Articles | Volume 19, issue 19
https://doi.org/10.5194/acp-19-12343-2019
https://doi.org/10.5194/acp-19-12343-2019
Research article
 | Highlight paper
 | 
07 Oct 2019
Research article | Highlight paper |  | 07 Oct 2019

Relative impact of aerosol, soil moisture, and orography perturbations on deep convection

Linda Schneider, Christian Barthlott, Corinna Hoose, and Andrew I. Barrett

Related authors

Pseudo-Global Warming Simulations Reveal Enhanced Supercell Intensity and Hail Growth in a Future Central European Climate
Lina Lucas, Christian Barthlott, Corinna Hoose, and Peter Knippertz
EGUsphere, https://doi.org/10.5194/egusphere-2025-3069,https://doi.org/10.5194/egusphere-2025-3069, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Sensitivities of simulated mixed-phase Arctic multilayer clouds to primary and secondary ice processes
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
Atmos. Chem. Phys., 25, 6607–6631, https://doi.org/10.5194/acp-25-6607-2025,https://doi.org/10.5194/acp-25-6607-2025, 2025
Short summary
Influence of Fire-Induced Heat and Moisture Release on Pyro-Convective Cloud Dynamics During the Australian New Year's Event: A Study Using Convection-Resolving Simulations and Satellite Data
Lisa Janina Muth, Sascha Bierbauer, Corinna Hoose, Bernhard Vogel, Heike Vogel, and Gholam Ali Hoshyaripour
EGUsphere, https://doi.org/10.5194/egusphere-2025-402,https://doi.org/10.5194/egusphere-2025-402, 2025
Short summary
Characterisation of low-base and mid-base clouds and their thermodynamic phase over the Southern Ocean and Arctic marine regions
Barbara Dietel, Odran Sourdeval, and Corinna Hoose
Atmos. Chem. Phys., 24, 7359–7383, https://doi.org/10.5194/acp-24-7359-2024,https://doi.org/10.5194/acp-24-7359-2024, 2024
Short summary
Uncertainties in cloud-radiative heating within an idealized extratropical cyclone
Behrooz Keshtgar, Aiko Voigt, Bernhard Mayer, and Corinna Hoose
Atmos. Chem. Phys., 24, 4751–4769, https://doi.org/10.5194/acp-24-4751-2024,https://doi.org/10.5194/acp-24-4751-2024, 2024
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Failed cyclogenesis of a mesoscale convective system near Cabo Verde: the role of the Saharan trade wind layer among other inhibiting factors observed during the CADDIWA field campaign
Guillaume Feger, Jean-Pierre Chaboureau, Thibaut Dauhut, Julien Delanoë, and Pierre Coutris
Atmos. Chem. Phys., 25, 7447–7465, https://doi.org/10.5194/acp-25-7447-2025,https://doi.org/10.5194/acp-25-7447-2025, 2025
Short summary
Sensitivities of simulated mixed-phase Arctic multilayer clouds to primary and secondary ice processes
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
Atmos. Chem. Phys., 25, 6607–6631, https://doi.org/10.5194/acp-25-6607-2025,https://doi.org/10.5194/acp-25-6607-2025, 2025
Short summary
Assessing glaciogenic seeding impacts in Australia's Snowy Mountains: an ensemble modeling approach
Sisi Chen, Lulin Xue, Sarah A. Tessendorf, Thomas Chubb, Andrew Peace, Suzanne Kenyon, Johanna Speirs, Jamie Wolff, and Bill Petzke
Atmos. Chem. Phys., 25, 6703–6724, https://doi.org/10.5194/acp-25-6703-2025,https://doi.org/10.5194/acp-25-6703-2025, 2025
Short summary
How the representation of microphysical processes affects tropical condensate in the global storm-resolving model ICON
Ann Kristin Naumann, Monika Esch, and Bjorn Stevens
Atmos. Chem. Phys., 25, 6429–6444, https://doi.org/10.5194/acp-25-6429-2025,https://doi.org/10.5194/acp-25-6429-2025, 2025
Short summary
Magnitude and timescale of liquid water path adjustments to cloud droplet number concentration perturbations for nocturnal non-precipitating marine stratocumulus
Yao-Sheng Chen, Prasanth Prabhakaran, Fabian Hoffmann, Jan Kazil, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 25, 6141–6159, https://doi.org/10.5194/acp-25-6141-2025,https://doi.org/10.5194/acp-25-6141-2025, 2025
Short summary

Cited articles

Altaratz, O., Koren, I., Remer, L., and Hirsch, E.: Review: Cloud invigoration by aerosols: Coupling between microphysics and dynamics, Atmos. Res., 140–141, 38–60, 2014. a
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., and Raschendorfer, M.: Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. a, b
Barrett, A. I., Gray, S. L., Kirshbaum, D. J., Roberts, N. M., Schultz, D. M., and Fairman, J. G.: Synoptic versus orographic control on stationary convective banding, Q. J. Roy. Meteorol. Soc., 141, 1101–1113, https://doi.org/10.1002/qj.2409, 2015. a
Barthlott, C. and Hoose, C.: Spatial and temporal variability of clouds and precipitation over Germany: multiscale simulations across the “gray zone”, Atmos. Chem. Phys., 15, 12361–12384, https://doi.org/10.5194/acp-15-12361-2015, 2015. a
Barthlott, C. and Hoose, C.: Aerosol effects on clouds and precipitation over central Europe in different weather regimes, J. Atmos. Sci., 75, 4247–4264, https://doi.org/10.1175/JAS-D-18-0110.1, 2018. a, b
Download
Short summary
This study addresses the relative impact of orography, soil moisture, and aerosols on precipitation over Germany in different weather regimes. We find that the impact of these perturbations is higher for weak than for strong large-scale forcing. Furthermore, aerosols and soil moisture are both of similar importance for precipitation forecasting, which indicates that their inclusion in operational ensemble forecasting should be assessed in the future.
Share
Altmetrics
Final-revised paper
Preprint