Articles | Volume 18, issue 8
https://doi.org/10.5194/acp-18-5359-2018
https://doi.org/10.5194/acp-18-5359-2018
Research article
 | 
20 Apr 2018
Research article |  | 20 Apr 2018

Using the Fire Weather Index (FWI) to improve the estimation of fire emissions from fire radiative power (FRP) observations

Francesca Di Giuseppe, Samuel Rémy, Florian Pappenberger, and Fredrik Wetterhall

Related authors

State of Wildfires 2023–2024
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024,https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
A global fuel characteristic model and dataset for wildfire prediction
Joe R. McNorton and Francesca Di Giuseppe
Biogeosciences, 21, 279–300, https://doi.org/10.5194/bg-21-279-2024,https://doi.org/10.5194/bg-21-279-2024, 2024
Short summary
Fire Weather Index: the skill provided by the European Centre for Medium-Range Weather Forecasts ensemble prediction system
Francesca Di Giuseppe, Claudia Vitolo, Blazej Krzeminski, Christopher Barnard, Pedro Maciel, and Jesús San-Miguel
Nat. Hazards Earth Syst. Sci., 20, 2365–2378, https://doi.org/10.5194/nhess-20-2365-2020,https://doi.org/10.5194/nhess-20-2365-2020, 2020
Short summary
The value of satellite observations in the analysis and short-range prediction of Asian dust
Angela Benedetti, Francesca Di Giuseppe, Luke Jones, Vincent-Henri Peuch, Samuel Rémy, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 987–998, https://doi.org/10.5194/acp-19-987-2019,https://doi.org/10.5194/acp-19-987-2019, 2019
Status and future of numerical atmospheric aerosol prediction with a focus on data requirements
Angela Benedetti, Jeffrey S. Reid, Peter Knippertz, John H. Marsham, Francesca Di Giuseppe, Samuel Rémy, Sara Basart, Olivier Boucher, Ian M. Brooks, Laurent Menut, Lucia Mona, Paolo Laj, Gelsomina Pappalardo, Alfred Wiedensohler, Alexander Baklanov, Malcolm Brooks, Peter R. Colarco, Emilio Cuevas, Arlindo da Silva, Jeronimo Escribano, Johannes Flemming, Nicolas Huneeus, Oriol Jorba, Stelios Kazadzis, Stefan Kinne, Thomas Popp, Patricia K. Quinn, Thomas T. Sekiyama, Taichu Tanaka, and Enric Terradellas
Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018,https://doi.org/10.5194/acp-18-10615-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Regional variability of aerosol impacts on clouds and radiation in global kilometer-scale simulations
Ross J. Herbert, Andrew I. L. Williams, Philipp Weiss, Duncan Watson-Parris, Elisabeth Dingley, Daniel Klocke, and Philip Stier
Atmos. Chem. Phys., 25, 7789–7814, https://doi.org/10.5194/acp-25-7789-2025,https://doi.org/10.5194/acp-25-7789-2025, 2025
Short summary
A novel method to quantify the uncertainty contribution of aerosol–radiation interaction factors
Bishuo He and Chunsheng Zhao
Atmos. Chem. Phys., 25, 7765–7776, https://doi.org/10.5194/acp-25-7765-2025,https://doi.org/10.5194/acp-25-7765-2025, 2025
Short summary
Exploring the aerosol activation properties in coastal shallow convection using cloud- and particle-resolving models
Ge Yu, Yueya Wang, Zhe Wang, and Xiaoming Shi
Atmos. Chem. Phys., 25, 7527–7542, https://doi.org/10.5194/acp-25-7527-2025,https://doi.org/10.5194/acp-25-7527-2025, 2025
Short summary
Machine-learning-assisted inference of the particle charge fraction and the ion-induced nucleation rates during new particle formation events
Pan Wang, Yue Zhao, Jiandong Wang, Veli-Matti Kerminen, Jingkun Jiang, and Chenxi Li
Atmos. Chem. Phys., 25, 7431–7446, https://doi.org/10.5194/acp-25-7431-2025,https://doi.org/10.5194/acp-25-7431-2025, 2025
Short summary
Modeling CMAQ dry deposition treatment over the western Pacific: a distinct characteristic of mineral dust and anthropogenic aerosols
Steven Soon-Kai Kong, Joshua S. Fu, Neng-Huei Lin, Guey-Rong Sheu, and Wei-Syun Huang
Atmos. Chem. Phys., 25, 7245–7268, https://doi.org/10.5194/acp-25-7245-2025,https://doi.org/10.5194/acp-25-7245-2025, 2025
Short summary

Cited articles

Buizza, R., Milleer, M., and Palmer, T.: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system, Q. J. Roy. Meteorol. Soc., 125, 2887–2908, 1999.
CAMS – the Copernicus Atmosphere Monitoring Service team: Global Fire Assimilation System v2.1, Fire Radiative Power, ECMWF, http://apps.ecmwf.int/datasets/data/cams-gfas/, 2015.
Crutzen, P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H., and Seiler, W.: Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS, Nature, 282, 253–256, 1979.
Deeter, M. N., Emmons, L. K., Francis, G. L., Edwards, D. P., Gille, J. C., Warner, J. X., Khattatov, B., Ziskin, D., Lamarque, J.-F., Ho, S.-P., Yudin, V., Attié, J.-L., Packman, D., Chen, J., Mao, D., and Drummond, J. R.: Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument, J. Geophys. Res., 108, 4399, https://doi.org/10.1029/2002JD003186, 2003.
Deeter, M. N., Martínez-Alonso, S., Edwards, D. P., Emmons, L. K., Gille, J. C., Worden, H. M., Sweeney, C., Pittman, J. V., Daube, B. C., and Wofsy, S. C.: The MOPITT Version 6 product: algorithm enhancements and validation, Atmos. Meas. Tech., 7, 3623–3632, https://doi.org/10.5194/amt-7-3623-2014, 2014.
Download
Short summary
Fire emissions injected into the atmosphere are crucial input for air quality models. This information is available globally using fire radiative power (FRP) observations, converted into smoke constituents. In case of a missing observation after ignition, a practical choice is to assume persistence. As an improvement we propose the use of the Canadian Fire Weather Index (FWI) to predict the FRP evolution. We show that the FWI is able to capture weather-related changes in fire activity well.
Share
Altmetrics
Final-revised paper
Preprint