Articles | Volume 19, issue 19
https://doi.org/10.5194/acp-19-12325-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-19-12325-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Growth in mid-monsoon dry phases over the Indian region: prevailing influence of anthropogenic aerosols
Rohit Chakraborty
National Atmospheric Research Laboratory, Gadanki, India
Bijay Kumar Guha
National Institute of Technology, Rourkela, India
Shamitaksha Talukdar
CORRESPONDING AUTHOR
National Atmospheric Research Laboratory, Gadanki, India
Madineni Venkat Ratnam
National Atmospheric Research Laboratory, Gadanki, India
Animesh Maitra
Institute of Radio Physics and Electronics, Kolkata, India
Related authors
Rohit Chakraborty, Arindam Chakraborty, Ghouse Basha, and Madineni Venkat Ratnam
Atmos. Chem. Phys., 21, 11161–11177, https://doi.org/10.5194/acp-21-11161-2021, https://doi.org/10.5194/acp-21-11161-2021, 2021
Short summary
Short summary
In this study, urbanization-induced surface warming has been found to trigger prominent changes in upper-troposphere–lower-stratosphere regions leading to stronger and more frequent lightning extremes over India. Consequently, the implementation of this hypothesis in global climate models reveals that lightning frequency and intensity values across India will rise by ~10–25 % and 15–50 %, respectively, by 2100 at the current urbanization rate, which should be alarming for present policymakers.
Rohit Chakraborty, Madineni Venkat Ratnam, and Shaik Ghouse Basha
Atmos. Chem. Phys., 19, 3687–3705, https://doi.org/10.5194/acp-19-3687-2019, https://doi.org/10.5194/acp-19-3687-2019, 2019
Short summary
Short summary
Intense convective phenomena are a common climatic feature in the Indian tropical region which occur during the pre-monsoon to post-monsoon seasons (April–October) and are generally accompanied by intense thunderstorms, lightning, and wind gusts with heavy rainfall. Here we show long-term trends of the parameters related to convection and instability obtained from 27 radiosonde stations across six subdivisions over the Indian region during the period 1980–2016.
Hazel Vernier, Neeraj Rastogi, Hongyu Liu, Amit Kumar Pandit, Kris Bedka, Anil Patel, Madineni Venkat Ratnam, Buduru Suneel Kumar, Bo Zhang, Harish Gadhavi, Frank Wienhold, Gwenael Berthet, and Jean-Paul Vernier
Atmos. Chem. Phys., 22, 12675–12694, https://doi.org/10.5194/acp-22-12675-2022, https://doi.org/10.5194/acp-22-12675-2022, 2022
Short summary
Short summary
The chemical composition of the stratospheric aerosols collected aboard high-altitude balloons above the summer Asian monsoon reveals the presence of nitrate/nitrite. Using numerical simulations and satellite observations, we found that pollution as well as lightning could explain some of our observations.
Varaha Ravi Kiran, Madineni Venkat Ratnam, Masatomo Fujiwara, Herman Russchenberg, Frank G. Wienhold, Bomidi Lakshmi Madhavan, Mekalathur Roja Raman, Renju Nandan, Sivan Thankamani Akhil Raj, Alladi Hemanth Kumar, and Saginela Ravindra Babu
Atmos. Meas. Tech., 15, 4709–4734, https://doi.org/10.5194/amt-15-4709-2022, https://doi.org/10.5194/amt-15-4709-2022, 2022
Short summary
Short summary
We proposed and conducted the multi-instrumental BACIS (Balloon-borne Aerosol–Cloud Interaction Studies) field campaigns using balloon-borne in situ measurements and ground-based and space-borne remote sensing instruments. Aerosol-cloud interaction is quantified for liquid clouds by segregating aerosol and cloud information in a balloon profile. Overall, the observational approach proposed here demonstrated its capability for understanding the aerosol–cloud interaction process.
Rohit Chakraborty, Arindam Chakraborty, Ghouse Basha, and Madineni Venkat Ratnam
Atmos. Chem. Phys., 21, 11161–11177, https://doi.org/10.5194/acp-21-11161-2021, https://doi.org/10.5194/acp-21-11161-2021, 2021
Short summary
Short summary
In this study, urbanization-induced surface warming has been found to trigger prominent changes in upper-troposphere–lower-stratosphere regions leading to stronger and more frequent lightning extremes over India. Consequently, the implementation of this hypothesis in global climate models reveals that lightning frequency and intensity values across India will rise by ~10–25 % and 15–50 %, respectively, by 2100 at the current urbanization rate, which should be alarming for present policymakers.
Saginela Ravindra Babu, Madineni Venkat Ratnam, Ghouse Basha, Shantanu Kumar Pani, and Neng-Huei Lin
Atmos. Chem. Phys., 21, 5533–5547, https://doi.org/10.5194/acp-21-5533-2021, https://doi.org/10.5194/acp-21-5533-2021, 2021
Short summary
Short summary
The present study explores the detailed structure, dynamics, and trace gas variability in the Asian summer monsoon anticyclone (ASMA) in the extreme El Niño of 2015/16. The results find the structure of the ASMA shows strong spatial variability between July and August. A West Pacific mode of the anticyclone is noticed in August. A significant lowering of tropospheric tracers and strong increase in stratospheric tracers are found. The tropopause temperatures also exhibit a warming in the ASMA.
Kizhathur Narasimhan Uma, Siddarth Shankar Das, Madineni Venkat Ratnam, and Kuniyil Viswanathan Suneeth
Atmos. Chem. Phys., 21, 2083–2103, https://doi.org/10.5194/acp-21-2083-2021, https://doi.org/10.5194/acp-21-2083-2021, 2021
Short summary
Short summary
Reanalysis data of vertical wind (w) are widely used by the atmospheric community to determine various calculations of atmospheric circulations, diabatic heating, convection, etc. There are no studies that assess the available reanalysis data with respect to observations. The present study assesses for the first time all the reanalysis w by comparing it with 20 years of radar data from Gadanki and Kototabang and shows that downdrafts and peaks in the updrafts are not produced in the reanalyses.
Ghouse Basha, M. Venkat Ratnam, and Pangaluru Kishore
Atmos. Chem. Phys., 20, 6789–6801, https://doi.org/10.5194/acp-20-6789-2020, https://doi.org/10.5194/acp-20-6789-2020, 2020
Short summary
Short summary
This study explores the variability of the Asian summer monsoon anticyclone (ASMA) spatial variability and trends using long-term observational and reanalysis data sets. The decadal variability of the anticyclone is very large at the edges compared with the core region. We propose that the transport process over the Tibetan Plateau and the Indian region is significant in active monsoon, strong monsoon and strong La Niña years. Thus, different phases of the monsoon are important in UTLS analyses.
Ghouse Basha, M. Venkat Ratnam, Pangaluru Kishore, S. Ravindrababu, and Isabella Velicogna
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-743, https://doi.org/10.5194/acp-2019-743, 2019
Preprint withdrawn
Short summary
Short summary
The Asian Summer Monsoon Anticyclone (ASMA) plays an important role in confining the trace gases and aerosols for a longer period. This study explores the variability of tropopause parameters, trace gases and aerosols and its relation with ENSO and QBO in ASMA. Further, the influence of the Indian summer monsoon activity on the ASMA trace gases and aerosols is studied with respect to active and break spells of monsoon, strong and weak monsoon years and strong La Niña, El Niño years.
Rohit Chakraborty, Madineni Venkat Ratnam, and Shaik Ghouse Basha
Atmos. Chem. Phys., 19, 3687–3705, https://doi.org/10.5194/acp-19-3687-2019, https://doi.org/10.5194/acp-19-3687-2019, 2019
Short summary
Short summary
Intense convective phenomena are a common climatic feature in the Indian tropical region which occur during the pre-monsoon to post-monsoon seasons (April–October) and are generally accompanied by intense thunderstorms, lightning, and wind gusts with heavy rainfall. Here we show long-term trends of the parameters related to convection and instability obtained from 27 radiosonde stations across six subdivisions over the Indian region during the period 1980–2016.
Nelli Narendra Reddy, Madineni Venkat Ratnam, Ghouse Basha, and Varaha Ravikiran
Atmos. Chem. Phys., 18, 11709–11727, https://doi.org/10.5194/acp-18-11709-2018, https://doi.org/10.5194/acp-18-11709-2018, 2018
Short summary
Short summary
Cloud vertical structure affects large-scale atmosphere circulation by altering gradients in total diabatic heating and cooling and latent heat release. Detailed cloud vertical structure in all seasons, including diurnal variation over the Indian region, is made for the first time. The detected cloud layers are verified with independent observations using cloud particle sensor sonde. Heating and cooling in the troposphere and lower stratosphere due to these cloud layers are also investigated.
Sivan Thankamani Akhil Raj, Madineni Venkat Ratnam, Daggumati Narayana Rao, and Boddam Venkata Krishna Murthy
Ann. Geophys., 36, 149–165, https://doi.org/10.5194/angeo-36-149-2018, https://doi.org/10.5194/angeo-36-149-2018, 2018
Short summary
Short summary
Ozone and water vapor are two potent greenhouse gases in the atmosphere. They influence the temperature structure greatly, particularly in the upper troposphere and lower stratosphere. We have investigated the long-term trends in these trace gases over the Indian region using long-term data (1993–2015) constructed from multi-satellite observations. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere and a good correlation between N2O and O3 is found.
Sanjay Kumar Mehta, Madineni Venkat Ratnam, Sukumarapillai V. Sunilkumar, Daggumati Narayana Rao, and Boddapaty V. Krishna Murthy
Atmos. Chem. Phys., 17, 531–549, https://doi.org/10.5194/acp-17-531-2017, https://doi.org/10.5194/acp-17-531-2017, 2017
Short summary
Short summary
Study of the diurnal variation of the atmospheric boundary layer (ABL) height is important for the knowledge of pollutant dispersion, crucial for all living beings. The most difficult part in the study of the diurnal variation is in identification of the stable boundary layer which occurs ~ 50% of times only and mostly during nighttime winter. Surface temperature and clouds directly affect the diurnal pattern of the ABL. Thus, stronger (weaker) diurnal variation found during pre-monsoon (winter).
Madineni Venkat Ratnam, Alladi Hemanth Kumar, and Achuthan Jayaraman
Atmos. Meas. Tech., 9, 5735–5745, https://doi.org/10.5194/amt-9-5735-2016, https://doi.org/10.5194/amt-9-5735-2016, 2016
Short summary
Short summary
Launch of INSAT-3D carrying a multi-spectral imager by the ISRO made it possible to obtain profiles of temperature and water vapour over India with higher temporal and vertical resolutions. Initial validation is made with the radiosonde, other satellites and reanalysis data sets. Good correlation between INSAT-3D and in situ measurements is noticed with a few cautions. Temperature data from INSAT-3D are of high quality and can be directly assimilated for better forecasts over India.
M. Venkat Ratnam, S. Ravindra Babu, S. S. Das, G. Basha, B. V. Krishnamurthy, and B. Venkateswararao
Atmos. Chem. Phys., 16, 8581–8591, https://doi.org/10.5194/acp-16-8581-2016, https://doi.org/10.5194/acp-16-8581-2016, 2016
Short summary
Short summary
The impact of cyclones that occurred over the north Indian Ocean during 2007–2013 on the STE process is quantified using satellite observations. It is shown that cyclones have a significant impact on the tropopause structure, ozone and water vapour budget, and consequentially STE in the UTLS region. The cross-tropopause mass flux from the stratosphere to the troposphere for cyclonic storms is found to be 0.05 ± 0.29 × 10−3 kg m−2, and for very severe cyclonic storms it is 0.5 ± 1.07 × 10−3 kg m−2.
K. K. Shukla, K. Niranjan Kumar, D. V. Phanikumar, R. K. Newsom, V. R. Kotamarthi, T. B. M. J. Ouarda, and M. V. Ratnam
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-162, https://doi.org/10.5194/amt-2016-162, 2016
Revised manuscript not accepted
Short summary
Short summary
Estimation of Cloud base height was carried out by using various ground based instruments (Doppler Lidar and Ceilometer) and satellite datasets (MODIS) over central Himalayan region for the first time. The present study demonstrates the potential of Doppler Lidar in precise estimation of cloud base height and updraft velocities. More such deployments will be invaluable inputs for regional weather prediction models over complex Himalayan terrains.
Siddarth Shankar Das, Madineni Venkat Ratnam, Kizhathur Narasimhan Uma, Kandula Venkata Subrahmanyam, Imran Asatar Girach, Amit Kumar Patra, Sundaresan Aneesh, Kuniyil Viswanathan Suneeth, Karanam Kishore Kumar, Amit Parashuram Kesarkar, Sivarajan Sijikumar, and Geetha Ramkumar
Atmos. Chem. Phys., 16, 4837–4847, https://doi.org/10.5194/acp-16-4837-2016, https://doi.org/10.5194/acp-16-4837-2016, 2016
Short summary
Short summary
The present study examines the role of tropical cyclones in the enhancement of tropospheric ozone. The most significant and new observation reported is the increase in the upper-tropospheric ozone by 20–50 ppbv, which has extended down to the middle and lower troposphere. The descent rate of enhanced ozone layer during the passage of tropical cyclone is 0.8–1 km day−1. Enhancement of surface ozone concentration by ~ 10 ppbv in the daytime and 10–15 ppbv at night-time is observed.
Sanjeev Dwivedi, M. S. Narayanan, M. Venkat Ratnam, and D. Narayana Rao
Atmos. Chem. Phys., 16, 4497–4509, https://doi.org/10.5194/acp-16-4497-2016, https://doi.org/10.5194/acp-16-4497-2016, 2016
Short summary
Short summary
Monsoon inversion (MI) over the Arabian Sea is one of the important characteristics associated with the monsoon activity over Indian region. The initiation and dissipation times of MI, their percentage of occurrence, strength etc., has been examined. We suggest MI could also be included as one of the semi-permanent features of southwest monsoon.
A. K. Pandit, H. S. Gadhavi, M. Venkat Ratnam, K. Raghunath, S. V. B. Rao, and A. Jayaraman
Atmos. Chem. Phys., 15, 13833–13848, https://doi.org/10.5194/acp-15-13833-2015, https://doi.org/10.5194/acp-15-13833-2015, 2015
Short summary
Short summary
We present the longest (1998 to 2013) cirrus cloud climatology over a tropical station using a ground-based lidar. A statistically significant increase is found in the altitude of sub-visible cirrus clouds. Also a systematic shift from thin to sub-visible cirrus cloud type is observed. Ground-based lidar is found to detect more number of sub-visible cirrus clouds than space-based lidar. These findings have implications to global warming and stratosphere-troposphere water vapour exchange studies.
S. Ravindra Babu, M. Venkat Ratnam, G. Basha, B. V. Krishnamurthy, and B. Venkateswararao
Atmos. Chem. Phys., 15, 10239–10249, https://doi.org/10.5194/acp-15-10239-2015, https://doi.org/10.5194/acp-15-10239-2015, 2015
Short summary
Short summary
The effect of tropical cyclones (TCs) that occurred over the north Indian Ocean in the last decade on the tropical tropopause parameters has been quantified for the first time. The vertical structure of temperature and tropopause parameters within the 5º radius away from the cyclone centre during TC period is also presented. The water vapour variability in the vicinity of TC is investigated.
It is demonstrated that the TCs can significantly affect the tropical tropopause and thus STE processes.
M. Pramitha, M. Venkat Ratnam, A. Taori, B. V. Krishna Murthy, D. Pallamraju, and S. Vijaya Bhaskar Rao
Atmos. Chem. Phys., 15, 2709–2721, https://doi.org/10.5194/acp-15-2709-2015, https://doi.org/10.5194/acp-15-2709-2015, 2015
Short summary
Short summary
Sources and propagation characteristics of high-frequency gravity waves observed in the mesosphere using airglow emissions from Gadanki and Hyderabad, India, are investigated using reverse ray tracing. Wave amplitudes are also traced back, including both radiative and diffusive damping. Interestingly, large vertical shears in the horizontal wind are noticed near the ray terminal points (at 10-12km altitude) and are thus identified to be the source for generating the observed gravity waves.
K. Ramesh, A. P. Kesarkar, J. Bhate, M. Venkat Ratnam, and A. Jayaraman
Atmos. Meas. Tech., 8, 369–384, https://doi.org/10.5194/amt-8-369-2015, https://doi.org/10.5194/amt-8-369-2015, 2015
Short summary
Short summary
The study of atmospheric convection is important for the understanding of evolution of diurnal cycles of rainfall. High-resolution observations of vertical profiles of temperature and relative humidity are very useful for understanding the behaviour of these convections. Microwave radiometers are becoming useful tools for it. In this paper, we propose a new method to retrieve these profiles based on adaptive neuro-fuzzy interface systems and find that this method has a better skill of retrieval.
M. Venkat Ratnam, N. Pravallika, S. Ravindra Babu, G. Basha, M. Pramitha, and B. V. Krishna Murthy
Atmos. Meas. Tech., 7, 1011–1025, https://doi.org/10.5194/amt-7-1011-2014, https://doi.org/10.5194/amt-7-1011-2014, 2014
P. Kishore, M. Venkat Ratnam, I. Velicogna, V. Sivakumar, H. Bencherif, B. R. Clemesha, D. M. Simonich, P. P. Batista, and G. Beig
Ann. Geophys., 32, 301–317, https://doi.org/10.5194/angeo-32-301-2014, https://doi.org/10.5194/angeo-32-301-2014, 2014
D. V. Phanikumar, K. Niranjan Kumar, K. K. Shukla, H. Joshi, M. Venkat Ratnam, M. Naja, and K. Reddy
Ann. Geophys., 32, 175–180, https://doi.org/10.5194/angeo-32-175-2014, https://doi.org/10.5194/angeo-32-175-2014, 2014
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Quantifying particle-to-particle heterogeneity in aerosol hygroscopicity
Measurement report: Black carbon properties and concentrations in southern Sweden urban and rural air – the importance of long-range transport
Diurnal differences in the effect of aerosols on cloud-to-ground lightning in the Sichuan Basin
Intensive aerosol properties of boreal and regional biomass burning aerosol at Mt. Bachelor Observatory: larger and black carbon (BC)-dominant particles transported from Siberian wildfires
Characterization of ultrafine particles and the occurrence of new particle formation events in an urban and coastal site of the Mediterranean area
Atmospheric nanoparticles hygroscopic growth measurement by a combined surface plasmon resonance microscope and hygroscopic tandem differential mobility analyzer
A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition
Annual cycle of hygroscopic properties and mixing state of the suburban aerosol in Athens, Greece
Measurement report: Atmospheric new particle formation at a peri-urban site in Lille, northern France
New particle formation and growth during summer in an urban environment: a dual chamber study
An evaluation of biomass burning aerosol mass, extinction, and size distribution in GEOS using observations from CAMP2Ex
Elucidating ozone and PM2.5 pollution in Fenwei Plain reveals the co-benefits of controlling precursor gas emissions in winter haze
Seasonal significance of new particle formation impacts on cloud condensation nuclei at a mountaintop location
Aerosol activation characteristics and prediction at the central European ACTRIS research station of Melpitz, Germany
Measurement report: Increasing trend of atmospheric ion concentrations in the boreal forest
Vertical profiles of cloud condensation nuclei number concentration and its empirical estimate from aerosol optical properties over the North China Plain
Measurement report: The Urmia playa as a source of airborne dust and ice-nucleating particles – Part 1: Correlation between soils and airborne samples
Constraining the particle-scale diversity of black carbon light absorption using a unified framework
Ice Nucleating Particles in Northern Greenland: annual cycles, biological contribution and parameterizations
Survival probability of new atmospheric particles: closure between theory and measurements from 1.4 to 100 nm
Predicting atmospheric background number concentration of ice-nucleating particles in the Arctic
Different effects of anthropogenic emissions and aging processes on the mixing state of soot particles in the nucleation and accumulation modes
Fluorescence characteristics, absorption properties, and radiative effects of water-soluble organic carbon in seasonal snow across northeastern China
Measurement report: Size distributions of urban aerosols down to 1 nm from long-term measurements
Rapid reappearance of air pollution after cold air outbreaks in northern and eastern China
On the relation between apparent ion and total particle growth rates in the boreal forest and related chamber experiments
Aerosol deposition to the boreal forest in the vicinity of the Alberta Oil Sands
Assessment of NAAPS-RA performance in Maritime Southeast Asia during CAMP2Ex
Comparison of particle number size distribution trends in ground measurements and climate models
Aerosol size distribution changes in FIREX-AQ biomass burning plumes: the impact of plume concentration on coagulation and OA condensation/evaporation
Long-range transported continental aerosol in the Eastern North Atlantic: three multiday event regimes influence cloud condensation nuclei
Impact of water uptake and mixing state on submicron particle deposition in the human respiratory tract (HRT) based on explicit hygroscopicity measurements at HRT-like conditions
Parameterizations of size distribution and refractive index of biomass burning organic aerosol with black carbon content
Newly identified climatically and environmentally significant high-latitude dust sources
Measurement Report: Understanding the seasonal cycle of Southern Ocean aerosols
Airborne observations during KORUS-AQ show that aerosol optical depths are more spatially self-consistent than aerosol intensive properties
Using aircraft measurements to characterize subgrid-scale variability of aerosol properties near the Atmospheric Radiation Measurement Southern Great Plains site
Variations of the density of ambient black carbon retrieved by a new method: importance to CCN prediction
Measurement report: A multi-year study on the impacts of Chinese New Year celebrations on air quality in Beijing, China
Mixing state of black carbon at different atmospheres in north and southwest China
Columnar and surface urban aerosol in the Moscow megacity according to measurements and simulations with the COSMO-ART model
Vertical aerosol particle exchange in the marine boundary layer estimated from helicopter-borne measurements in the Azores region
Circum-Antarctic abundance and properties of CCN and INPs
The ice-nucleating activity of African mineral dust in the Caribbean boundary layer
Biomass burning and marine aerosol processing over the southeast Atlantic Ocean: a TEM single-particle analysis
Volatility parameterization of ambient organic aerosols at a rural site of the North China Plain
Light absorption by brown carbon over the South-East Atlantic Ocean
Particle size distribution and particulate matter concentrations during synoptic and convective dust events in West Texas
Measurement of light-absorbing particles in surface snow of central and western Himalayan glaciers: spatial variability, radiative impacts, and potential source regions
Seasonal variations in fire conditions are important drivers in the trend of aerosol optical properties over the south-eastern Atlantic
Liang Yuan and Chunsheng Zhao
Atmos. Chem. Phys., 23, 3195–3205, https://doi.org/10.5194/acp-23-3195-2023, https://doi.org/10.5194/acp-23-3195-2023, 2023
Short summary
Short summary
Chemical compositions vary between and within particles due to the complex sources and aging processes, causing particle-to-particle heterogeneity in aerosol hygroscopicity, which is of great importance to aerosol climatic and environmental effects. This study proposes an algorithm to quantify the heterogeneity from in situ measurements, sheds light on the reanalysis of the existing H-TDMA datasets, and could have a large impact on how we use and think about these datasets.
Erik Ahlberg, Stina Ausmeel, Lovisa Nilsson, Mårten Spanne, Julija Pauraite, Jacob Klenø Nøjgaard, Michele Bertò, Henrik Skov, Pontus Roldin, Adam Kristensson, Erik Swietlicki, and Axel Eriksson
Atmos. Chem. Phys., 23, 3051–3064, https://doi.org/10.5194/acp-23-3051-2023, https://doi.org/10.5194/acp-23-3051-2023, 2023
Short summary
Short summary
To investigate the properties and origin of black carbon particles in southern Sweden during late summer, we performed measurements both at a rural site and the nearby city of Malmö. We found that local traffic emissions of black carbon led to concentrations around twice as high as those at the rural site. Modeling show that these emissions are not clearly distinguishable at the rural site, unless meteorology was favourable, which shows the importance of long-range transport and processing.
Haichao Wang, Yongbo Tan, Zheng Shi, Ning Yang, and Tianxue Zheng
Atmos. Chem. Phys., 23, 2843–2857, https://doi.org/10.5194/acp-23-2843-2023, https://doi.org/10.5194/acp-23-2843-2023, 2023
Short summary
Short summary
The effects of aerosols on lightning are complex and still far from understood. We analysed the impacts of aerosols on lightning activity in the Sichuan Basin. Results show that lightning flashes first increase with aerosol loading during all periods and then behave differently (decrease in the afternoon and flatten at night). This suggests that the changes in solar radiation can modulate the aerosol effects on the occurrence and development of convection and lightning activity.
Nathaniel W. May, Noah Bernays, Ryan Farley, Qi Zhang, and Daniel A. Jaffe
Atmos. Chem. Phys., 23, 2747–2764, https://doi.org/10.5194/acp-23-2747-2023, https://doi.org/10.5194/acp-23-2747-2023, 2023
Short summary
Short summary
In summer 2019 at Mt. Bachelor Observatory, we observed smoke from wildfires with transport times ranging from less than a day up to 2 weeks. Aerosol absorption of multi-day transported smoke was dominated by black carbon, while smoke with shorter transport times had greater brown carbon absorption. Notably, Siberian smoke exhibited aerosol scattering and physical properties indicative of contributions from larger particles than typically observed in smoke.
Adelaide Dinoi, Daniel Gulli, Kay Weinhold, Ivano Ammoscato, Claudia R. Calidonna, Alfred Wiedensohler, and Daniele Contini
Atmos. Chem. Phys., 23, 2167–2181, https://doi.org/10.5194/acp-23-2167-2023, https://doi.org/10.5194/acp-23-2167-2023, 2023
Short summary
Short summary
In this study, particle number size distribution analysis was performed with the purpose of characterizing new particle formation (NPF) events occurring in two areas of southern Italy over 5 years of measurements. The identification of NPF events produced different results in terms of frequency and seasonality. Some of the main variables involved in the process, the local atmospheric conditions in which the events occurred, and the role of the air masses were discussed and compared.
Zhibo Xie, Jiaoshi Zhang, Huaqiao Gui, Yang Liu, Bo Yang, Haosheng Dai, Hang Xiao, Douguo Zhang, Da-Ren Chen, and Jianguo Liu
Atmos. Chem. Phys., 23, 2079–2088, https://doi.org/10.5194/acp-23-2079-2023, https://doi.org/10.5194/acp-23-2079-2023, 2023
Short summary
Short summary
The hygroscopic growth of single nanoparticles is important for hygroscopic characteristic analysis of atmospheric particles and for scientific studies involving atmospheric particles. Based on the hygroscopicity difference of subgroups of atmospheric nanoparticles, the classification and proportion analysis of atmospheric nanoparticles has been completed, which has potential significance in predicting the contribution of the atmospheric particulate hygroscopicity and particle growth mechanism.
Matthew Boyer, Diego Aliaga, Jakob Boyd Pernov, Hélène Angot, Lauriane L. J. Quéléver, Lubna Dada, Benjamin Heutte, Manuel Dall'Osto, David C. S. Beddows, Zoé Brasseur, Ivo Beck, Silvia Bucci, Marina Duetsch, Andreas Stohl, Tiia Laurila, Eija Asmi, Andreas Massling, Daniel Charles Thomas, Jakob Klenø Nøjgaard, Tak Chan, Sangeeta Sharma, Peter Tunved, Radovan Krejci, Hans Christen Hansson, Federico Bianchi, Katrianne Lehtipalo, Alfred Wiedensohler, Kay Weinhold, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 23, 389–415, https://doi.org/10.5194/acp-23-389-2023, https://doi.org/10.5194/acp-23-389-2023, 2023
Short summary
Short summary
The Arctic is a unique environment that is warming faster than other locations on Earth. We evaluate measurements of aerosol particles, which can influence climate, over the central Arctic Ocean for a full year and compare the data to land-based measurement stations across the Arctic. Our measurements show that the central Arctic has similarities to but also distinct differences from the stations further south. We note that this may change as the Arctic warms and sea ice continues to decline.
Christina Spitieri, Maria Gini, Martin Gysel-Beer, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 23, 235–249, https://doi.org/10.5194/acp-23-235-2023, https://doi.org/10.5194/acp-23-235-2023, 2023
Short summary
Short summary
The paper provides insights into the hygroscopic properties and state of mixing of atmospheric aerosol through 1 year of measurements of key microphysical parameters in the suburbs of the most densely populated city of Greece, Athens, in the eastern Mediterranean, which is considered an important climate change hotspot. The results can be used for the prediction of cloud condensation nuclei and quantification of the influence of ambient relative humidity on light scattering by aerosol particles.
Suzanne Crumeyrolle, Jenni S. S. Kontkanen, Clémence Rose, Alejandra Velazquez Garcia, Eric Bourrianne, Maxime Catalfamo, Véronique Riffault, Emmanuel Tison, Joel Ferreira de Brito, Nicolas Visez, Nicolas Ferlay, Frédérique Auriol, and Isabelle Chiapello
Atmos. Chem. Phys., 23, 183–201, https://doi.org/10.5194/acp-23-183-2023, https://doi.org/10.5194/acp-23-183-2023, 2023
Short summary
Short summary
Ultrafine particles (UFPs) are particles with an aerodynamic diameter of 100 nm or less and negligible mass concentration but are the dominant contributor to the total particle number concentration. The present study aims to better understand the environmental factors favoring or inhibiting atmospheric new particle formation (NPF) over Lille, a large city in the north of France, and to analyze the impact of such an event on urban air quality using a long-term dataset (3 years).
Spiro D. Jorga, Kalliopi Florou, David Patoulias, and Spyros N. Pandis
Atmos. Chem. Phys., 23, 85–97, https://doi.org/10.5194/acp-23-85-2023, https://doi.org/10.5194/acp-23-85-2023, 2023
Short summary
Short summary
We take advantage of this unexpected low, new particle formation frequency in Greece and use a dual atmospheric simulation chamber system with starting point ambient air in an effort to gain insight about the chemical species that is limiting nucleation in this area. A potential nucleation precursor, ammonia, was added in one of the chambers while the other one was used as a reference. The addition of ammonia assisted new particle formation in almost 50 % of the experiments conducted.
Allison B. Marquardt Collow, Virginie Buchard, Peter R. Colarco, Arlindo M. da Silva, Ravi Govindaraju, Edward P. Nowottnick, Sharon Burton, Richard Ferrare, Chris Hostetler, and Luke Ziemba
Atmos. Chem. Phys., 22, 16091–16109, https://doi.org/10.5194/acp-22-16091-2022, https://doi.org/10.5194/acp-22-16091-2022, 2022
Short summary
Short summary
Biomass burning aerosol impacts aspects of the atmosphere and Earth system through radiative forcing, serving as cloud condensation nuclei, and air quality. Despite its importance, the representation of biomass burning aerosol is not always accurate in models. Field campaign observations from CAMP2Ex are used to evaluate the mass and extinction of aerosols in the GEOS model. Notable biases in the model illuminate areas of future development with GEOS and the underlying GOCART aerosol module.
Chunshui Lin, Ru-Jin Huang, Haobin Zhong, Jing Duan, Zixi Wang, Wei Huang, and Wei Xu
EGUsphere, https://doi.org/10.5194/egusphere-2022-1440, https://doi.org/10.5194/egusphere-2022-1440, 2022
Short summary
Short summary
The complex interaction between O3 and PM2.5, coupled with the topology of the Fenwei Plain and the evolution of the boundary layer height, highlight the challenges in further reducing particulate pollution in winter despite years of efforts to reduce emissions. Through scenario analysis in a chemical box model constrained by observation, we show the co-benefits of reducing NOx and VOCs simultaneously in reducing ozone and SOA.
Noah S. Hirshorn, Lauren M. Zuromski, Christopher Rapp, Ian McCubbin, Gerardo Carrillo-Cardenas, Fangqun Yu, and A. Gannet Hallar
Atmos. Chem. Phys., 22, 15909–15924, https://doi.org/10.5194/acp-22-15909-2022, https://doi.org/10.5194/acp-22-15909-2022, 2022
Short summary
Short summary
New particle formation (NPF) is a source of atmospheric aerosol number concentration that can impact climate by growing to larger sizes and under proper conditions form cloud condensation nuclei (CCN). Using novel methods, we find that at Storm Peak Laboratory, a remote, mountaintop site in Colorado, NPF is observed to enhance CCN concentrations in the spring by a factor of 1.54 and in the winter by a factor of 1.36 which can occur on a regional scale having important climate implications.
Yuan Wang, Silvia Henning, Laurent Poulain, Chunsong Lu, Frank Stratmann, Yuying Wang, Shengjie Niu, Mira L. Pöhlker, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 15943–15962, https://doi.org/10.5194/acp-22-15943-2022, https://doi.org/10.5194/acp-22-15943-2022, 2022
Short summary
Short summary
Aerosol particle activation affects cloud, precipitation, radiation, and thus the global climate. Its long-term measurements are important but still scarce. In this study, more than 4 years of measurements at a central European station were analyzed. The overall characteristics and seasonal changes of aerosol particle activation are summarized. The power-law fit between particle hygroscopicity factor and diameter was recommended for predicting cloud
condensation nuclei number concentration.
Juha Sulo, Janne Lampilahti, Xuemeng Chen, Jenni Kontkanen, Tuomo Nieminen, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Katrianne Lehtipalo
Atmos. Chem. Phys., 22, 15223–15242, https://doi.org/10.5194/acp-22-15223-2022, https://doi.org/10.5194/acp-22-15223-2022, 2022
Short summary
Short summary
We measured atmospheric ion concentrations continuously in a boreal forest between 2005 and 2021 and observed an increasing interannual trend. The increase in cluster ion concentrations can be largely explained by an overall decreasing level of anthropogenic aerosols in the boreal forest. This suggests that the role of ions in atmospheric new particle formation may be more important in the future.
Rui Zhang, Yuying Wang, Zhanqing Li, Zhibin Wang, Russell R. Dickerson, Xinrong Ren, Hao He, Fei Wang, Ying Gao, Xi Chen, Jialu Xu, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 14879–14891, https://doi.org/10.5194/acp-22-14879-2022, https://doi.org/10.5194/acp-22-14879-2022, 2022
Short summary
Short summary
Factors of cloud condensation nuclei number concentration (NCCN) profiles determined in the North China Plain include air mass sources, temperature structure, anthropogenic emissions, and terrain distribution. Cloud condensation nuclei (CCN) spectra suggest that the ability of aerosol activation into CCN is stronger in southeasterly than in northwesterly air masses and stronger in the free atmosphere than near the surface. A good method to parameterize NCCN from aerosol optical data is found.
Nikou Hamzehpour, Claudia Marcolli, Sara Pashai, Kristian Klumpp, and Thomas Peter
Atmos. Chem. Phys., 22, 14905–14930, https://doi.org/10.5194/acp-22-14905-2022, https://doi.org/10.5194/acp-22-14905-2022, 2022
Short summary
Short summary
Playa surfaces in Iran that emerged through Lake Urmia (LU) desiccation have become a relevant dust source of regional relevance. Here, we identify highly erodible LU playa surfaces and determine their physicochemical properties and mineralogical composition and perform emulsion-freezing experiments with them. We find high ice nucleation activities (up to 250 K) that correlate positively with organic matter and clay content and negatively with pH, salinity, K-feldspars, and quartz.
Payton Beeler and Rajan K. Chakrabarty
Atmos. Chem. Phys., 22, 14825–14836, https://doi.org/10.5194/acp-22-14825-2022, https://doi.org/10.5194/acp-22-14825-2022, 2022
Short summary
Short summary
Understanding and parameterizing the influences of black carbon (BC) particle morphology and compositional heterogeneity on its light absorption represent a fundamental problem. We develop scaling laws using a single unifying parameter that effectively encompasses large-scale diversity observed in BC light absorption on a per-particle basis. The laws help reconcile the disparities between field observations and model predictions. Our framework is packaged in an open-source Python application.
Kevin Cheuk Hang Sze, Heike Wex, Markus Hartmann, Henrik Skov, Andreas Massling, Diego Villanueva, and Frank Stratmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-761, https://doi.org/10.5194/acp-2022-761, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Ice nucleating particles (INPs) play an important role in cloud formation, thus on our climate. But little is known about the abundance and properties of INPs, especially in the Arctic, where the temperature increases almost four times as fast as that of the rest of the globe. We observe higher INP concentrations and more biological INPs in summer than in winter, likely from local sources. We also provide three equations for estimating INP concentration in models at different times of the year.
Runlong Cai, Chenjuan Deng, Dominik Stolzenburg, Chenxi Li, Junchen Guo, Veli-Matti Kerminen, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 22, 14571–14587, https://doi.org/10.5194/acp-22-14571-2022, https://doi.org/10.5194/acp-22-14571-2022, 2022
Short summary
Short summary
The survival probability of new particles is the key parameter governing their influences on the atmosphere and climate, yet the knowledge of particle survival in the atmosphere is rather limited. We propose methods to compute the size-resolved particle survival probability and validate them using simulations and measurements from diverse environments. Using these methods, we could explain particle survival from the cluster size to the cloud condensation nuclei size.
Guangyu Li, Jörg Wieder, Julie T. Pasquier, Jan Henneberger, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 14441–14454, https://doi.org/10.5194/acp-22-14441-2022, https://doi.org/10.5194/acp-22-14441-2022, 2022
Short summary
Short summary
The concentration of ice-nucleating particles (INPs) is atmospherically relevant for primary ice formation in clouds. In this work, from 12 weeks of field measurement data in the Arctic, we developed a new parameterization to predict INP concentrations applicable for pristine background conditions based only on temperature. The INP parameterization could improve the cloud microphysical representation in climate models, aiding in Arctic climate predictions.
Yuying Wang, Rong Hu, Qiuyan Wang, Zhanqing Li, Maureen Cribb, Yele Sun, Xiaorui Song, Yi Shang, Yixuan Wu, Xin Huang, and Yuxiang Wang
Atmos. Chem. Phys., 22, 14133–14146, https://doi.org/10.5194/acp-22-14133-2022, https://doi.org/10.5194/acp-22-14133-2022, 2022
Short summary
Short summary
The mixing state of size-resolved soot particles and their influencing factors were investigated. The results suggest anthropogenic emissions and aging processes have diverse impacts on the mixing state of soot particles in different modes. Considering that the mixing state of soot particles is crucial to model aerosol absorption, this finding is important to study particle growth and the warming effect of black carbon aerosols.
Xiaoying Niu, Wei Pu, Pingqing Fu, Yang Chen, Yuxuan Xing, Dongyou Wu, Ziqi Chen, Tenglong Shi, Yue Zhou, Hui Wen, and Xin Wang
Atmos. Chem. Phys., 22, 14075–14094, https://doi.org/10.5194/acp-22-14075-2022, https://doi.org/10.5194/acp-22-14075-2022, 2022
Short summary
Short summary
In this study, we do the first investigation of WSOC in seasonal snow of northeastern China. The results revealed the regional-specific compositions and sources of WSOC due to different natural environments and anthropogenic activities. The abundant concentrations of WSOC and its absorption properties contributed to a crucial impact on the snow albedo and radiative effect. We established that our study could raise awareness of carbon cycling processes, hydrological processes, and climate change.
Chenjuan Deng, Yiran Li, Chao Yan, Jin Wu, Runlong Cai, Dongbin Wang, Yongchun Liu, Juha Kangasluoma, Veli-Matti Kerminen, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 22, 13569–13580, https://doi.org/10.5194/acp-22-13569-2022, https://doi.org/10.5194/acp-22-13569-2022, 2022
Short summary
Short summary
The size distributions of urban atmospheric particles convey important information on their origins and impacts. This study investigates the characteristics of typical particle size distributions and key gaseous precursors in the long term in urban Beijing. A fitting function is proposed to represent and help interpret size distribution including particles and gaseous precursors. In addition to NPF (new particle formation) as the major source, vehicles can emit sub-3 nm particles as well
Qian Liu, Guixing Chen, Lifang Sheng, and Toshiki Iwasaki
Atmos. Chem. Phys., 22, 13371–13388, https://doi.org/10.5194/acp-22-13371-2022, https://doi.org/10.5194/acp-22-13371-2022, 2022
Short summary
Short summary
Air pollution can be cleaned up quickly by a cold air outbreak (CAO) but reappears after a CAO. By quantifying the CAO properties, we find the coldness and depth of the cold air mass are key factors affecting the rapid (slow) reappearance of air pollution through modulating the atmospheric boundary layer height and stability. We also find that the spatial pattern of CAO in high-latitude Eurasia a few days ahead can be recognized as a precursor for the reappearance of air pollution.
Loïc Gonzalez Carracedo, Katrianne Lehtipalo, Lauri R. Ahonen, Nina Sarnela, Sebastian Holm, Juha Kangasluoma, Markku Kulmala, Paul M. Winkler, and Dominik Stolzenburg
Atmos. Chem. Phys., 22, 13153–13166, https://doi.org/10.5194/acp-22-13153-2022, https://doi.org/10.5194/acp-22-13153-2022, 2022
Short summary
Short summary
Fast nanoparticle growth is essential for the survival of new aerosol particles in the atmosphere and hence their contribution to the climate. We show that using naturally charged ions for growth calculations can cause a significant error. During the diurnal cycle, the importance of ion-induced and neutral nucleation varies, causing the ion population to have a slower measurable apparent growth. Results suggest that data from ion spectrometers need to be considered with great care below 3 nm.
Timothy Jiang, Mark Gordon, Paul A. Makar, Ralf M. Staebler, and Michael Wheeler
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-656, https://doi.org/10.5194/acp-2022-656, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Measurements of sub-micron aerosols (small particles of size less than 1/1000 of a mm) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us how quickly aerosols are absorbed by the forest (known as deposition rate) and how the deposition rate depends on the size of the aerosol. The measurements show good agreement with a parameterization developed from a recent study for deposition of aerosols to a similar pine forest.
Eva-Lou Edwards, Jeffrey S. Reid, Peng Xian, Sharon P. Burton, Anthony L. Cook, Ewan C. Crosbie, Marta A. Fenn, Richard A. Ferrare, Sean W. Freeman, John W. Hair, David B. Harper, Chris A. Hostetler, Claire E. Robinson, Amy Jo Scarino, Michael A. Shook, G. Alexander Sokolowsky, Susan C. van den Heever, Edward L. Winstead, Sarah Woods, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 12961–12983, https://doi.org/10.5194/acp-22-12961-2022, https://doi.org/10.5194/acp-22-12961-2022, 2022
Short summary
Short summary
This study compares NAAPS-RA model simulations of aerosol optical thickness (AOT) and extinction to those retrieved with a high spectral resolution lidar near the Philippines. Agreement for AOT was good, and extinction agreement was strongest below 1500 m. Substituting dropsonde relative humidities into NAAPS-RA did not drastically improve agreement, and we discuss potential reasons why. Accurately modeling future conditions in this region is crucial due to its susceptibility to climate change.
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022, https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Short summary
We provide the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five different earth system models. We investigated aerosol modes (nucleation, Aitken, and accumulation) separately and were able to show the differences between measured and modeled trends and especially their seasonal patterns. The differences in model results are likely due to complex effects of several processes instead of certain specific model features.
Nicole A. June, Anna L. Hodshire, Elizabeth B. Wiggins, Edward L. Winstead, Claire E. Robinson, K. Lee Thornhill, Kevin J. Sanchez, Richard H. Moore, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Matthew M. Coggon, Jonathan M. Dean-Day, T. Paul Bui, Jeff Peischl, Robert J. Yokelson, Matthew J. Alvarado, Sonia M. Kreidenweis, Shantanu H. Jathar, and Jeffrey R. Pierce
Atmos. Chem. Phys., 22, 12803–12825, https://doi.org/10.5194/acp-22-12803-2022, https://doi.org/10.5194/acp-22-12803-2022, 2022
Short summary
Short summary
The evolution of organic aerosol composition and size is uncertain due to variability within and between smoke plumes. We examine the impact of plume concentration on smoke evolution from smoke plumes sampled by the NASA DC-8 during FIREX-AQ. We find that observed organic aerosol and size distribution changes are correlated to plume aerosol mass concentrations. Additionally, coagulation explains the majority of the observed growth.
Francesca Gallo, Janek Uin, Kevin J. Sanchez, Richard H. Moore, Jian Wang, Robert Wood, Fan Mei, Connor Flynn, Stephen Springston, Eduardo B. Azevedo, Chongai Kuang, and Allison C. Aiken
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-637, https://doi.org/10.5194/acp-2022-637, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
This study provides a summary statistic of multiday aerosol plume transport events influences on aerosol physical properties and cloud condensation nuclei budget at the U.S. Department of Energy Atmospheric Radiation Measurement Facility in the Eastern North Atlantic (ENA). An algorithm that integrates aerosol properties is developed and applied to identify multiday aerosol transport events. The influence of the aerosol plumes on aerosol populations at ENA is successively assessed.
Ruiqi Man, Zhijun Wu, Taomou Zong, Aristeidis Voliotis, Yanting Qiu, Johannes Größ, Dominik van Pinxteren, Limin Zeng, Hartmut Herrmann, Alfred Wiedensohler, and Min Hu
Atmos. Chem. Phys., 22, 12387–12399, https://doi.org/10.5194/acp-22-12387-2022, https://doi.org/10.5194/acp-22-12387-2022, 2022
Short summary
Short summary
Regional and total deposition doses for different age groups were quantified based on explicit hygroscopicity measurements. We found that particle hygroscopic growth led to a reduction (~24 %) in the total dose. The deposition rate of hygroscopic particles was higher in the daytime, while hydrophobic particles exhibited a higher rate at night and during rush hours. The results will deepen the understanding of the impact of hygroscopicity and the mixing state on deposition patterns in the lungs.
Biao Luo, Ye Kuang, Shan Huang, Qicong Song, Weiwei Hu, Wei Li, Yuwen Peng, Duohong Chen, Dingli Yue, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 22, 12401–12415, https://doi.org/10.5194/acp-22-12401-2022, https://doi.org/10.5194/acp-22-12401-2022, 2022
Short summary
Short summary
We performed comprehensive analysis on biomass burning organic aerosol (BBOA) size distributions, as well as mass scattering and absorption efficiencies, with an improved method of on-line quantification of brown carbon absorptions. Both BBOA volume size distribution and retrieved refractive index depend highly on combustion conditions represented by the black carbon content, which has significant implications for BBOA climate effect simulations.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-568, https://doi.org/10.5194/acp-2022-568, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Observations of aerosols in pristine regions are rare, but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia, and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Samuel E. LeBlanc, Michal Segal-Rozenhaimer, Jens Redemann, Connor Flynn, Roy R. Johnson, Stephen E. Dunagan, Robert Dahlgren, Jhoon Kim, Myungje Choi, Arlindo da Silva, Patricia Castellanos, Qian Tan, Luke Ziemba, Kenneth Lee Thornhill, and Meloë Kacenelenbogen
Atmos. Chem. Phys., 22, 11275–11304, https://doi.org/10.5194/acp-22-11275-2022, https://doi.org/10.5194/acp-22-11275-2022, 2022
Short summary
Short summary
Airborne observations of atmospheric particles and pollution over Korea during a field campaign in May–June 2016 showed that the smallest atmospheric particles are present in the lowest 2 km of the atmosphere. The aerosol size is more spatially variable than optical thickness. We show this with remote sensing (4STAR), in situ (LARGE) observations, satellite measurements (GOCI), and modeled properties (MERRA-2), and it is contrary to the current understanding.
Jerome D. Fast, David M. Bell, Gourihar Kulkarni, Jiumeng Liu, Fan Mei, Georges Saliba, John E. Shilling, Kaitlyn Suski, Jason Tomlinson, Jian Wang, Rahul Zaveri, and Alla Zelenyuk
Atmos. Chem. Phys., 22, 11217–11238, https://doi.org/10.5194/acp-22-11217-2022, https://doi.org/10.5194/acp-22-11217-2022, 2022
Short summary
Short summary
Recent aircraft measurements from the HI-SCALE campaign conducted over the Southern Great Plains (SGP) site in Oklahoma are used to quantify spatial variability of aerosol properties in terms of grid spacings typically used by weather and climate models. Surprisingly large horizontal gradients in aerosol properties were frequently observed in this rural area. This spatial variability can be used as an uncertainty range when comparing surface point measurements with model predictions.
Jingye Ren, Fang Zhang, Lu Chen, and Jieyao Liu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-542, https://doi.org/10.5194/acp-2022-542, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
The effective density of BC is closely linked to its morphology and mixing state and could cause uncertainty in evaluating CCN activity. We develop a new method to retrieve the mixing state and effective density of BC in urban atmosphere. We find that the mean retried density of internal-mixed BC was lower than the value assuming void-free spherical structures. Our study suggests the importance of accounting for varying BC density in models when assessing its climate effect in urban atmosphere.
Benjamin Foreback, Lubna Dada, Kaspar R. Daellenbach, Chao Yan, Lili Wang, Biwu Chu, Ying Zhou, Tom V. Kokkonen, Mona Kurppa, Rosaria E. Pileci, Yonghong Wang, Tommy Chan, Juha Kangasluoma, Lin Zhuohui, Yishou Guo, Chang Li, Rima Baalbaki, Joni Kujansuu, Xiaolong Fan, Zemin Feng, Pekka Rantala, Shahzad Gani, Federico Bianchi, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, Yongchun Liu, and Pauli Paasonen
Atmos. Chem. Phys., 22, 11089–11104, https://doi.org/10.5194/acp-22-11089-2022, https://doi.org/10.5194/acp-22-11089-2022, 2022
Short summary
Short summary
This study analyzed air quality in Beijing during the Chinese New Year over 7 years, including data from a new in-depth measurement station. This is one of few studies to look at long-term impacts, including the outcome of firework restrictions starting in 2018. Results show that firework pollution has gone down since 2016, indicating a positive result from the restrictions. Results of this study may be useful in making future decisions about the use of fireworks to improve air quality.
Gang Zhao, Tianyi Tan, Shuya Hu, Zhuofei Du, Dongjie Shang, Zhijun Wu, Song Guo, Jing Zheng, Wenfei Zhu, Mengren Li, Limin Zeng, and Min Hu
Atmos. Chem. Phys., 22, 10861–10873, https://doi.org/10.5194/acp-22-10861-2022, https://doi.org/10.5194/acp-22-10861-2022, 2022
Short summary
Short summary
Black carbon is the second strongest absorbing component in the atmosphere that exerts warming effects on climate. One critical challenge in quantifying the ambient black carbon's radiative effects is addressing the BC microphysical properties. In this study, the microphysical properties of the aged and fresh BC particles are synthetically analyzed under different atmospheres. The measurement results can be further used in models to help constrain the uncertainties of the BC radiative effects.
Natalia E. Chubarova, Heike Vogel, Elizaveta E. Androsova, Alexander A. Kirsanov, Olga B. Popovicheva, Bernhard Vogel, and Gdaliy S. Rivin
Atmos. Chem. Phys., 22, 10443–10466, https://doi.org/10.5194/acp-22-10443-2022, https://doi.org/10.5194/acp-22-10443-2022, 2022
Short summary
Short summary
Effects of urban aerosol pollution in Moscow were analyzed using the COSMO-ART chemical transport model and intensive measurement campaigns. We show that urban aerosol comprises about 15–20% of columnar aerosol content, consisting mainly of fine aerosol mode. The black carbon (BC) fraction is about 5 %, depending on particle dispersion intensity (IPD). The BC fraction low value explains weak absorbing properties of the Moscow atmosphere. IPD also defines the daily cycle of urban aerosol species.
Janine Lückerath, Andreas Held, Holger Siebert, Michel Michalkow, and Birgit Wehner
Atmos. Chem. Phys., 22, 10007–10021, https://doi.org/10.5194/acp-22-10007-2022, https://doi.org/10.5194/acp-22-10007-2022, 2022
Short summary
Short summary
Three different methods were applied to estimate the vertical aerosol particle flux in the marine boundary layer (MBL) and between the MBL and free troposphere. For the first time, aerosol fluxes derived from these three methods were estimated and compared using airborne aerosol measurements using data from the ACORES field campaign in the northeastern Atlantic Ocean in July 2017. The amount of fluxes was small and directed up and down for different cases, but the methods were applicable.
Christian Tatzelt, Silvia Henning, André Welti, Andrea Baccarini, Markus Hartmann, Martin Gysel-Beer, Manuela van Pinxteren, Robin L. Modini, Julia Schmale, and Frank Stratmann
Atmos. Chem. Phys., 22, 9721–9745, https://doi.org/10.5194/acp-22-9721-2022, https://doi.org/10.5194/acp-22-9721-2022, 2022
Short summary
Short summary
We present the abundance and origin of cloud-relevant aerosol particles in the preindustral-like conditions of the Southern Ocean (SO) during austral summer. Cloud condensation nuclei (CCN) and ice-nucleating particles (INP) were measured during a circum-Antarctic scientific cruise with in situ instrumentation and offline filter measurements, respectively. Transport processes were found to play an equally important role as local sources for both the CCN and INP population of the SO.
Alexander D. Harrison, Daniel O'Sullivan, Michael P. Adams, Grace C. E. Porter, Edmund Blades, Cherise Brathwaite, Rebecca Chewitt-Lucas, Cassandra Gaston, Rachel Hawker, Ovid O. Krüger, Leslie Neve, Mira L. Pöhlker, Christopher Pöhlker, Ulrich Pöschl, Alberto Sanchez-Marroquin, Andrea Sealy, Peter Sealy, Mark D. Tarn, Shanice Whitehall, James B. McQuaid, Kenneth S. Carslaw, Joseph M. Prospero, and Benjamin J. Murray
Atmos. Chem. Phys., 22, 9663–9680, https://doi.org/10.5194/acp-22-9663-2022, https://doi.org/10.5194/acp-22-9663-2022, 2022
Short summary
Short summary
The formation of ice in clouds fundamentally alters cloud properties; hence it is important we understand the special aerosol particles that can nucleate ice when immersed in supercooled cloud droplets. In this paper we show that African desert dust that has travelled across the Atlantic to the Caribbean nucleates ice much less well than we might have expected.
Caroline Dang, Michal Segal-Rozenhaimer, Haochi Che, Lu Zhang, Paola Formenti, Jonathan Taylor, Amie Dobracki, Sara Purdue, Pui-Shan Wong, Athanasios Nenes, Arthur Sedlacek III, Hugh Coe, Jens Redemann, Paquita Zuidema, Steven Howell, and James Haywood
Atmos. Chem. Phys., 22, 9389–9412, https://doi.org/10.5194/acp-22-9389-2022, https://doi.org/10.5194/acp-22-9389-2022, 2022
Short summary
Short summary
Transmission electron microscopy was used to analyze aged African smoke particles and how the smoke interacts with the marine atmosphere. We found that the volatility of organic aerosol increases with biomass burning plume age, that black carbon is often mixed with potassium salts and that the marine atmosphere can incorporate Na and Cl into smoke particles. Marine salts are more processed when mixed with smoke plumes, and there are interesting Cl-rich yet Na-absent marine particles.
Siman Ren, Lei Yao, Yuwei Wang, Gan Yang, Yiliang Liu, Yueyang Li, Yiqun Lu, Lihong Wang, and Lin Wang
Atmos. Chem. Phys., 22, 9283–9297, https://doi.org/10.5194/acp-22-9283-2022, https://doi.org/10.5194/acp-22-9283-2022, 2022
Short summary
Short summary
We improved the empirical functions between volatility and chemical formulas of organic aerosols based on lab experiments and field observations. It was found that organic compounds in ambient aerosols can be divided into two groups according to their O / C ratios and that there should be specialized volatility parameterizations for different O / C organic compounds.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Arthur J. Sedlacek III, Ernie R. Lewis, Amie Dobracki, Jenny P. S. Wong, Paola Formenti, Steven G. Howell, and Athanasios Nenes
Atmos. Chem. Phys., 22, 9199–9213, https://doi.org/10.5194/acp-22-9199-2022, https://doi.org/10.5194/acp-22-9199-2022, 2022
Short summary
Short summary
Widespread biomass burning (BB) events occur annually in Africa and contribute ~ 1 / 3 of global BB emissions, which contain a large family of light-absorbing organics, known as brown carbon (BrC), whose absorption of incident radiation is difficult to estimate, leading to large uncertainties in the global radiative forcing estimation. This study quantifies the BrC absorption of aged BB particles and highlights the potential presence of absorbing iron oxides in this climatically important region.
Karin Ardon-Dryer and Mary C. Kelley
Atmos. Chem. Phys., 22, 9161–9173, https://doi.org/10.5194/acp-22-9161-2022, https://doi.org/10.5194/acp-22-9161-2022, 2022
Short summary
Short summary
Changes in the particle size distribution and particulate matter concentrations during different dust events in West Texas were examined. Analysis based on different timescales showed that current common methods used to evaluate the impact of dust events on air quality will not capture the true impact of short (convective) dust events and, therefore, do not provide an insightful understanding of their impact on the environment and human health.
Chaman Gul, Shichang Kang, Siva Praveen Puppala, Xiaokang Wu, Cenlin He, Yangyang Xu, Inka Koch, Sher Muhammad, Rajesh Kumar, and Getachew Dubache
Atmos. Chem. Phys., 22, 8725–8737, https://doi.org/10.5194/acp-22-8725-2022, https://doi.org/10.5194/acp-22-8725-2022, 2022
Short summary
Short summary
This work aims to understand concentrations, spatial variability, and potential source regions of light-absorbing impurities (black carbon aerosols, dust particles, and organic carbon) in the surface snow of central and western Himalayan glaciers and their impact on snow albedo and radiative forcing.
Haochi Che, Michal Segal-Rozenhaimer, Lu Zhang, Caroline Dang, Paquita Zuidema, Arthur J. Sedlacek III, Xiaoye Zhang, and Connor Flynn
Atmos. Chem. Phys., 22, 8767–8785, https://doi.org/10.5194/acp-22-8767-2022, https://doi.org/10.5194/acp-22-8767-2022, 2022
Short summary
Short summary
A 17-month in situ study on Ascension Island found low single-scattering albedo and strong absorption enhancement of the marine boundary layer aerosols during biomass burnings on the African continent, along with apparent patterns of regular monthly variability. We further discuss the characteristics and drivers behind these changes and find that biomass burning conditions in Africa may be the main factor influencing the optical properties of marine boundary aerosols.
Cited articles
Ackerman, A. S., Toon, O. B., Taylor, J. P., Johnson, D. W., Hobbs, P. V., and
Ferek, R. J.: Effects of aerosols on cloud albedo: Evaluation of Twomey's
parameterization of cloud susceptibility using measurements of ship tracks,
J. Atmos. Sci., 57, 2684–2695, 2000.
Agnihotri, R., Dutta, K., Bhushan, R., and Somayajulu, B. L. K.: Evidence for
solar forcing on the Indian monsoon during the last millennium, Earth
Planet. Sc. Lett., 198, 521–527, 2002.
Alaka, T., Gaddam, G. and others: Monsoonal Droughts In India–A Recent
Assessment, Pap. Glob. Chang. IGBP, 2015.
Beguería, S., Vicente-Serrano, S. M., and
Angulo-Martínez, M.: A multiscalar global drought dataset: the
SPEIbase: a new gridded product for the analysis of drought variability and
impacts, B. Am. Meteorol. Soc., 91, 1351–1356, 2010.
Benton, G. S.: Drought in the United States analyzed by means of the theory
of probability, United States Department of Agriculture, 1942.
Berrisford, P., Kållberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A. J., Poli, P., and Sato, H.: Atmospheric conservation properties in ERA‐Interim, Q. J. Roy. Meteorol. Soc., 137, 1381–1399, 2011.
Bhalme, H. N. and Mooley, D. A.: Large-scale droughts/floods and monsoon
circulation, Mon. Weather Rev., 108, 1197–1211, 1980.
Buchard, V., Randles, C. A., Da Silva, A. M., Darmenov, A., Colarco, P. R.,
Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A. J., Ziemba, L. D., and
Yu, H.: The MERRA-2 aerosol reanalysis, 1980 onward, Part II:
Evaluation and case studies, J. Climate, 30, 6851–6872,
https://doi.org/10.1175/JCLI-D-16-0613.1, 2017.
Chakraborty, R., Talukdar, S., Saha, U., Jana, S., and Maitra, A.: Anomalies
in relative humidity profile in boundary layer during convective rain,
Atmos. Res., 191, 74–83, 2017.
Cliver, E. W., Clette, F., and Svalgaard, L.: Recalibrating the sunspot
number (SSN): the SSN workshops, Cent. Eur. Astrophys. Bull., 37,
401–416, 2013.
Dai, A., Trenberth, K. E., and Qian, T.: A global dataset of Palmer Drought
Severity Index for 1870–2002: Relationship with soil moisture and effects
of surface warming, J. Hydrometeorol., 5, 1117–1130, 2004.
Dey, S., Tripathi, S. N., Singh, R. P., and Holben, B. N.: Influence of dust
storms on the aerosol optical properties over the Indo-Gangetic basin, J.
Geophys. Res.-Atmos., 109, D20211, https://doi.org/10.1029/2004JD004924, 2004.
For International Earth Science Information Network (CIESIN): Columbia
University, C., Gridded Population of the World, Version 4 (GPWv4):
Population Density, NASA Socioeconomic Data and Applications Center (SEDAC), 2016.
Francis, P. A. and Gadgil, S.: Towards understanding the unusual Indian
monsoon in 2009, J. Earth Syst. Sci., 119, 397–415, 2010.
Gadgil, S., Vinayachandran, P. N., and Francis, P. A.: Droughts of the Indian
summer monsoon: Role of clouds over the Indian Ocean, Curr. Sci., 85,
1713–1719, 2003.
Gore, P. G. and Sinha Ray, K. C.: Variability in drought incidence over
districts of Maharashtra, Mausam, 53, 533–538, 2002.
Guhathakurta, P. and Rajeevan, M.: Trends in the rainfall pattern over
India, Int. J. Climatol., 28, 1453–1469, 2008.
Heim Jr, R. R.: A review of twentieth-century drought indices used in the
United States, B. Am. Meteorol. Soc., 83, 1149–1165, 2002.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended
reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades,
validations, and intercomparisons, J. Climate., 30, 8179–8205, 2017.
Krishnamurti, T. N., Thomas, A., Simon, A., and Kumar, V.: Desert air
incursions, an overlooked aspect, for the dry spells of the Indian summer
monsoon, J. Atmos. Sci., 67, 3423–3441, 2010.
Kumar, K. N., Rajeevan, M., Pai, D. S., Srivastava, A. K., and Preethi, B.:
On the observed variability of monsoon droughts over India, Weather Clim.
Extrem., 1, 42–50, 2013.
Lau, K.-M. and Kim, K.-M.: Observational relationships between aerosol and Asian monsoon rainfall, and circulation, Geophys. Res. Lett., 33, 1–5, https://doi.org/10.1029/2006GL027546, 2006.
Lloyd-Hughes, B. and Saunders, M. A.: A drought climatology for Europe, Int.
J. Climatol., 22, 1571–1592, 2002.
Marcovitch, S.: The measure of droughtiness, Mon. Weather Rev., 58, 113, https://doi.org/10.1175/1520-0493(1930)58<113:TMOD>2.0.CO;2,
1930.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of
drought frequency and duration to time scales, in: Proceedings of the 8th
Conference on Applied Climatology, 17, 179–183, 1993.
Moorthy, K. K., Babu, S. S., Satheesh, S. K., Srinivasan, J., and Dutt, C. B.
S.: Dust absorption over the “Great Indian Desert” inferred using
ground-based and satellite remote sensing, J. Geophys. Res.-Atmos., 112, D09206, https://doi.org/10.1029/2006JD007690,
2007.
Munger, T. T.: Graphic method of representing and comparing drought
intensities, Mon. Weather Rev., 44, 642–643, 1916.
Pai, D. S., Sridhar, L., Guhathakurta, P., and Hatwar, H. R.: District-wide
drought climatology of the southwest monsoon season over India based on
standardized precipitation index (SPI), Nat. Hazards, 59, 1797–1813,
2011.
Palmer, W. C.: Meteorological drought. Research Paper No. 45. Washington,
DC: US Department of Commerce, Weather Bur., 59, 1965.
Pandey, S. K., Vinoj, V., Landu, K., and Suresh Babu, S.: Declining
pre-monsoon dust loading over South Asia: Signature of a changing regional
climate, Sci. Rep., 7, 16062, https://doi.org/10.1038/s41598-017-16338-w, 2017.
Parthasarathy, B., Sontakke, N. A., Monot, A. A., and Kothawale, D. R.:
Droughts/floods in the summer monsoon season over different meteorological
subdivisions of India for the period 1871–1984, J. Climatol., 7, 57–70,
1987.
Raman, C. R. V and Rao, Y. P.: Blocking highs over Asia and monsoon droughts
over India, Nature, 289, 271–273, 1981.
Randles, C. A., da Silva, A.M., Buchard, V., Colarco, P. R., Darmenov, A., Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka, Y., and Flynn,
C. J.: The MERRA-2 Aerosol Reanalysis, 1980 Onward, Part I: System
Description and Data Assimilation Evaluation, J. Climate, 30, 6823–6850,
2017.
Sato, Y., Goto, D., Michibata, T., Suzuki, K., Takemura, T., Tomita, H., and
Nakajima, T.: Aerosol effects on cloud water amounts were successfully
simulated by a global cloud-system resolving model, Nat. Commun., 9, 985, https://doi.org/Please provide date and location of meeting, if possible,
2018.
Singh, N. and Ranade, A.: The wet and dry spells across India during
1951–2007, J. Hydrometeorol., 11, 26–45, 2010.
Sivakumar, M., Stone, R., Sentelhas, P. C., Svoboda, M., Omondi, P., Sarkar,
J., and Wardlow, B.: Agricultural drought indices: summary and
recommendations, in: Agricultural drought indices Proceedings of an expert
meeting, 2–4, 2011.
Solmon, F., Nair, V. S., and Mallet, M.: Increasing Arabian dust activity and the Indian summer monsoon, Atmos. Chem. Phys., 15, 8051–8064, https://doi.org/10.5194/acp-15-8051-2015, 2015.
Sushama, L., Said, S. B., Khaliq, M. N., Kumar, D. N., and Laprise, R.: Dry
spell characteristics over India based on IMD and APHRODITE datasets, Clim.
Dynam., 43, 3419–3437, 2014.
Talukdar, S., Jana, S., and Maitra, A.: Dominance of pollutant aerosols over
an urban region and its impact on boundary layer temperature profile, J.
Geophys. Res.-Atmos., 122, 1001–1014, 2017.
Thornthwaite, C. W.: An approach toward a rational classification of
climate, Geogr. Rev., 38, 55–94, 1948.
Twomey, S.: The influence of pollution on the shortwave albedo of clouds, J.
Atmos. Sci., 34, 1149–1152, 1977.
Tyalagadi, M. S., Gadgil, A., and Krishnakumar, G.: Monsoonal droughts in India – a
recent assessment, De Gruyter Open, 22, 19–35, 2015.
Wencai, W., Sheng, L., Jin, H., and Han, Y.: Dust aerosol effects on cirrus
and altocumulus clouds in Northwest China, J. Meteorol. Res., 29,
793–805, 2015.
Wilhite, D. A. and Glantz, M. H.: Understanding: the drought phenomenon: the
role of definitions, Water Int., 10, 111–120, 1985.
World Meteorological Organisation: Drought and Agriculture, Technical Note No. 138, WMO No. 392, Geneva, Switzerland, 1975.
Short summary
The present study investigates the plausible aspects which influence the probability of drought occurrences over three Indian regions during the southwest Asian mid-monsoon period. The investigation reveals that an increasing tendency of dry day frequency (DDF) over urbanized regions in the last few decades has significant association with the abundance of anthropogenic aerosols. Additionally, future projections of DDF indicate a five-fold rise which can be a crucial concern for policy makers.
The present study investigates the plausible aspects which influence the probability of drought...
Altmetrics
Final-revised paper
Preprint