Articles | Volume 18, issue 12
https://doi.org/10.5194/acp-18-8789-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-8789-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Isotopic composition of daily precipitation along the southern foothills of the Himalayas: impact of marine and continental sources of atmospheric moisture
Ghulam Jeelani
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Kashmir, Srinagar 190006,
India
Rajendrakumar D. Deshpande
Geosciences Division, Physical Research Laboratory (PRL), Navrangpura,
Ahmedabad 380009, India
Michal Galkowski
Faculty of Physics and Applied Computer Science, AGH University of
Science and Technology, Krakow 30-059, Poland
Kazimierz Rozanski
Faculty of Physics and Applied Computer Science, AGH University of
Science and Technology, Krakow 30-059, Poland
Related authors
Kieran M. R. Hunt, Jean-Philippe Baudouin, Andrew G. Turner, A. P. Dimri, Ghulam Jeelani, Pooja, Rajib Chattopadhyay, Forest Cannon, T. Arulalan, M. S. Shekhar, T. P. Sabin, and Eliza Palazzi
EGUsphere, https://doi.org/10.5194/egusphere-2024-820, https://doi.org/10.5194/egusphere-2024-820, 2024
Short summary
Short summary
Western disturbances (WDs) are storms that predominantly affect north India and Pakistan during the winter months, where they play an important role in regional water security, but can also bring a range of natural hazards. In this review, we summarise recent literature across a range of topics: their structure and lifecycle, precipitation and impacts, interactions with large-scale weather patterns, representation in models, how well they are forecast, and their response to changes in climate.
Michał Gałkowski, Julia Marshall, Blanca Fuentes Andrade, and Christoph Gerbig
EGUsphere, https://doi.org/10.5194/egusphere-2024-2792, https://doi.org/10.5194/egusphere-2024-2792, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Observations of GHG emissions are needed to monitor the progress towards Paris Agreement goals. Remote sensing instruments have been used to estimate emissions from the strongest anthropogenic sources. Here, we study the impact of atmospheric turbulence on the estimation of CO2 with a realistic atmospheric model, and we show that the formation of persistent plume structures causes uncertainty on the order of 10 % of total emission that cannot be avoided.
Sven Krautwurst, Christian Fruck, Sebastian Wolff, Jakob Borchardt, Oke Huhs, Konstantin Gerilowski, Michał Gałkowski, Christoph Kiemle, Mathieu Quatrevalet, Martin Wirth, Christian Mallaun, John P. Burrows, Christoph Gerbig, Andreas Fix, Hartmut Bösch, and Heinrich Bovensmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3182, https://doi.org/10.5194/egusphere-2024-3182, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Anomalously high CH4 emissions from landfills in Madrid, Spain, have been observed by satellite measurements in recent years. Our investigations of these waste facilities using passive and active airborne remote sensing measurements confirm these high emission rates with values of up to 13 th-1 during the overflight and show excellent agreement between the two techniques. A large fraction of the emissions is attributed to active landfill sites.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Vinicius dos Santos, Didier Gastmans, Ana María Durán-Quesada, Ricardo Sánchez-Murillo, Kazimierz Rozanski, Oliver Kracht, and Demilson de Assis Quintão
Atmos. Chem. Phys., 24, 6663–6680, https://doi.org/10.5194/acp-24-6663-2024, https://doi.org/10.5194/acp-24-6663-2024, 2024
Short summary
Short summary
We present novel findings on convective rainfall, summer rain in the late afternoon, by coupling water stable isotopes, micro rain radar, and satellite data. We found the tallest clouds in the afternoon and much smaller clouds at night, resulting in differences in day–night ratios in water stable isotopes. We sampled rain and meteorological variables every 5–10 min, allowing us to evaluate the development of convective rainfall, contributing to knowledge of rainfall related to extreme events.
Saqr Munassar, Christian Roedenbeck, Michał Gałkowski, Frank-Thomas Koch, Kai U. Totsche, Santiago Botía, and Christoph Gerbig
EGUsphere, https://doi.org/10.5194/egusphere-2024-291, https://doi.org/10.5194/egusphere-2024-291, 2024
Short summary
Short summary
CO2 mole fractions simulated over a global stations showed an overestimation of CO2 if the diurnal cycle is missing NEE. This led to biases in the estimated fluxes derived from the inversions at continental and regional scales. IAVof estimated NEE was affected by the diurnal effect. The findings point to the importance of including the diurnal variations of CO2 in the biosphere priors used in inversions to better converge flux estimates among inversions, in particular those contributing to GCB.
Mirosław Zimnoch, Michał Gałkowski, Piotr Sekuła, Łukasz Chmura, Jakub Bartyzel, Alina Jasek-Kamińska, Alicja Skiba, Jarosław Nęcki, Przemysław Wachniew, and Paweł Jagoda
EGUsphere, https://doi.org/10.5194/egusphere-2024-1167, https://doi.org/10.5194/egusphere-2024-1167, 2024
Short summary
Short summary
The manuscript presents the dataset collected in the urban area of Krakow city containing several measurement campaigns focused on the investigation of vertical CO2 and CH4 profiles supplemented by set of meteorological parameters (e.g. temperature, pressure) measured along the profiles up to ca. 280 m a.g.l. The presented data collection explains the dynamics of the lower atmosphere on a daily and seasonal scale providing the three dimensional dataset that can be used for model validation.
Kieran M. R. Hunt, Jean-Philippe Baudouin, Andrew G. Turner, A. P. Dimri, Ghulam Jeelani, Pooja, Rajib Chattopadhyay, Forest Cannon, T. Arulalan, M. S. Shekhar, T. P. Sabin, and Eliza Palazzi
EGUsphere, https://doi.org/10.5194/egusphere-2024-820, https://doi.org/10.5194/egusphere-2024-820, 2024
Short summary
Short summary
Western disturbances (WDs) are storms that predominantly affect north India and Pakistan during the winter months, where they play an important role in regional water security, but can also bring a range of natural hazards. In this review, we summarise recent literature across a range of topics: their structure and lifecycle, precipitation and impacts, interactions with large-scale weather patterns, representation in models, how well they are forecast, and their response to changes in climate.
Alina Fiehn, Maximilian Eckl, Julian Kostinek, Michał Gałkowski, Christoph Gerbig, Michael Rothe, Thomas Röckmann, Malika Menoud, Hossein Maazallahi, Martina Schmidt, Piotr Korbeń, Jarosław Neçki, Mila Stanisavljević, Justyna Swolkień, Andreas Fix, and Anke Roiger
Atmos. Chem. Phys., 23, 15749–15765, https://doi.org/10.5194/acp-23-15749-2023, https://doi.org/10.5194/acp-23-15749-2023, 2023
Short summary
Short summary
During the CoMet mission in the Upper Silesian Coal Basin (USCB) ground-based and airborne air samples were taken and analyzed for the isotopic composition of CH4 to derive the mean signature of the USCB and source signatures of individual coal mines. Using δ2H signatures, the biogenic emissions from the USCB account for 15 %–50 % of total emissions, which is underestimated in common emission inventories. This demonstrates the importance of δ2H-CH4 observations for methane source apportionment.
Xinxu Zhao, Jia Chen, Julia Marshall, Michal Gałkowski, Stephan Hachinger, Florian Dietrich, Ankit Shekhar, Johannes Gensheimer, Adrian Wenzel, and Christoph Gerbig
Atmos. Chem. Phys., 23, 14325–14347, https://doi.org/10.5194/acp-23-14325-2023, https://doi.org/10.5194/acp-23-14325-2023, 2023
Short summary
Short summary
We develop a modeling framework using the Weather Research and Forecasting model at a high spatial resolution (up to 400 m) to simulate atmospheric transport of greenhouse gases and interpret column observations. Output is validated against weather stations and column measurements in August 2018. The differential column method is applied, aided by air-mass transport tracing with the Stochastic Time-Inverted Lagrangian Transport (STILT) model, also for an exploratory measurement interpretation.
Dominik Brunner, Gerrit Kuhlmann, Stephan Henne, Erik Koene, Bastian Kern, Sebastian Wolff, Christiane Voigt, Patrick Jöckel, Christoph Kiemle, Anke Roiger, Alina Fiehn, Sven Krautwurst, Konstantin Gerilowski, Heinrich Bovensmann, Jakob Borchardt, Michal Galkowski, Christoph Gerbig, Julia Marshall, Andrzej Klonecki, Pascal Prunet, Robert Hanfland, Margit Pattantyús-Ábrahám, Andrzej Wyszogrodzki, and Andreas Fix
Atmos. Chem. Phys., 23, 2699–2728, https://doi.org/10.5194/acp-23-2699-2023, https://doi.org/10.5194/acp-23-2699-2023, 2023
Short summary
Short summary
We evaluated six atmospheric transport models for their capability to simulate the CO2 plumes from two of the largest power plants in Europe by comparing the models against aircraft observations collected during the CoMet (Carbon Dioxide and Methane Mission) campaign in 2018. The study analyzed how realistically such plumes can be simulated at different model resolutions and how well the planned European satellite mission CO2M will be able to quantify emissions from power plants.
Justyna Swolkień, Andreas Fix, and Michał Gałkowski
Atmos. Chem. Phys., 22, 16031–16052, https://doi.org/10.5194/acp-22-16031-2022, https://doi.org/10.5194/acp-22-16031-2022, 2022
Short summary
Short summary
Determination of emissions from coal mines on a local scale requires instantaneous data. We analysed temporal emission data for ventilation shafts and factors influencing their variability. They were saturation of the seams with methane, the permeability of the rock mass, and coal output. The data for the verification should reflect the actual values of emissions from point sources. It is recommended to achieve this by using a standardised emission measurement system for all coal mines.
Vishnu Thilakan, Dhanyalekshmi Pillai, Christoph Gerbig, Michal Galkowski, Aparnna Ravi, and Thara Anna Mathew
Atmos. Chem. Phys., 22, 15287–15312, https://doi.org/10.5194/acp-22-15287-2022, https://doi.org/10.5194/acp-22-15287-2022, 2022
Short summary
Short summary
This paper demonstrates how we can use atmospheric observations to improve the CO2 flux estimates in India. This is achieved by improving the representation of terrain, mesoscale transport, and flux variations. We quantify the impact of the unresolved variations in the current models on optimally estimated fluxes via inverse modelling and quantify the associated flux uncertainty. We illustrate how a parameterization scheme captures this variability in the coarse models.
Saqr Munassar, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, Michał Gałkowski, Sophia Walther, and Christoph Gerbig
Atmos. Chem. Phys., 22, 7875–7892, https://doi.org/10.5194/acp-22-7875-2022, https://doi.org/10.5194/acp-22-7875-2022, 2022
Short summary
Short summary
The results obtained from ensembles of inversions over 13 years show the largest spread in the a posteriori fluxes over the station set ensemble. Using different prior fluxes in the inversions led to a smaller impact. Drought occurrences in 2018 and 2019 affected CO2 fluxes as seen in net ecosystem exchange estimates. Our study highlights the importance of expanding the atmospheric site network across Europe to better constrain CO2 fluxes in inverse modelling.
Sven Krautwurst, Konstantin Gerilowski, Jakob Borchardt, Norman Wildmann, Michał Gałkowski, Justyna Swolkień, Julia Marshall, Alina Fiehn, Anke Roiger, Thomas Ruhtz, Christoph Gerbig, Jaroslaw Necki, John P. Burrows, Andreas Fix, and Heinrich Bovensmann
Atmos. Chem. Phys., 21, 17345–17371, https://doi.org/10.5194/acp-21-17345-2021, https://doi.org/10.5194/acp-21-17345-2021, 2021
Short summary
Short summary
Quantification of anthropogenic CH4 emissions remains challenging, but it is essential for near-term climate mitigation strategies. We use airborne remote sensing observations to assess bottom-up estimates of coal mining emissions from one of Europe's largest CH4 emission hot spots located in Poland. The analysis reveals that emissions from small groups of shafts can be disentangled, but caution is advised when comparing observations to commonly reported annual emissions.
Anna K. Tobler, Alicja Skiba, Francesco Canonaco, Griša Močnik, Pragati Rai, Gang Chen, Jakub Bartyzel, Miroslaw Zimnoch, Katarzyna Styszko, Jaroslaw Nęcki, Markus Furger, Kazimierz Różański, Urs Baltensperger, Jay G. Slowik, and Andre S. H. Prevot
Atmos. Chem. Phys., 21, 14893–14906, https://doi.org/10.5194/acp-21-14893-2021, https://doi.org/10.5194/acp-21-14893-2021, 2021
Short summary
Short summary
Kraków is among the cities with the highest particulate matter levels within Europe. We conducted long-term and highly time-resolved measurements of the chemical composition of submicron particlulate matter (PM1). Combined with advanced source apportionment techniques, which allow for time-dependent factor profiles, our results elucidate that traffic and residential heating (biomass burning and coal combustion) as well as oxygenated organic aerosol are the key PM sources in Kraków.
Johannes Hepp, Christoph Mayr, Kazimierz Rozanski, Imke Kathrin Schäfer, Mario Tuthorn, Bruno Glaser, Dieter Juchelka, Willibald Stichler, Roland Zech, and Michael Zech
Biogeosciences, 18, 5363–5380, https://doi.org/10.5194/bg-18-5363-2021, https://doi.org/10.5194/bg-18-5363-2021, 2021
Short summary
Short summary
Deriving more quantitative climate information like relative air humidity is one of the key challenges in paleostudies. Often only qualitative reconstructions can be done when single-biomarker-isotope data are derived from a climate archive. However, the coupling of hemicellulose-derived sugar with leaf-wax-derived n-alkane isotope results has the potential to overcome this limitation and allow a quantitative relative air humidity reconstruction.
Piotr Sekuła, Anita Bokwa, Jakub Bartyzel, Bogdan Bochenek, Łukasz Chmura, Michał Gałkowski, and Mirosław Zimnoch
Atmos. Chem. Phys., 21, 12113–12139, https://doi.org/10.5194/acp-21-12113-2021, https://doi.org/10.5194/acp-21-12113-2021, 2021
Short summary
Short summary
The wind shear generated on a local scale by the diversified relief’s impact can be a factor which significantly modifies the spatial pattern of PM10 concentration. The vertical profile of PM10 over a city located in a large valley during the events with high surface-level PM10 concentrations may show a sudden decrease with height not only due to the increase in wind speed, but also due to the change in wind direction alone. Vertical aerosanitary urban zones can be distinguished.
Vishnu Thilakan, Dhanyalekshmi Pillai, Christoph Gerbig, Michal Galkowski, Aparnna Ravi, and Thara Anna Mathew
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-392, https://doi.org/10.5194/acp-2021-392, 2021
Revised manuscript not accepted
Short summary
Short summary
This paper demonstrates how we can make use of atmospheric observations to improve the CO2 flux estimates of India. This is achieved by improving the representation of terrain, mesoscale transport and flux variations. We quantify the impact of unresolved variations in the current models on optimally estimated fluxes via inverse modelling and quantify the associated flux uncertainty. We illustrate how a parameterization scheme captures this variability in the coarse models.
Michał Gałkowski, Armin Jordan, Michael Rothe, Julia Marshall, Frank-Thomas Koch, Jinxuan Chen, Anna Agusti-Panareda, Andreas Fix, and Christoph Gerbig
Atmos. Meas. Tech., 14, 1525–1544, https://doi.org/10.5194/amt-14-1525-2021, https://doi.org/10.5194/amt-14-1525-2021, 2021
Short summary
Short summary
We present results of atmospheric measurements of greenhouse gases, performed over Europe in 2018 aboard German research aircraft HALO as part of the CoMet 1.0 (Carbon Dioxide and Methane Mission). In our analysis, we describe data quality, discuss observed mixing ratios and show an example of describing a regional methane source using stable isotopic composition based on the collected air samples. We also quantitatively compare our results to selected global atmospheric modelling systems.
Alina Fiehn, Julian Kostinek, Maximilian Eckl, Theresa Klausner, Michał Gałkowski, Jinxuan Chen, Christoph Gerbig, Thomas Röckmann, Hossein Maazallahi, Martina Schmidt, Piotr Korbeń, Jarosław Neçki, Pawel Jagoda, Norman Wildmann, Christian Mallaun, Rostyslav Bun, Anna-Leah Nickl, Patrick Jöckel, Andreas Fix, and Anke Roiger
Atmos. Chem. Phys., 20, 12675–12695, https://doi.org/10.5194/acp-20-12675-2020, https://doi.org/10.5194/acp-20-12675-2020, 2020
Short summary
Short summary
A severe reduction of greenhouse gas emissions is necessary to fulfill the Paris Agreement. We use aircraft- and ground-based in situ observations of trace gases and wind speed from two flights over the Upper Silesian Coal Basin, Poland, for independent emission estimation. The derived methane emission estimates are within the range of emission inventories, carbon dioxide estimates are in the lower range and carbon monoxide emission estimates are slightly higher than emission inventory values.
Anna-Leah Nickl, Mariano Mertens, Anke Roiger, Andreas Fix, Axel Amediek, Alina Fiehn, Christoph Gerbig, Michal Galkowski, Astrid Kerkweg, Theresa Klausner, Maximilian Eckl, and Patrick Jöckel
Geosci. Model Dev., 13, 1925–1943, https://doi.org/10.5194/gmd-13-1925-2020, https://doi.org/10.5194/gmd-13-1925-2020, 2020
Short summary
Short summary
Based on the global and regional chemistry–climate model system MECO(n), we implemented a forecast system to support the planning of measurement campaign research flights with chemical weather forecasts. We applied this system for the first time to provide 6 d forecasts in support of the CoMet 1.0
campaign targeting methane emitted from coal mining ventilation shafts in the Upper Silesian Coal Basin in Poland. We describe the new forecast system and evaluate its forecast skill.
Johannes Hepp, Imke Kathrin Schäfer, Verena Lanny, Jörg Franke, Marcel Bliedtner, Kazimierz Rozanski, Bruno Glaser, Michael Zech, Timothy Ian Eglinton, and Roland Zech
Biogeosciences, 17, 741–756, https://doi.org/10.5194/bg-17-741-2020, https://doi.org/10.5194/bg-17-741-2020, 2020
Łukasz Chmura, Michał Gałkowski, Piotr Sekuła, Mirosław Zimnoch, Jarosław Nęcki, Jakub Bartyzel, Damian Zięba, Kazimierz Różański, Wojciech Wołkowicz, and Laszlo Haszpra
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-748, https://doi.org/10.5194/acp-2019-748, 2019
Revised manuscript not accepted
Short summary
Short summary
The rise of temperatures across the globe, mainly attributed to the anthropogenic emissions of greenhouse gases, is predicted to have an increased impact on ecosystems over the next century. One of the manifestations of this anthropogenic global warming will be the increased occurrence of prolonged droughts in the temperate climate zones. In the current study we present the evidence of an increased impact of droughts on the annual cycle of carbon dioxide over Central-Eastern Europe.
Johannes Hepp, Bruno Glaser, Dieter Juchelka, Christoph Mayr, Kazimierz Rozanski, Imke Kathrin Schäfer, Willibald Stichler, Mario Tuthorn, Roland Zech, and Michael Zech
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-427, https://doi.org/10.5194/bg-2019-427, 2019
Manuscript not accepted for further review
Johannes Hepp, Lorenz Wüthrich, Tobias Bromm, Marcel Bliedtner, Imke Kathrin Schäfer, Bruno Glaser, Kazimierz Rozanski, Frank Sirocko, Roland Zech, and Michael Zech
Clim. Past, 15, 713–733, https://doi.org/10.5194/cp-15-713-2019, https://doi.org/10.5194/cp-15-713-2019, 2019
Peter Bergamaschi, Ute Karstens, Alistair J. Manning, Marielle Saunois, Aki Tsuruta, Antoine Berchet, Alexander T. Vermeulen, Tim Arnold, Greet Janssens-Maenhout, Samuel Hammer, Ingeborg Levin, Martina Schmidt, Michel Ramonet, Morgan Lopez, Jost Lavric, Tuula Aalto, Huilin Chen, Dietrich G. Feist, Christoph Gerbig, László Haszpra, Ove Hermansen, Giovanni Manca, John Moncrieff, Frank Meinhardt, Jaroslaw Necki, Michal Galkowski, Simon O'Doherty, Nina Paramonova, Hubertus A. Scheeren, Martin Steinbacher, and Ed Dlugokencky
Atmos. Chem. Phys., 18, 901–920, https://doi.org/10.5194/acp-18-901-2018, https://doi.org/10.5194/acp-18-901-2018, 2018
Short summary
Short summary
European methane (CH4) emissions are estimated for 2006–2012 using atmospheric in situ measurements from 18 European monitoring stations and 7 different inverse models. Our analysis highlights the potential significant contribution of natural emissions from wetlands (including peatlands and wet soils) to the total European emissions. The top-down estimates of total EU-28 CH4 emissions are broadly consistent with the sum of reported anthropogenic CH4 emissions and the estimated natural emissions.
M. Tuthorn, R. Zech, M. Ruppenthal, Y. Oelmann, A. Kahmen, H. F. del Valle, T. Eglinton, K. Rozanski, and M. Zech
Biogeosciences, 12, 3913–3924, https://doi.org/10.5194/bg-12-3913-2015, https://doi.org/10.5194/bg-12-3913-2015, 2015
Short summary
Short summary
Stable water isotopes (18O/16O and 2H/1H) are invaluable proxies for paleoclimate research. Here we use a coupled 18O/16O and 2H/1H biomarker approach based on plant-derived sugars and n-alkanes. Applying this innovative approach to a topsoil transect allows for (i) calculating the deuterium-excess of leaf water as a proxy for relative humidity and (ii) calculating the plant source water isotopic composition (~precipitation). The approach is validated by the presented climate transect results.
Related subject area
Subject: Isotopes | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Vehicle-based in situ observations of the water vapor isotopic composition across China: spatial and seasonal distributions and controls
Using carbon-14 and carbon-13 measurements for source attribution of atmospheric methane in the Athabasca oil sands region
Experimental investigation of the stable water isotope distribution in an Alpine lake environment (L-WAIVE)
Craig–Gordon model validation using stable isotope ratios in water vapor over the Southern Ocean
Moisture origin as a driver of temporal variabilities of the water vapour isotopic composition in the Lena River Delta, Siberia
Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean
Vertical profile observations of water vapor deuterium excess in the lower troposphere
A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain
The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights
Annual variation in event-scale precipitation δ2H at Barrow, AK, reflects vapor source region
Interpreting the 13C ∕ 12C ratio of carbon dioxide in an urban airshed in the Yangtze River Delta, China
The influence of snow sublimation and meltwater evaporation on δD of water vapor in the atmospheric boundary layer of central Europe
Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau
Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer
Detecting moisture transport pathways to the subtropical North Atlantic free troposphere using paired H2O-δD in situ measurements
Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity
Isotopic signatures of production and uptake of H2 by soil
Simultaneous monitoring of stable oxygen isotope composition in water vapour and precipitation over the central Tibetan Plateau
Deuterium excess in the atmospheric water vapour of a Mediterranean coastal wetland: regional vs. local signatures
Factors controlling temporal variability of near-ground atmospheric 222Rn concentration over central Europe
The isotopic composition of water vapour and precipitation in Ivittuut, southern Greenland
Deuterium excess as a proxy for continental moisture recycling and plant transpiration
On the variability of atmospheric 222Rn activity concentrations measured at Neumayer, coastal Antarctica
Precipitation isoscape of high reliefs: interpolation scheme designed and tested for monthly resolved precipitation oxygen isotope records of an Alpine domain
Kinetic fractionation of gases by deep air convection in polar firn
Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet
Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado
Temporal evolution of stable water isotopologues in cloud droplets in a hill cap cloud in central Europe (HCCT-2010)
Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent
Change of the Asian dust source region deduced from the composition of anthropogenic radionuclides in surface soil in Mongolia
A map of radon flux at the Australian land surface
Di Wang, Lide Tian, Camille Risi, Xuejie Wang, Jiangpeng Cui, Gabriel J. Bowen, Kei Yoshimura, Zhongwang Wei, and Laurent Z. X. Li
Atmos. Chem. Phys., 23, 3409–3433, https://doi.org/10.5194/acp-23-3409-2023, https://doi.org/10.5194/acp-23-3409-2023, 2023
Short summary
Short summary
To better understand the spatial and temporal distribution of vapor isotopes, we present two vehicle-based spatially continuous snapshots of the near-surface vapor isotopes in China during the pre-monsoon and monsoon periods. These observations are explained well by different moisture sources and processes along the air mass trajectories. Our results suggest that proxy records need to be interpreted in the context of regional systems and sources of moisture.
Regina Gonzalez Moguel, Felix Vogel, Sébastien Ars, Hinrich Schaefer, Jocelyn C. Turnbull, and Peter M. J. Douglas
Atmos. Chem. Phys., 22, 2121–2133, https://doi.org/10.5194/acp-22-2121-2022, https://doi.org/10.5194/acp-22-2121-2022, 2022
Short summary
Short summary
Evaluating methane (CH4) sources in the Athabasca oil sands region (AOSR) is crucial to effectively mitigate CH4 emissions. We tested the use of carbon isotopes to estimate source contributions from key CH4 sources in the AOSR and found that 56 ± 18 % of CH4 emissions originated from surface mining and processing facilities, 34 ± 18 % from tailings ponds, and 10 ± < 1 % from wetlands, confirming previous findings and showing that this method can be successfully used to partition CH4 sources.
Patrick Chazette, Cyrille Flamant, Harald Sodemann, Julien Totems, Anne Monod, Elsa Dieudonné, Alexandre Baron, Andrew Seidl, Hans Christian Steen-Larsen, Pascal Doira, Amandine Durand, and Sylvain Ravier
Atmos. Chem. Phys., 21, 10911–10937, https://doi.org/10.5194/acp-21-10911-2021, https://doi.org/10.5194/acp-21-10911-2021, 2021
Short summary
Short summary
To gain understanding on the vertical structure of atmospheric water vapour above mountain lakes and to assess its link to the isotopic composition of the lake water and small-scale dynamics, the L-WAIVE field campaign was conducted in the Annecy valley in the French Alps in June 2019. Based on a synergy between ground-based, boat-borne, and airborne measuring platforms, significant gradients of isotopic content have been revealed at the transitions to the lake and to the free troposphere.
Shaakir Shabir Dar, Prosenjit Ghosh, Ankit Swaraj, and Anil Kumar
Atmos. Chem. Phys., 20, 11435–11449, https://doi.org/10.5194/acp-20-11435-2020, https://doi.org/10.5194/acp-20-11435-2020, 2020
Jean-Louis Bonne, Hanno Meyer, Melanie Behrens, Julia Boike, Sepp Kipfstuhl, Benjamin Rabe, Toni Schmidt, Lutz Schönicke, Hans Christian Steen-Larsen, and Martin Werner
Atmos. Chem. Phys., 20, 10493–10511, https://doi.org/10.5194/acp-20-10493-2020, https://doi.org/10.5194/acp-20-10493-2020, 2020
Short summary
Short summary
This study introduces 2 years of continuous near-surface in situ observations of the stable isotopic composition of water vapour in parallel with precipitation in north-eastern Siberia. We evaluate the atmospheric transport of moisture towards the region of our observations with simulations constrained by meteorological reanalyses and use this information to interpret the temporal variations of the vapour isotopic composition from seasonal to synoptic timescales.
Iris Thurnherr, Anna Kozachek, Pascal Graf, Yongbiao Weng, Dimitri Bolshiyanov, Sebastian Landwehr, Stephan Pfahl, Julia Schmale, Harald Sodemann, Hans Christian Steen-Larsen, Alessandro Toffoli, Heini Wernli, and Franziska Aemisegger
Atmos. Chem. Phys., 20, 5811–5835, https://doi.org/10.5194/acp-20-5811-2020, https://doi.org/10.5194/acp-20-5811-2020, 2020
Short summary
Short summary
Stable water isotopes (SWIs) are tracers of moist atmospheric processes. We analyse the impact of large- to small-scale atmospheric processes and various environmental conditions on the variability of SWIs using ship-based SWI measurement in water vapour from the Atlantic and Southern Ocean. Furthermore, simultaneous measurements of SWIs at two altitudes are used to illustrate the potential of such measurements for future research to estimate sea spray evaporation and turbulent moisture fluxes.
Olivia E. Salmon, Lisa R. Welp, Michael E. Baldwin, Kristian D. Hajny, Brian H. Stirm, and Paul B. Shepson
Atmos. Chem. Phys., 19, 11525–11543, https://doi.org/10.5194/acp-19-11525-2019, https://doi.org/10.5194/acp-19-11525-2019, 2019
Short summary
Short summary
We conducted airborne vertical profile measurements of water vapor stable isotopes to examine how boundary layer, cloud, and mixing processes influence the vertical structure of deuterium excess in the lower troposphere. We discuss reasons our observations are consistent with water vapor isotope theory on some days and not others. Deuterium excess may be useful for understanding complex processes occurring at the top of the boundary layer, including cloud formation, evaporation, and air mixing.
Pascal Graf, Heini Wernli, Stephan Pfahl, and Harald Sodemann
Atmos. Chem. Phys., 19, 747–765, https://doi.org/10.5194/acp-19-747-2019, https://doi.org/10.5194/acp-19-747-2019, 2019
Short summary
Short summary
This article studies the interaction between falling rain and vapour with stable water isotopes. In particular, rain evaporation is relevant for several atmospheric processes, but remains difficult to quantify. A novel framework is introduced to facilitate the interpretation of stable water isotope observations in near-surface vapour and rain. The usefulness of this concept is demonstrated using observations at high time resolution from a cold front. Sensitivities are tested with a simple model.
Harald Sodemann, Franziska Aemisegger, Stephan Pfahl, Mark Bitter, Ulrich Corsmeier, Thomas Feuerle, Pascal Graf, Rolf Hankers, Gregor Hsiao, Helmut Schulz, Andreas Wieser, and Heini Wernli
Atmos. Chem. Phys., 17, 6125–6151, https://doi.org/10.5194/acp-17-6125-2017, https://doi.org/10.5194/acp-17-6125-2017, 2017
Short summary
Short summary
We report here the first survey of stable water isotope composition over the Mediterranean sea made from aircraft. The stable isotope composition of the atmospheric water vapour changed in response to evaporation conditions at the sea surface, elevation, and airmass transport history. Our data set will be valuable for testing how water is transported in weather prediction and climate models and for understanding processes in the Mediterranean water cycle.
Annie L. Putman, Xiahong Feng, Leslie J. Sonder, and Eric S. Posmentier
Atmos. Chem. Phys., 17, 4627–4639, https://doi.org/10.5194/acp-17-4627-2017, https://doi.org/10.5194/acp-17-4627-2017, 2017
Short summary
Short summary
Water vapor source and transport are linked to the stable isotopes of precipitation of 70 storms at Barrow, AK, USA. Barrow's vapor came from the North Pacific in winter and the Arctic Ocean in summer. Half the isotopic variability was explained by the size of the temperature drop from the vapor source to Barrow, the evaporation conditions, and whether the vapor traveled over mountains. Because isotopes reflect the regional meteorology they may be early indicators of Arctic hydroclimatic change.
Jiaping Xu, Xuhui Lee, Wei Xiao, Chang Cao, Shoudong Liu, Xuefa Wen, Jingzheng Xu, Zhen Zhang, and Jiayu Zhao
Atmos. Chem. Phys., 17, 3385–3399, https://doi.org/10.5194/acp-17-3385-2017, https://doi.org/10.5194/acp-17-3385-2017, 2017
Short summary
Short summary
The Yangtze River Delta is one of the most industrialized regions in China. In situ optical isotopic measurement in Nanjing, a city located in the Delta, showed unusually high atmospheric δ13C signals in the summer (−7.44 ‰, July 2013 mean), which we attributed to the influence of cement production in the region. Flux partitioning calculations revealed that natural ecosystems in the region were a negligibly small source of atmospheric CO2.
Emanuel Christner, Martin Kohler, and Matthias Schneider
Atmos. Chem. Phys., 17, 1207–1225, https://doi.org/10.5194/acp-17-1207-2017, https://doi.org/10.5194/acp-17-1207-2017, 2017
Short summary
Short summary
Post-depositional fractionation of stable water isotopes due to fractioning surface evaporation introduces uncertainty to isotope applications such as the reconstruction of paleotemperatures, paleoaltimetry, and the investigation of ground water formation. In this paper we combine measurements of stable water isotopes in near-surface water vapor with a Lagrangian isotope model to investigate isotope fractionation during the evaporation of surface-layer snow in central Europe.
Mathieu Casado, Amaelle Landais, Valérie Masson-Delmotte, Christophe Genthon, Erik Kerstel, Samir Kassi, Laurent Arnaud, Ghislain Picard, Frederic Prie, Olivier Cattani, Hans-Christian Steen-Larsen, Etienne Vignon, and Peter Cermak
Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, https://doi.org/10.5194/acp-16-8521-2016, 2016
Short summary
Short summary
Climatic conditions in Concordia are very cold (−55 °C in average) and very dry, imposing difficult conditions to measure the water vapour isotopic composition. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces (down to 20 ppmv). Here we present the results results of a first campaign of measurement of isotopic composition of water vapour in Concordia, the site where the 800 000 years long ice core was drilled.
Timothy J. Griffis, Jeffrey D. Wood, John M. Baker, Xuhui Lee, Ke Xiao, Zichong Chen, Lisa R. Welp, Natalie M. Schultz, Galen Gorski, Ming Chen, and John Nieber
Atmos. Chem. Phys., 16, 5139–5157, https://doi.org/10.5194/acp-16-5139-2016, https://doi.org/10.5194/acp-16-5139-2016, 2016
Short summary
Short summary
Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle. We present the first multi-annual isotope (oxygen and deuterium) water vapor observations from a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the atmosphere. The results show a relatively high degree of summertime water recycling within the region (~30 % mean and ~60 % maximum).
Yenny González, Matthias Schneider, Christoph Dyroff, Sergio Rodríguez, Emanuel Christner, Omaira Elena García, Emilio Cuevas, Juan Jose Bustos, Ramon Ramos, Carmen Guirado-Fuentes, Sabine Barthlott, Andreas Wiegele, and Eliezer Sepúlveda
Atmos. Chem. Phys., 16, 4251–4269, https://doi.org/10.5194/acp-16-4251-2016, https://doi.org/10.5194/acp-16-4251-2016, 2016
Short summary
Short summary
Measurements of water vapour isotopologues, dust, and a back trajectory model were used to identify moisture pathways in the subtropical North Atlantic. Dry air masses, from condensation at low temperatures, are transported from high altitudes and latitudes. The humid sources are related to the mixture, with lower and more humid air during transport. Rain re-evaporation was an occasional source of moisture. In summer, an important humidity source is the strong dry convection over the Sahara.
Sally Newman, Xiaomei Xu, Kevin R. Gurney, Ying Kuang Hsu, King Fai Li, Xun Jiang, Ralph Keeling, Sha Feng, Darragh O'Keefe, Risa Patarasuk, Kam Weng Wong, Preeti Rao, Marc L. Fischer, and Yuk L. Yung
Atmos. Chem. Phys., 16, 3843–3863, https://doi.org/10.5194/acp-16-3843-2016, https://doi.org/10.5194/acp-16-3843-2016, 2016
Short summary
Short summary
Combining 14C and 13C data from the Los Angeles, CA megacity with background data allows source attribution of CO2 emissions among biosphere, natural gas, and gasoline. The 8-year record of CO2 emissions from fossil fuel burning is consistent with "The Great Recession" of 2008–2010. The long-term trend and source attribution are consistent with government inventories. Seasonal patterns agree with the high-resolution Hestia-LA emission data product, when seasonal wind directions are considered.
Q. Chen, M. E. Popa, A. M. Batenburg, and T. Röckmann
Atmos. Chem. Phys., 15, 13003–13021, https://doi.org/10.5194/acp-15-13003-2015, https://doi.org/10.5194/acp-15-13003-2015, 2015
Short summary
Short summary
We investigated soil production and uptake of H2 and associated isotope effects. Uptake and emission of H2 occurred simultaneously at all sampling sites, with strongest emission where N2 fixing legume was present. The fractionation constant during soil uptake was about 0.945 and it did not show positive correlation with deposition velocity. The isotopic composition of H2 emitted from soil with legume was about -530‰, which is less deuterium-depleted than isotope equilibrium between H2O and H2.
W. Yu, L. Tian, Y. Ma, B. Xu, and D. Qu
Atmos. Chem. Phys., 15, 10251–10262, https://doi.org/10.5194/acp-15-10251-2015, https://doi.org/10.5194/acp-15-10251-2015, 2015
H. Delattre, C. Vallet-Coulomb, and C. Sonzogni
Atmos. Chem. Phys., 15, 10167–10181, https://doi.org/10.5194/acp-15-10167-2015, https://doi.org/10.5194/acp-15-10167-2015, 2015
Short summary
Short summary
Based on summer measurements of δ18O and δD in the atmospheric vapour of a Mediterranean coastal wetland exposed to high evaporation, this paper explores the main drivers of isotopic signal variability. After having classified the data according to the main regional air mass trajectories, average diurnal cycles are discussed with regards to the contribution of local evaporation to the ground level atmospheric vapour.
M. Zimnoch, P. Wach, L. Chmura, Z. Gorczyca, K. Rozanski, J. Godlowska, J. Mazur, K. Kozak, and A. Jeričević
Atmos. Chem. Phys., 14, 9567–9581, https://doi.org/10.5194/acp-14-9567-2014, https://doi.org/10.5194/acp-14-9567-2014, 2014
J.-L. Bonne, V. Masson-Delmotte, O. Cattani, M. Delmotte, C. Risi, H. Sodemann, and H. C. Steen-Larsen
Atmos. Chem. Phys., 14, 4419–4439, https://doi.org/10.5194/acp-14-4419-2014, https://doi.org/10.5194/acp-14-4419-2014, 2014
F. Aemisegger, S. Pfahl, H. Sodemann, I. Lehner, S. I. Seneviratne, and H. Wernli
Atmos. Chem. Phys., 14, 4029–4054, https://doi.org/10.5194/acp-14-4029-2014, https://doi.org/10.5194/acp-14-4029-2014, 2014
R. Weller, I. Levin, D. Schmithüsen, M. Nachbar, J. Asseng, and D. Wagenbach
Atmos. Chem. Phys., 14, 3843–3853, https://doi.org/10.5194/acp-14-3843-2014, https://doi.org/10.5194/acp-14-3843-2014, 2014
Z. Kern, B. Kohán, and M. Leuenberger
Atmos. Chem. Phys., 14, 1897–1907, https://doi.org/10.5194/acp-14-1897-2014, https://doi.org/10.5194/acp-14-1897-2014, 2014
K. Kawamura, J. P. Severinghaus, M. R. Albert, Z. R. Courville, M. A. Fahnestock, T. Scambos, E. Shields, and C. A. Shuman
Atmos. Chem. Phys., 13, 11141–11155, https://doi.org/10.5194/acp-13-11141-2013, https://doi.org/10.5194/acp-13-11141-2013, 2013
H. C. Steen-Larsen, S. J. Johnsen, V. Masson-Delmotte, B. Stenni, C. Risi, H. Sodemann, D. Balslev-Clausen, T. Blunier, D. Dahl-Jensen, M. D. Ellehøj, S. Falourd, A. Grindsted, V. Gkinis, J. Jouzel, T. Popp, S. Sheldon, S. B. Simonsen, J. Sjolte, J. P. Steffensen, P. Sperlich, A. E. Sveinbjörnsdóttir, B. M. Vinther, and J. W. C. White
Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, https://doi.org/10.5194/acp-13-4815-2013, 2013
D. Noone, C. Risi, A. Bailey, M. Berkelhammer, D. P. Brown, N. Buenning, S. Gregory, J. Nusbaumer, D. Schneider, J. Sykes, B. Vanderwende, J. Wong, Y. Meillier, and D. Wolfe
Atmos. Chem. Phys., 13, 1607–1623, https://doi.org/10.5194/acp-13-1607-2013, https://doi.org/10.5194/acp-13-1607-2013, 2013
J. K. Spiegel, F. Aemisegger, M. Scholl, F. G. Wienhold, J. L. Collett Jr., T. Lee, D. van Pinxteren, S. Mertes, A. Tilgner, H. Herrmann, R. A. Werner, N. Buchmann, and W. Eugster
Atmos. Chem. Phys., 12, 11679–11694, https://doi.org/10.5194/acp-12-11679-2012, https://doi.org/10.5194/acp-12-11679-2012, 2012
J. K. Spiegel, F. Aemisegger, M. Scholl, F. G. Wienhold, J. L. Collett Jr., T. Lee, D. van Pinxteren, S. Mertes, A. Tilgner, H. Herrmann, R. A. Werner, N. Buchmann, and W. Eugster
Atmos. Chem. Phys., 12, 9855–9863, https://doi.org/10.5194/acp-12-9855-2012, https://doi.org/10.5194/acp-12-9855-2012, 2012
Y. Igarashi, H. Fujiwara, and D. Jugder
Atmos. Chem. Phys., 11, 7069–7080, https://doi.org/10.5194/acp-11-7069-2011, https://doi.org/10.5194/acp-11-7069-2011, 2011
A. D. Griffiths, W. Zahorowski, A. Element, and S. Werczynski
Atmos. Chem. Phys., 10, 8969–8982, https://doi.org/10.5194/acp-10-8969-2010, https://doi.org/10.5194/acp-10-8969-2010, 2010
Cited articles
Agnihotri, C. L. and Singh, M. S.: Satellite study of western disturbances,
Mausam, 33, 249–254, 1982.
Allan, R. P. and Soden, B. J.: Atmospheric warming and the amplification of
precipitation extremes, Science, 321, 1481–1484, 2008.
Allen, M. B. and Armstrong, H. A.: Reconciling the Intertropical Convergence
Zone, Himalayan/Tibetan tectonics, and the onset of the Asian monsoon system,
J. Asian Earth Sci., 44, 36–47, 2012.
Araguás-Araguás, L., Froehlich, K., and Rozanski, K.: Stable isotope
composition of precipitation over Southeast Asia, J. Geophys. Res., 103,
28721–28742, 1998.
Araguás-Araguás, L., Froehlich, K., and Rozanski, K.: Deuterium and
oxygen-18 isotope composition of precipitation and atmospheric moisture,
Hydrol. Process., 14, 1341–1355, 2000.
Archer, D. R., Forsythe, N., Fowler, H. J., and Shah, S. M.: Sustainability
of water resources management in the Indus Basin under changing climatic and
socio economic conditions, Hydrol. Earth Syst. Sci., 14, 1669–1680,
https://doi.org/10.5194/hess-14-1669-2010, 2010.
Barnes, C. J. and Allison, G. B.: The distribution of deuterium and O-18 in
dry soils, 1. Theory, J. Hydrol., 60, 141–156, 1983.
Bershaw, J., Penny, S. M., and Garzione, C. N.: Stable isotopes of modern
water across the Himalaya and eastern Tibetan Plateau: Implications for
estimates of paleoelevation and paleoclimate, J. Geophys. Res.-Atmos., 117D2,
https://doi.org/10.1029/2011JD016132, 2012.
Bhattacharya, S. K., Froehlich, K., Aggarwal, P. K., and Kulkarni, K. M.:
Isotopic variation in Indian Monsoon precipitation: records from Bombay and
New Delhi, Geophys. Res. Lett., 30, 2285, https://doi.org/10.1029/2003GL018453, 2003.
Bony, S., Rissi, C., and Vimeux, F.: Influence of convective processess on
the isotopic composition (δ18O and δD) of
precipitation and water vapour in the tropics: 1. Radiative-convective
equilibrium and Tropical Ocean-Global Atmosphere-Coupled Ocean-Atmosphere
Response Experiment (TOGA-COARE) simulations, J. Geophys. Res., 113, D19305,
https://doi.org/10.1029/2008JD009942, 2008.
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological
budget: spatiotemporal distribution of snowmelt and rainfall and their impact
on river discharge, J. Geophys. Res., 115, F03019,
https://doi.org/10.1029/2009JF001426, 2010.
Breitenbach, S. F. M., Adkins, J. F., Meyer, H., Marwan, N., Kumar, K. K.,
and Haug, G. H.: Strong influence of water vapour source dynamics on stable
isotopes in precipitation observed in southern Meghalaya, NE India, Earth
Planet. Sc. Lett., 292, 212–220, 2010.
Cannon, F., Carvalho, L. M. V., Jones, C., and Bookhagen, B.: Multi-annual
variations in winter westerly disturbance activity affecting the Himalaya,
Clim. Dynam., 44, 441–455, 2015.
Chakraborty, S., Sinha, N., Chattopadhyay, R., Sengupta, S., Mohan, P. M.,
and Datye, A.: Atmospheric controls on the precipitation isotopes over the
Andaman Islands, Bay of Bengal, Sci. Rep., 6, 19555, https://doi.org/10.1038/srep19555,
2016.
Chand, R. and Singh, C.: Movement of Western Disturbances and associated
cloud convection, J. Ind. Geophys. Union, 19, 62–70, 2015.
Clemens, S., Prell, W., Murray, D., Shimmield, G., and Weedon, G.: Forcing
mechanisms of the Indian Ocean monsoon, Nature, 353, 720–725, 1991.
Craig, H.: Isotope variations in meteoric waters, Science, 133, 1702–1703,
1961.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.
Deshpande, R. D. and Gupta, S. K.: National programme on isotope
fingerprinting of waters of India (IWIN), Glimpses of Geosciences Research in
India, the Indian Report to IUGS, Indian National Science Academy, 10–16,
2008.
Deshpande, R. D. and Gupta, S. K.: Oxygen and hydrogen isotopes in
hydrological cycle: New data from IWIN national programme, P. Indian Nat.
Acad. Sci., 78, 321–331, 2012.
Deshpande, R. D., Maurya, A. S., Kumar, B., Sarkar, A., and Gupta, S. K.:
Rain-vapor interaction and vapor source identification using stable isotopes
from semi-arid Western India, J. Geophys. Res., 115, D23311,
https://doi.org/10.1029/2010JD014458, 2010.
Deshpande, R. D., Dave, M., Padhya, V., Kumar, H., and Gupta, S. K.: Water
vapour source identification for daily rain events at Ahmedabad in semi-arid
western India: wind trajectory analyses, Meteorol. Appl., 22, 754–762, 2015.
Dhar, O. N., Kulkarni, A. K., and Sangam, E. B.: Some aspects of winter &
monsoon rainfall distribution over the Garhwal-Kumaon Himalaya: a brief
appraisal, Himal. Res. Dev., 2, 10–19, 1984.
Dimri, A. P.: Surface and upper air fields during extreme winter
precipitation over the western Himalayas, Pure Appl. Geophys., 163,
1679–1698, 2006.
Dimri, A. P., Mohanty, U. C., and Mandal, M.: Simulation of heavy
precipitation associated with an intense western disturbance over Western
Himalayas, Nat. Hazards, 31, 499–521, 2004.
Dimri, A. P., Niyogi, D., Barros, A. P., Ridley, J., Mohanty, U. C.,
Yasunari, T., and Sikka, D. R.: Western Disturbances: A review, Rev.
Geophys., 53, 225–246, 2015.
Dongmann, G., Nurnberg, H. W., Förstel, H., and Wagener, K.: On the
enrichment of in the leaves of transpiring plants, Radiat.
Environ. Bioph., 11, 41–52, 1974.
Flanagan, L. B., Marshall, J. D., and Ehleringer, J. R.: Comparison of modelled
and observed environmental influences on the stable oxygen and hydrogen
isotope composition of leaf water in Phaseolus vulgaris L, Plant Physiol., 96, 623–631, 1991.
Gadgil, S.: The Indian monsoon and its variability, Annu. Rev. Earth Pl. Sc.,
31, 429–467, 2003.
Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, An. Rev.
Earth Planet. Sci., 24, 225–262, 1996.
Gat, J. R. and Carmi, I.: Evolution of the isotopic composition of
atmospheric waters in the Mediterranean Sea area, J. Geophys. Res., 75,
3039–3048, 1970.
Held, I. M. and Soden, B. J.: Robust response of the hydrological cycle to
global warming, J. Climate, 19, 5686–5699, 2006.
Hren, M. T., Bookhagen, B., Blisniuk, P. M., Booth, A. L., and Chamberlain, C. P.:
δ18O and δD of streamwater across Himalayan and
Tibetan Plateau: Implications for moisture sources and palaelevation studies,
Earth Planet. Sci. Lett., 288, 20–32, 2009.
Hoffmann, G. and Heimann, M.: Water isotope modelling in the Asian monsoon
region, Quatern. Int., 37, 115–128, 1997.
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 1535 pp., https://doi.org/10.1017/CBO9781107415324, 2013.
Ives, J. D. and Messerli, B.: The Himalayan Dilemma: Reconciling Development
and Conservation, John Wiley, London, https://doi.org/10.4324/9780203169193, 1989.
Jeelani, G. and Deshpande, R. D.: Isotope fingerprinting of precipitation
associated with western disturbances and Indian summer monsoons across the
Himalayas, J. Earth Syst. Sci., 126, 108, https://doi.org/10.1007/s12040-017-0894-z,
2017.
Jeelani, G., Bhat, N. A., and Shivanna, K.: Use of 18O tracer to
identify stream and spring origins of a mountainous catchment; a case study
from Liddar watershed, Western Himalaya, India, J. Hydrol., 393, 257–264,
2010.
Jeelani, G., Faddema, J., Van der Veen, C., and Leigh, S.: Role of snow and
glacier melt in controlling river hydrology in Liddar watershed (western
Himalaya), Water Resour. Res., 48, W12508, https://doi.org/10.1029/2011WR011590, 2012.
Jeelani, G., Kumar, U. S., and Kumar, B.: Variation of δ18O
and δD in precipitation and stream waters across the Kashmir
Himalaya (India) to distinguish and estimate the seasonal sources of stream
flow, J. Hydrol., 481, 157–165, 2013.
Jeelani, G., Kumar, U. S., Bhat, N. A., Kumar, B., and Sharma, S.: Variation
of δ18O, δD and 3H in karst springs of south
Kashmir, western Himalayas (India), Hydrol. Process., 29, 522–530, 2015.
Jeelani, G., Shah, R. A., Deshpande, R. D., Fryer, A., Perrin, J., and
Mukherjee, A.: Distinguishing and estimating recharge to karst springs in
snow and glacier dominated mountainous basins of the western Himalaya, India,
J. Hydrol., 550, 239–252, 2017a.
Jeelani, G., Deshpande, R. D., Shah, R. A., and Hassan, W.: Influence of
southwest monsoons in Kashmir Valley, Western Himalaya, Isot., Environ.,
Healt., S., 53, 400–412, 2017b.
Karim, A. and Veizer, J.: Water balance of the Indus River Basin and moisture
source in the Karakoram and western Himalayas: Implications from hydrogen and
oxygen isotopes in river water, J. Geophys. Res.-Atmos., 107, 4362,
https://doi.org/10.1029/2000JD000253, 2002.
Kendall, C. and Coplen, T. B.: Distribution of oxygen-18 and deuterium in
river waters across the United States, Hydrol. Process., 15, 1363–1393,
2001.
Kumar, B., Rai, S. P., Kumar, U. S., Verma, S. K., Garg, P., Kumar, S. V. V.,
Jaiswal, R., Purendra, B. K., Kumar, S. R., and Pande, N. G.: Isotopic
characteristics of Indian precipitation, Water Resour. Res., 46, 1–15, 2010.
Landais A., Rissi, C., Bony, S., Vimeux, F., Descroix, L., Falourd, S., and
Bouygues, A.: Combined measurements of 17Oexcess and
d-excess in African monsoon precipitation: Implications for evaluating
convective parameterizations, Earth Planet. Sci. Lett., 298, 104–112, 2010.
Lang, T. J. and Barros, A. P.: Winter storms in the central Himalayas, J.
Meteor. Soc. Jpn., 82, 829–844, 2004.
Lekshmy, P. R., Midhun, M., Ramesh, R., and Jani, R. A.: 18O
depletion in monsoon rain relates to large scale organized convection rather
than the amount of rainfall, Sci. Rep., 4, 5661, https://doi.org/10.1038/srep05661,
2014.
Lekshmy, P. R., Midhun, M., and Ramesh, R.: Spatial variation of amount
effect over peninsular India and Sri Lanka: role of seasonality, Geophys.
Res. Lett., 42, 5500–5507, https://doi.org/10.1002/2015GL064517, 2015.
Li, Z., Lau, W. K.-M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu,
J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y.,
Huang, J., Wang, B., Xu, X., Lee, S.-S., Cribb, M., Zhang, F., Yang, X.,
Zhao, Z., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Gou, J., Zhai,
P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and monsoon
climate interactions in Asia, Rev. Geophys., 54, 866–929,
https://doi.org/10.1002/2015RG000500, 2016.
Madhura, R. K., Krishnan, R., Revadekar, J. V., Mujumdar, M., and Goswami, B.
N.: Changes in western disturbances over the Western Himalayas in a warming
environment, Clim. Dynam., 44, 1157–1168, 2015.
Maharana, P. and Dimri, A. P.: Study of seasonal climatology and interannual
variability over India and its sub-regions using a regional climate model
(RegCM3), Earth Sys. Sci., 123, 1147–1169, 2014.
Maurya, A. S., Shah, M., Deshpande, R. D., and Gupta, S. K.: Protocol for
δ18O and δD analyses of water sample using Delta V
plus IRMS in CF Mode with Gas Bench II for IWIN National Programme at PRL,
Ahmedabad, Proceedings of the 11th ISMAS Triennial Conference of Indian
Society for Mass Spectrometry, Hyderabad, Indian Society for Mass
Spectrometry, Mumbai, 24–28 November, 2009, 314–317, 2009.
Maurya, A. S., Shah, M., Deshpande, R. D., Bhardwaj, R. M., Prasad, A., and
Gupta, S. K.: Hydrograph separation and precipitation source identification
using stable water isotopes and conductivity: River Ganga at Himalayan
foothills, Hydrol. Process., 25, 1521–1530, 2011.
Molnar, P., Boos, W. R., and Battisti, D. S.: Orographic controls on climate
and paleoclimate of Asia: thermal and mechanical roles for the Tibetan
Plateau, An. Rev. Earth Planet. Sci., 38, 77,
https://doi.org/10.1146/annurev-earth-040809-152456, 2010.
Midhun, M. and Ramesh, R.: Validation of δ18O as a proxy for
past monsoon rain by multi-GCM simulations, Clim. Dynam., 46, 1371–1385,
2016.
Midhun, M., Lekshmy, P. R., and Ramesh, R.: Hydrogen and oxygen isotopic
compositions of water vapor over the Bay of Bengal during monsoon, Geophys.
Res. Lett., 40, 6324–6328, 2013.
Mooley, D. A.: The role of western disturbances in the production of weather
over India during different seasons, Ind. J. Meteorol. Geophys., 8, 253–260,
1957.
Overpeck, J., Anderson, D., Trumbore, S., and Prell, W.: The southwest Indian
Monsoon over the last 18 000 years, Clim. Dynam., 12, 213–225, 1996.
Parrish, D. F. and Derber, J. C.: The National Meteorological Center's
Spectral Statistical-Interpolation Analysis System, Mon. Weather Rev., 120,
1747–1763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2, 1992.
Pathak, A., Ghosh S., and Kumar, P.: Precipitation recycling in the Indian
subcontinent during summer monsoon, J. Hydromet., 15, 2050–2066, 2014.
Pisharoty, P. R. and Desai, B. N.: Western disturbances and Indian weather,
Ind. J. Meteorol. Geophys., 8, 333–338, 1956.
Rao, Y. P. and Srinivasan, V.: Forecasting Manual, Part II Discussion of
typical synoptic weather situation: winter western disturbances and their
associated features, Ind. Meteorol. Depart., FMU, Report No. III-1, 1969.
Rao, B. B., Sandeep, V. M., Rao, V. U. M., and Venkateswarlu, B.: Potential
evapotranspiration estimation for Indian conditions: Improving accuracy
through calibration coefficients, Tech. Bull., 1, 1–60, 2012.
Risi, C., Bony, S., Vimeux, F., Descroix, L., Ibrahim, B., Lebreton, E.,
Mamadou, I., and Sultan, B.: What controls the isotopic composition of the
African monsoon precipitation? Insights from event-based precipitation
collected during the 2006 AMMA field campaign, Geophys. Res. Lett., 35,
L24808, https://doi.org/10.1029/2008GL035920, 2008.
Rozanski, K., Sonntag, C., and Münnich, K. O.: Factors controlling stable
isotope composition of European precipitation, Tellus, 34, 142–150, 1982.
Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R.: Isotopic
patterns in modern global precipitation, in: Climate Change in Continental
Isotopic Records, Geophysical Monograph 78, American Geophysical Union,
Washington D.C., 1–36, 1993.
Rozanski, K., Froehlich, K., and Mook, W. G.: Surface water, in:
Environmental Isotopes in the Hydrological Cycle, Vol. III, Technical
Documents in Hydrology, No. 39, UNESCO, IAEA, 117 pp., 2001.
Siegenthaler, U. and Oeschger, H.: Correlation of 18O in
precipitation with temperature and altitude, Nature, 285, 314–317, 1980.
Steward, M. K.: Stable isotope fractionation due to evaporation and isotopic
exchange of falling waterdrops: applications to atmospheric processes and
evaporation of lakes, J. Geophys. Res., 80, 1133–1146, 1975.
Stein, A. F., Draxler, R. R., Rolf, G. D., Stundler, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077, 2015.
Tian, L., Tandong, Y., White, J. W. C., Wusheng, Y., and Ninglian, W.:
Westerly moisture transport to the middle of Himalayas revealed from the high
deuterium excess, Chinese Sci. Bull., 50, 1026–1030, 2005.
Tiwari, V. M., Wahr, J., and Swenson, S.: Dwindling groundwater resources in
northern India from satellite gravity observations, Geophys. Res. Lett., 36,
L18401, https://doi.org/10.1029/2009GL039401, 2009.
Upadhyay, R. G., Ranjan, R., and Negi, P. S.: Climatic variability and trend
at Ranichauri (Uttarakhand), J. Agrometeorol., 17, 241–243, 2015.
Warrier, C. U., Babu, M. P., Manjula, P., Velayudhan, K. T., Hameed, S. A.,
and Vasu, K.: Isotopic characterization of dual monsoon precipitation:
evidence from Kerala, India, Curr. Sci., 98, 1487–1495, 2010.
Wentz, F. J., Ricciardulli, L., and Hilburn, K.: How much more rain will
global warming bring, Science, 317, 233–235, 2007.
Yadava, M. G., Ramesh, R., and Pandarinath, K.: A positive amount effect in
the Sahayadri (Western Ghats) rainfall, Curr. Sci., 93, 560–564, 2007.
Yurtsever, Y. and Gat, J.: Atmospheric waters, in: Stable isotope hydrology:
Deuterium and oxygen-18 in the water cycle, edited by: Gat, J. R. and
Gonfiantini, R., IAEA, Vienna, Austria, 103–142, 1981.
Zimmermann, U., Ehhalt, D. H., and Münnich, K. O.: Soil water movement
and evapotranspiration: changes in the isotopic composition of water,
Isotopes in Hydrology, IAEA, Vienna, Austria, 567–584, 1967.
Short summary
Analysis of stable isotope composition of daily precipitation collected along the southern foothills of the Himalayas was used to gain deeper insight into the mechanisms controlling isotopic composition of precipitation. The results suggested that the decrease in isotopic composition in the course of ISM evolution stems from large-scale recycling of moisture-driven monsoonal circulation. High d-excess of rainfall is attributed to moisture of continental origin released into the atmosphere.
Analysis of stable isotope composition of daily precipitation collected along the southern...
Altmetrics
Final-revised paper
Preprint