Articles | Volume 18, issue 13
https://doi.org/10.5194/acp-18-9897-2018
https://doi.org/10.5194/acp-18-9897-2018
Research article
 | 
13 Jul 2018
Research article |  | 13 Jul 2018

Estimates of exceedances of critical loads for acidifying deposition in Alberta and Saskatchewan

Paul A. Makar, Ayodeji Akingunola, Julian Aherne, Amanda S. Cole, Yayne-abeba Aklilu, Junhua Zhang, Isaac Wong, Katherine Hayden, Shao-Meng Li, Jane Kirk, Ken Scott, Michael D. Moran, Alain Robichaud, Hazel Cathcart, Pegah Baratzedah, Balbir Pabla, Philip Cheung, Qiong Zheng, and Dean S. Jeffries

Related authors

HETerogeneous vectorized or Parallel (HETPv1.0): an updated inorganic heterogeneous chemistry solver for the metastable-state NH4+–Na+–Ca2+–K+–Mg2+–SO42−–NO3–Cl–H2O system based on ISORROPIA II
Stefan J. Miller, Paul A. Makar, and Colin J. Lee
Geosci. Model Dev., 17, 2197–2219, https://doi.org/10.5194/gmd-17-2197-2024,https://doi.org/10.5194/gmd-17-2197-2024, 2024
Short summary
The Global Forest Fire Emissions Prediction System version 1.0
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul Makar, and Dan Thompson
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-31,https://doi.org/10.5194/gmd-2024-31, 2024
Revised manuscript under review for GMD
Short summary
Modeling below-cloud scavenging of size-resolved particles in GEM-MACHv3.1
Roya Ghahreman, Wanmin Gong, Paul A. Makar, Alexandru Lupu, Amanda Cole, Kulbir Banwait, Colin Lee, and Ayodeji Akingunola
Geosci. Model Dev., 17, 685–707, https://doi.org/10.5194/gmd-17-685-2024,https://doi.org/10.5194/gmd-17-685-2024, 2024
Short summary
Clustering analysis of very large measurement and model datasets on high performance computing platforms
Colin J. Lee, Paul A. Makar, and Joana Soares
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-185,https://doi.org/10.5194/gmd-2023-185, 2023
Publication in GMD not foreseen
Short summary
Ozone in the boreal forest in the Alberta Oil Sands Region
Xuanyi Zhang, Mark Gordon, Paul A. Makar, Timothy Jiang, Jonathan Davies, and David Tarasick
Atmos. Chem. Phys., 23, 13647–13664, https://doi.org/10.5194/acp-23-13647-2023,https://doi.org/10.5194/acp-23-13647-2023, 2023
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Aggravated surface O3 pollution primarily driven by meteorological variations in China during the 2020 COVID-19 pandemic lockdown period
Zhendong Lu, Jun Wang, Yi Wang, Daven K. Henze, Xi Chen, Tong Sha, and Kang Sun
Atmos. Chem. Phys., 24, 7793–7813, https://doi.org/10.5194/acp-24-7793-2024,https://doi.org/10.5194/acp-24-7793-2024, 2024
Short summary
Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024,https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
Yao Ge, Sverre Solberg, Mathew R. Heal, Stefan Reimann, Willem van Caspel, Bryan Hellack, Thérèse Salameh, and David Simpson
Atmos. Chem. Phys., 24, 7699–7729, https://doi.org/10.5194/acp-24-7699-2024,https://doi.org/10.5194/acp-24-7699-2024, 2024
Short summary
Constraining non-methane VOC emissions with TROPOMI HCHO observations: impact on summertime ozone simulation in August 2022 in China
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, and Weimin Ju
Atmos. Chem. Phys., 24, 7481–7498, https://doi.org/10.5194/acp-24-7481-2024,https://doi.org/10.5194/acp-24-7481-2024, 2024
Short summary
Revealing the significant acceleration of hydrofluorocarbon (HFC) emissions in eastern Asia through long-term atmospheric observations
Haklim Choi, Alison L. Redington, Hyeri Park, Jooil Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Ray F. Weiss, Alistair J. Manning, and Sunyoung Park
Atmos. Chem. Phys., 24, 7309–7330, https://doi.org/10.5194/acp-24-7309-2024,https://doi.org/10.5194/acp-24-7309-2024, 2024
Short summary

Cited articles

AAF: Alberta Agriculture and Forestry, Alberta Climate Information Service (ACIS), https://agriculture.alberta.ca/acis, last access: May 2017.
AAFC: Soil Landscapes of Canada version 3.2., Soil Landscapes of Canada Working Group, Agriculture and Agri-Food Canada (digital map and database at 1 : 1 million scale), available at: http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/index.html (last access: 25 August 2017), 2010.
ABMI: Alberta Biodiversity Monitoring Institute, Wall-to-wall land cover map version 2.1 (ABMIw2wLCV2010v1.0), available at: http://www.abmi.ca/home/data/gis-data/land-cover-inventory.html. (last access: 25 August 2017), 2010.
Aherne, J.: Uncertainty in critical load exceedance (UNCLE): critical loads uncertainty and risk analysis for Canadian forest ecosystems, Canadian Council of Ministers of the Environment, report PN XXXX, 22 pp., 2011.
Aherne, J. and Posch, M.: Impacts of nitrogen and sulphur deposition on forest ecosystem services in Canada, Curr. Opin. Env. Sust., 5, 108–115, 2013.
Download
Short summary
Complex computer model output was compared to and fused with observation data, to estimate potential damage due to acidifying precipitation for ecosystems in the Canadian provinces of Alberta and Saskatchewan. Estimated deposition was compared to the maximum no-damage ecosystem capacity for sulfur and/or nitrogen uptake; these critical loads were exceeded, for areas between 10 000 and 330 000 square kilometres, depending on ecosystem type: ecosystem damage will occur at 2013 emission levels.
Altmetrics
Final-revised paper
Preprint