Articles | Volume 18, issue 7
Atmos. Chem. Phys., 18, 5059–5074, 2018
https://doi.org/10.5194/acp-18-5059-2018
Atmos. Chem. Phys., 18, 5059–5074, 2018
https://doi.org/10.5194/acp-18-5059-2018
Research article
13 Apr 2018
Research article | 13 Apr 2018

The influence of idealized surface heterogeneity on virtual turbulent flux measurements

Frederik De Roo and Matthias Mauder

Related authors

Options to correct local turbulent flux measurements for large-scale fluxes using an approach based on large-eddy simulation
Matthias Mauder, Andreas Ibrom, Luise Wanner, Frederik De Roo, Peter Brugger, Ralf Kiese, and Kim Pilegaard
Atmos. Meas. Tech., 14, 7835–7850, https://doi.org/10.5194/amt-14-7835-2021,https://doi.org/10.5194/amt-14-7835-2021, 2021
Short summary
Vertically nested LES for high-resolution simulation of the surface layer in PALM (version 5.0)
Sadiq Huq, Frederik De Roo, Siegfried Raasch, and Matthias Mauder
Geosci. Model Dev., 12, 2523–2538, https://doi.org/10.5194/gmd-12-2523-2019,https://doi.org/10.5194/gmd-12-2523-2019, 2019
Short summary
Turbulent transport of energy across a forest and a semiarid shrubland
Tirtha Banerjee, Peter Brugger, Frederik De Roo, Konstantin Kröniger, Dan Yakir, Eyal Rotenberg, and Matthias Mauder
Atmos. Chem. Phys., 18, 10025–10038, https://doi.org/10.5194/acp-18-10025-2018,https://doi.org/10.5194/acp-18-10025-2018, 2018
Short summary
Revisiting Kelvin Helmholtz Instabilities and von Kármán Vortices in Canopy Turbulence
Tirtha Banerjee, Frederik De Roo, and Rodman Linn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-595,https://doi.org/10.5194/hess-2017-595, 2017
Revised manuscript not accepted
Short summary
Explaining the convector effect in canopy turbulence by means of large-eddy simulation
Tirtha Banerjee, Frederik De Roo, and Matthias Mauder
Hydrol. Earth Syst. Sci., 21, 2987–3000, https://doi.org/10.5194/hess-21-2987-2017,https://doi.org/10.5194/hess-21-2987-2017, 2017
Short summary

Related subject area

Subject: Biosphere Interactions | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Interpreting machine learning prediction of fire emissions and comparison with FireMIP process-based models
Sally S.-C. Wang, Yun Qian, L. Ruby Leung, and Yang Zhang
Atmos. Chem. Phys., 22, 3445–3468, https://doi.org/10.5194/acp-22-3445-2022,https://doi.org/10.5194/acp-22-3445-2022, 2022
Short summary
Distinguishing the impacts of natural and anthropogenic aerosols on global gross primary productivity through diffuse fertilization effect
Hao Zhou, Xu Yue, Yadong Lei, Chenguang Tian, Jun Zhu, Yimian Ma, Yang Cao, Xixi Yin, and Zhiding Zhang
Atmos. Chem. Phys., 22, 693–709, https://doi.org/10.5194/acp-22-693-2022,https://doi.org/10.5194/acp-22-693-2022, 2022
Short summary
Was Australia a sink or source of CO2 in 2015? Data assimilation using OCO-2 satellite measurements
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys., 21, 17453–17494, https://doi.org/10.5194/acp-21-17453-2021,https://doi.org/10.5194/acp-21-17453-2021, 2021
Short summary
CO2-equivalence metrics for surface albedo change based on the radiative forcing concept: a critical review
Ryan M. Bright and Marianne T. Lund
Atmos. Chem. Phys., 21, 9887–9907, https://doi.org/10.5194/acp-21-9887-2021,https://doi.org/10.5194/acp-21-9887-2021, 2021
Short summary
Effects of aerosol dynamics and gas–particle conversion on dry deposition of inorganic reactive nitrogen in a temperate forest
Genki Katata, Kazuhide Matsuda, Atsuyuki Sorimachi, Mizuo Kajino, and Kentaro Takagi
Atmos. Chem. Phys., 20, 4933–4949, https://doi.org/10.5194/acp-20-4933-2020,https://doi.org/10.5194/acp-20-4933-2020, 2020
Short summary

Cited articles

Albertson, J. and Parlange, M.: Natural integration of scalar fluxes from complex terrain, Adv. Water Res., 23, 239–252, 1999. a
Avissar, R. and Chen, F.: Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid-scale) fluxes for large scale atmospheric models, J. Atmos. Sci., 50, 3751–3774, 1993. a
Avissar, R. and Schmidt, T.: An Evaluation of the Scale at which Ground-Surface Heat Flux Patchiness Affects the Convective Boundary Layer Using Large-Eddy Simulations, J. Atmos. Sci., 55, 2666–2689, 1998. a
Banerjee, T., De Roo, F., and Mauder, M.: Explaining the convector effect in canopy turbulence by means of large-eddy simulation, Hydrol. Earth Syst. Sci., 21, 2987–3000, https://doi.org/10.5194/hess-21-2987-2017, 2017. a
Belcher, S., Harman, I., and Finnigan, J.: The Wind in the Willows: Flows in Forest Canopies in Complex Terrain, Annu. Rev. Fluid Mech., 44, 479–504, 2012. a
Download
Short summary
We investigate the mismatch between incoming energy and the turbulent flux of sensible heat at the Earth's surface and how surface heterogeneity affects this imbalance. To resolve the turbulent fluxes we employ large-eddy simulations. We study terrain with different heterogeneity lengths and quantify the contributions of advection by the mean flow and horizontal flux-divergence in the surface energy budget. We find that the latter contributions depend on the scale of the heterogeneity length.
Altmetrics
Final-revised paper
Preprint