold
Atmos. Chem. Phys., 21, 12739–12755, https://doi.org/10.5194/acp-21-12739-2021,https://doi.org/10.5194/acp-21-12739-2021, 2021
Short summary
Swiss halocarbon emissions for 2019 to 2020 assessed from regional atmospheric observations
Dominique Rust, Ioannis Katharopoulos, Martin K. Vollmer, Stephan Henne, Simon O'Doherty, Daniel Say, Lukas Emmenegger, Renato Zenobi, and Stefan Reimann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-633,https://doi.org/10.5194/acp-2021-633, 2021
Preprint under review for ACP
Short summary
Global trends and European emissions of tetrafluoromethane (CF4), hexafluoroethane (C2F6) and octafluoropropane (C3F8)
Daniel Say, Alistair J. Manning, Luke M. Western, Dickon Young, Adam Wisher, Matthew Rigby, Stefan Reimann, Martin K. Vollmer, Michela Maione, Jgor Arduini, Paul B. Krummel, Jens Mühle, Christina M. Harth, Brendan Evans, Ray F. Weiss, Ronald G. Prinn, and Simon O'Doherty
Atmos. Chem. Phys., 21, 2149–2164, https://doi.org/10.5194/acp-21-2149-2021,https://doi.org/10.5194/acp-21-2149-2021, 2021
Short summary
The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500
Malte Meinshausen, Zebedee R. J. Nicholls, Jared Lewis, Matthew J. Gidden, Elisabeth Vogel, Mandy Freund, Urs Beyerle, Claudia Gessner, Alexander Nauels, Nico Bauer, Josep G. Canadell, John S. Daniel, Andrew John, Paul B. Krummel, Gunnar Luderer, Nicolai Meinshausen, Stephen A. Montzka, Peter J. Rayner, Stefan Reimann, Steven J. Smith, Marten van den Berg, Guus J. M. Velders, Martin K. Vollmer, and Ray H. J. Wang
Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020,https://doi.org/10.5194/gmd-13-3571-2020, 2020
Short summary
The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF6)
Peter G. Simmonds, Matthew Rigby, Alistair J. Manning, Sunyoung Park, Kieran M. Stanley, Archie McCulloch, Stephan Henne, Francesco Graziosi, Michela Maione, Jgor Arduini, Stefan Reimann, Martin K. Vollmer, Jens Mühle, Simon O'Doherty, Dickon Young, Paul B. Krummel, Paul J. Fraser, Ray F. Weiss, Peter K. Salameh, Christina M. Harth, Mi-Kyung Park, Hyeri Park, Tim Arnold, Chris Rennick, L. Paul Steele, Blagoj Mitrevski, Ray H. J. Wang, and Ronald G. Prinn
Atmos. Chem. Phys., 20, 7271–7290, https://doi.org/10.5194/acp-20-7271-2020,https://doi.org/10.5194/acp-20-7271-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Spatially and temporally resolved measurements of NOx fluxes by airborne eddy covariance over Greater London
Adam R. Vaughan, James D. Lee, Stefan Metzger, David Durden, Alastair C. Lewis, Marvin D. Shaw, Will S. Drysdale, Ruth M. Purvis, Brian Davison, and C. Nicholas Hewitt
Atmos. Chem. Phys., 21, 15283–15298, https://doi.org/10.5194/acp-21-15283-2021,https://doi.org/10.5194/acp-21-15283-2021, 2021
Short summary
Temporary pause in the growth of atmospheric ethane and propane in 2015–2018
Hélène Angot, Connor Davel, Christine Wiedinmyer, Gabrielle Pétron, Jashan Chopra, Jacques Hueber, Brendan Blanchard, Ilann Bourgeois, Isaac Vimont, Stephen A. Montzka, Ben R. Miller, James W. Elkins, and Detlev Helmig
Atmos. Chem. Phys., 21, 15153–15170, https://doi.org/10.5194/acp-21-15153-2021,https://doi.org/10.5194/acp-21-15153-2021, 2021
Short summary
Formation of condensable organic vapors from anthropogenic and biogenic volatile organic compounds (VOCs) is strongly perturbed by NOx in eastern China
Yuliang Liu, Wei Nie, Yuanyuan Li, Dafeng Ge, Chong Liu, Zhengning Xu, Liangduo Chen, Tianyi Wang, Lei Wang, Peng Sun, Ximeng Qi, Jiaping Wang, Zheng Xu, Jian Yuan, Chao Yan, Yanjun Zhang, Dandan Huang, Zhe Wang, Neil M. Donahue, Douglas Worsnop, Xuguang Chi, Mikael Ehn, and Aijun Ding
Atmos. Chem. Phys., 21, 14789–14814, https://doi.org/10.5194/acp-21-14789-2021,https://doi.org/10.5194/acp-21-14789-2021, 2021
Short summary
Seasonal and diurnal variations in biogenic volatile organic compounds in highland and lowland ecosystems in southern Kenya
Yang Liu, Simon Schallhart, Ditte Taipale, Toni Tykkä, Matti Räsänen, Lutz Merbold, Heidi Hellén, and Petri Pellikka
Atmos. Chem. Phys., 21, 14761–14787, https://doi.org/10.5194/acp-21-14761-2021,https://doi.org/10.5194/acp-21-14761-2021, 2021
Short summary
Origins and characterization of CO and O3 in the African upper troposphere
Victor Lannuque, Bastien Sauvage, Brice Barret, Hannah Clark, Gilles Athier, Damien Boulanger, Jean-Pierre Cammas, Jean-Marc Cousin, Alain Fontaine, Eric Le Flochmoën, Philippe Nédélec, Hervé Petetin, Isabelle Pfaffenzeller, Susanne Rohs, Herman G. J. Smit, Pawel Wolff, and Valérie Thouret
Atmos. Chem. Phys., 21, 14535–14555, https://doi.org/10.5194/acp-21-14535-2021,https://doi.org/10.5194/acp-21-14535-2021, 2021
Short summary

Cited articles

3M Company: 3M Material Safety Data Sheet 3M(TM) PFG-3480 Specialty Gas, https://userweb.jlab.org/~brads/c4f8o/c4f8o-3M-msds.pdf (last access:15 May 2018), 2007. a
Acconcia, T. V., Agócs, A. G., Barile, F., Barnaföldi, G. G., Bellwied, R., Bencédi, G., Bencze, G., Berényi, D., Boldizsár, L., Chattopadhyay, S., Chinellato, D. D., Cindolo, F., Cossyleon, K., Das, D., Das, K., Das-Bose, L., Dash, A. K., D'Ambrosio, S., De Cataldo, G., De Pasquale, S., Di Bari, D., Di Mauro, A., Futó, E., Garcia-Solis, E., Hamar, G., Harton, A., Iannone, G., Jimenez, R. T., Kim, D. W., Kim, J. S., Knospe, A., Kovács, L., Lévai, P., Markert, C., Martinengo, P., Molnár, L., Nappi, E., Oláh, L., Paić, G., Pastore, C., Patimo, G., Patino, M. E., Peskov, V., Pinsky, L., Piuz, F., Pochybová, S., Sgura, I., Sinha, T., Song, J., Takahashi, J., Timmins, A., Van Beelen, J. B., Varga, D., Volpe, G., Weber, M., Xaplanteris, L., Yi, J., and Yoo, I.-K.: VHMPID RICH prototype using pressurized C4F8O radiator gas and VUV photon detector, Nucl. Instrum. Meth. A, 767, 50–60, https://doi.org/10.1016/j.nima.2014.08.005, 2014. a
Artuso, M., Boulahouache, C., Blusk, S., Butt, J., Dorjkhaidav, O., Menaa, N., Moutain, R., Muramatsu, H., Nandakumar, R., Randrianarivony, K., Sia, R., Skwarnicki, T., Stone, S., Wang, J. C., and Zhang, K.: Performance of a C4F8O gas radiator ring imaging Cherenkov detector using multi-anode photomultiplier tubes, Nucl. Instrum. Meth. A, 558, 373–387, https://doi.org/10.1016/j.nima.2005.11.221, 2006. a
Baasandorj, M., Fleming, E. L., Jackman, C. H., and Burkholder, J. B.: O(1D) kinetic study of key ozone depleting substances and greenhouse gases, J. Phys. Chem. A, 117, 2434–2445, https://doi.org/10.1021/jp312781c, 2013. a
Bernard, F., Papanastasiou, D. K., Papadimitriou, V. C., and Burkholder, J. B.: Infrared absorption spectra of linear (L2–L5) and cyclic (D3–D6) permethylsiloxanes, J. Quant. Spectrosc. Ra., 202, 247–254, https://doi.org/10.1016/j.jqsrt.2017.08.006, 2017. a
Download
Short summary
We have discovered a new compound in the atmosphere, octafluorooxolane (c-C4F8O), from measurements in archived air samples. From our laboratory studies, we find that c-C4F8O is a very powerful greenhouse gas thereby contributing to global warming, and that it has a very long atmospheric lifetime of more than 3500 years. Based on our measurements we could reconstruct its atmospheric evolution over more than 4 decades. Based on this, we could estimate the global emissions of c-C4F8O.
Altmetrics
Final-revised paper
Preprint