Articles | Volume 18, issue 7
https://doi.org/10.5194/acp-18-5059-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-18-5059-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The influence of idealized surface heterogeneity on virtual turbulent flux measurements
Institute of Meteorology and Climate Research, Atmospheric
Environmental Research (IMK-IFU), Karlsruhe Institute of
Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen,
Germany
Matthias Mauder
Institute of Meteorology and Climate Research, Atmospheric
Environmental Research (IMK-IFU), Karlsruhe Institute of
Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen,
Germany
Institute of Geography and Geoecology (IfGG), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe,
Germany
Related authors
Matthias Mauder, Andreas Ibrom, Luise Wanner, Frederik De Roo, Peter Brugger, Ralf Kiese, and Kim Pilegaard
Atmos. Meas. Tech., 14, 7835–7850, https://doi.org/10.5194/amt-14-7835-2021, https://doi.org/10.5194/amt-14-7835-2021, 2021
Short summary
Short summary
Turbulent flux measurements suffer from a general systematic underestimation. One reason for this bias is non-local transport by large-scale circulations. A recently developed model for this additional transport of sensible and latent energy is evaluated for three different test sites. Different options on how to apply this correction are presented, and the results are evaluated against independent measurements.
Sadiq Huq, Frederik De Roo, Siegfried Raasch, and Matthias Mauder
Geosci. Model Dev., 12, 2523–2538, https://doi.org/10.5194/gmd-12-2523-2019, https://doi.org/10.5194/gmd-12-2523-2019, 2019
Short summary
Short summary
To study turbulence in heterogeneous terrain, high-resolution LES is desired. However, the desired resolution is often restricted by computational constraints. We present a two-way interactive vertical grid nesting technique that enables high-resolution LES of the surface layer. By employing a finer grid only close to the surface layer, the total computational memory requirement is reduced. We demonstrate the accuracy and performance of the method for a convective boundary layer simulation.
Tirtha Banerjee, Peter Brugger, Frederik De Roo, Konstantin Kröniger, Dan Yakir, Eyal Rotenberg, and Matthias Mauder
Atmos. Chem. Phys., 18, 10025–10038, https://doi.org/10.5194/acp-18-10025-2018, https://doi.org/10.5194/acp-18-10025-2018, 2018
Short summary
Short summary
We studied the nature of turbulent transport over a well-defined surface heterogeneity (approximate scale 7 km) comprising a shrubland and a forest in the Yatir semiarid area in Israel. Using eddy covariance and Doppler lidar measurements, we studied the variations in the turbulent kinetic energy budget and turbulent fluxes, focusing especially on transport terms. We also confirmed the role of large-scale secondary circulations that transport energy between the shrubland and the forest.
Tirtha Banerjee, Frederik De Roo, and Rodman Linn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-595, https://doi.org/10.5194/hess-2017-595, 2017
Revised manuscript not accepted
Short summary
Short summary
The conceptual model of turbulent flow through vegetation canopies is a phenomenological one that is developed from experimental observations. However, standard numerical simulations of canopy turbulence usually don't resolve the canopy as solid obstructions. We seek to reconcile such numerical simulations with the observations using large eddy simulations and information theory. We find out that the traditional drag based representation contains signatures of the phenomenological model.
Tirtha Banerjee, Frederik De Roo, and Matthias Mauder
Hydrol. Earth Syst. Sci., 21, 2987–3000, https://doi.org/10.5194/hess-21-2987-2017, https://doi.org/10.5194/hess-21-2987-2017, 2017
Short summary
Short summary
The canopy convector effect in the context of canopy turbulence was recently introduced by Rotenberg and Yakir (Science, 2010). However, there was a lack of understanding of this phenomenon as a generic feature of canopy turbulence, as we have demonstrated in this paper. Uncertainties of existing parameterizations of canopy aerodynamic resistance to heat transfer are discussed and possible remedies are suggested.
Johannes Speidel, Hannes Vogelmann, Andreas Behrendt, Diego Lange, Matthias Mauder, Jens Reichardt, and Kevin Wolz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-168, https://doi.org/10.5194/amt-2024-168, 2024
Preprint under review for AMT
Short summary
Short summary
Humidity transport from the Earth's surface into the atmosphere is relevant for many processes. However, knowledge on the actual distribution of humidity concentrations is sparse – mainly due to technological limitations. With the herein presented lidar, it is possible to measure humidity concentrations and their vertical fluxes up to altitudes of >3 km with high spatio-temporal resolution, opening new possibilities for detailed process understanding and, ultimately, better model representation.
Kevin Wolz, Christopher Holst, Frank Beyrich, Eileen Päschke, and Matthias Mauder
Geosci. Instrum. Method. Data Syst., 13, 205–223, https://doi.org/10.5194/gi-13-205-2024, https://doi.org/10.5194/gi-13-205-2024, 2024
Short summary
Short summary
We compared wind measurements using different lidar setups at various heights. The triple Doppler lidar, sonic anemometer, and two single Doppler lidars were tested. Overall, the lidar methods showed good agreement with the sonic anemometer. The triple Doppler lidar performed better than single Doppler lidars, especially at higher altitudes. We also developed a new filtering approach for virtual tower scanning strategies. Single Doppler lidars provide reliable wind data over flat terrain.
Changxing Lan, Matthias Mauder, Stavros Stagakis, Benjamin Loubet, Claudio D'Onofrio, Stefan Metzger, David Durden, and Pedro-Henrique Herig-Coimbra
Atmos. Meas. Tech., 17, 2649–2669, https://doi.org/10.5194/amt-17-2649-2024, https://doi.org/10.5194/amt-17-2649-2024, 2024
Short summary
Short summary
Using eddy-covariance systems deployed in three cities, we aimed to elucidate the sources of discrepancies in flux estimations from different software packages. One crucial finding is the impact of low-frequency spectral loss corrections on tall-tower flux estimations. Our findings emphasize the significance of a standardized measurement setup and consistent postprocessing configurations in minimizing the systematic flux uncertainty resulting from the usage of different software packages.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Sreenath Paleri, Luise Wanner, Matthias Sühring, Ankur Desai, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2023-1721, https://doi.org/10.5194/egusphere-2023-1721, 2023
Preprint archived
Short summary
Short summary
We present a description and evaluation of numerical simulations of field experiment days during the CHEESEHEAD19 field campaign, conducted over a heterogeneous forested domain in Northern Wisconsin, USA. Diurnal simulations, informed and constrained by field measurements for two days during the summer and autumn were performed. The model could simulate near surface time series and profiles of atmospheric state variables and fluxes that matched relatively well with observations.
Matthias Mauder, Andreas Ibrom, Luise Wanner, Frederik De Roo, Peter Brugger, Ralf Kiese, and Kim Pilegaard
Atmos. Meas. Tech., 14, 7835–7850, https://doi.org/10.5194/amt-14-7835-2021, https://doi.org/10.5194/amt-14-7835-2021, 2021
Short summary
Short summary
Turbulent flux measurements suffer from a general systematic underestimation. One reason for this bias is non-local transport by large-scale circulations. A recently developed model for this additional transport of sensible and latent energy is evaluated for three different test sites. Different options on how to apply this correction are presented, and the results are evaluated against independent measurements.
Stefan Metzger, David Durden, Sreenath Paleri, Matthias Sühring, Brian J. Butterworth, Christopher Florian, Matthias Mauder, David M. Plummer, Luise Wanner, Ke Xu, and Ankur R. Desai
Atmos. Meas. Tech., 14, 6929–6954, https://doi.org/10.5194/amt-14-6929-2021, https://doi.org/10.5194/amt-14-6929-2021, 2021
Short summary
Short summary
The key points are the following. (i) Integrative observing system design can multiply the information gain of surface–atmosphere field measurements. (ii) Catalyzing numerical simulations and first-principles machine learning open up observing system simulation experiments to novel applications. (iii) Use cases include natural climate solutions, emission inventory validation, urban air quality, and industry leak detection.
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021, https://doi.org/10.5194/gmd-14-1171-2021, 2021
Short summary
Short summary
An atmospheric chemistry model has been implemented in the microscale PALM model system 6.0. This article provides a detailed description of the model, its structure, input requirements, various features and limitations. Several pre-compiled ready-to-use chemical mechanisms are included in the chemistry model code; however, users can also easily implement other mechanisms. A case study is presented to demonstrate the application of the new chemistry model in the urban environment.
Benjamin Fersch, Alfonso Senatore, Bianca Adler, Joël Arnault, Matthias Mauder, Katrin Schneider, Ingo Völksch, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2457–2481, https://doi.org/10.5194/hess-24-2457-2020, https://doi.org/10.5194/hess-24-2457-2020, 2020
Björn Maronga, Sabine Banzhaf, Cornelia Burmeister, Thomas Esch, Renate Forkel, Dominik Fröhlich, Vladimir Fuka, Katrin Frieda Gehrke, Jan Geletič, Sebastian Giersch, Tobias Gronemeier, Günter Groß, Wieke Heldens, Antti Hellsten, Fabian Hoffmann, Atsushi Inagaki, Eckhard Kadasch, Farah Kanani-Sühring, Klaus Ketelsen, Basit Ali Khan, Christoph Knigge, Helge Knoop, Pavel Krč, Mona Kurppa, Halim Maamari, Andreas Matzarakis, Matthias Mauder, Matthias Pallasch, Dirk Pavlik, Jens Pfafferott, Jaroslav Resler, Sascha Rissmann, Emmanuele Russo, Mohamed Salim, Michael Schrempf, Johannes Schwenkel, Gunther Seckmeyer, Sebastian Schubert, Matthias Sühring, Robert von Tils, Lukas Vollmer, Simon Ward, Björn Witha, Hauke Wurps, Julian Zeidler, and Siegfried Raasch
Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, https://doi.org/10.5194/gmd-13-1335-2020, 2020
Short summary
Short summary
In this paper, we describe the PALM model system 6.0. PALM is a Fortran-based turbulence-resolving code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. During the last years, PALM has been significantly improved and now offers a variety of new components that are especially designed to simulate the urban atmosphere at building-resolving resolution.
Matthias Mauder, Michael Eggert, Christian Gutsmuths, Stefan Oertel, Paul Wilhelm, Ingo Voelksch, Luise Wanner, Jens Tambke, and Ivan Bogoev
Atmos. Meas. Tech., 13, 969–983, https://doi.org/10.5194/amt-13-969-2020, https://doi.org/10.5194/amt-13-969-2020, 2020
Short summary
Short summary
Sonic anemometers are prone to probe-induced flow distortion effects. Here, we present the results of an intercomparison experiment between a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar, which is inherently free of flow distortion. Our results show an agreement of the mean wind velocity measurements and the standard deviations of the vertical wind speed with comparabilities of 0.082 and 0.020 m s−1, respectively. Friction velocity is underestimated by the CSAT3B by 3 %.
Genki Katata, Rüdiger Grote, Matthias Mauder, Matthias J. Zeeman, and Masakazu Ota
Biogeosciences, 17, 1071–1085, https://doi.org/10.5194/bg-17-1071-2020, https://doi.org/10.5194/bg-17-1071-2020, 2020
Short summary
Short summary
In this paper, we demonstrate that high physiological activity levels during the extremely warm winter are allocated into the below-ground biomass and only to a minor extent used for additional plant growth during early spring. This process is so far largely unaccounted for in scenario analysis using global terrestrial biosphere models, and it may lead to carbon accumulation in the soil and/or carbon loss from the soil as a response to global warming.
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
Sadiq Huq, Frederik De Roo, Siegfried Raasch, and Matthias Mauder
Geosci. Model Dev., 12, 2523–2538, https://doi.org/10.5194/gmd-12-2523-2019, https://doi.org/10.5194/gmd-12-2523-2019, 2019
Short summary
Short summary
To study turbulence in heterogeneous terrain, high-resolution LES is desired. However, the desired resolution is often restricted by computational constraints. We present a two-way interactive vertical grid nesting technique that enables high-resolution LES of the surface layer. By employing a finer grid only close to the surface layer, the total computational memory requirement is reduced. We demonstrate the accuracy and performance of the method for a convective boundary layer simulation.
Anne Klosterhalfen, Alexander Graf, Nicolas Brüggemann, Clemens Drüe, Odilia Esser, María P. González-Dugo, Günther Heinemann, Cor M. J. Jacobs, Matthias Mauder, Arnold F. Moene, Patrizia Ney, Thomas Pütz, Corinna Rebmann, Mario Ramos Rodríguez, Todd M. Scanlon, Marius Schmidt, Rainer Steinbrecher, Christoph K. Thomas, Veronika Valler, Matthias J. Zeeman, and Harry Vereecken
Biogeosciences, 16, 1111–1132, https://doi.org/10.5194/bg-16-1111-2019, https://doi.org/10.5194/bg-16-1111-2019, 2019
Short summary
Short summary
To obtain magnitudes of flux components of H2O and CO2 (e.g., transpiration, soil respiration), we applied source partitioning approaches after Scanlon and Kustas (2010) and after Thomas et al. (2008) to high-frequency eddy covariance measurements of 12 study sites covering various ecosystems (croplands, grasslands, and forests) in different climatic regions. We analyzed the interrelations among turbulence, site characteristics, and the performance of both partitioning methods.
Tirtha Banerjee, Peter Brugger, Frederik De Roo, Konstantin Kröniger, Dan Yakir, Eyal Rotenberg, and Matthias Mauder
Atmos. Chem. Phys., 18, 10025–10038, https://doi.org/10.5194/acp-18-10025-2018, https://doi.org/10.5194/acp-18-10025-2018, 2018
Short summary
Short summary
We studied the nature of turbulent transport over a well-defined surface heterogeneity (approximate scale 7 km) comprising a shrubland and a forest in the Yatir semiarid area in Israel. Using eddy covariance and Doppler lidar measurements, we studied the variations in the turbulent kinetic energy budget and turbulent fluxes, focusing especially on transport terms. We also confirmed the role of large-scale secondary circulations that transport energy between the shrubland and the forest.
Matthias Mauder and Matthias J. Zeeman
Atmos. Meas. Tech., 11, 249–263, https://doi.org/10.5194/amt-11-249-2018, https://doi.org/10.5194/amt-11-249-2018, 2018
Tirtha Banerjee, Frederik De Roo, and Rodman Linn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-595, https://doi.org/10.5194/hess-2017-595, 2017
Revised manuscript not accepted
Short summary
Short summary
The conceptual model of turbulent flow through vegetation canopies is a phenomenological one that is developed from experimental observations. However, standard numerical simulations of canopy turbulence usually don't resolve the canopy as solid obstructions. We seek to reconcile such numerical simulations with the observations using large eddy simulations and information theory. We find out that the traditional drag based representation contains signatures of the phenomenological model.
Tirtha Banerjee, Frederik De Roo, and Matthias Mauder
Hydrol. Earth Syst. Sci., 21, 2987–3000, https://doi.org/10.5194/hess-21-2987-2017, https://doi.org/10.5194/hess-21-2987-2017, 2017
Short summary
Short summary
The canopy convector effect in the context of canopy turbulence was recently introduced by Rotenberg and Yakir (Science, 2010). However, there was a lack of understanding of this phenomenon as a generic feature of canopy turbulence, as we have demonstrated in this paper. Uncertainties of existing parameterizations of canopy aerodynamic resistance to heat transfer are discussed and possible remedies are suggested.
V. Maurer, N. Kalthoff, A. Wieser, M. Kohler, M. Mauder, and L. Gantner
Atmos. Chem. Phys., 16, 1377–1400, https://doi.org/10.5194/acp-16-1377-2016, https://doi.org/10.5194/acp-16-1377-2016, 2016
Short summary
Short summary
The measurement of turbulence in the lowest 1–2 km above the land surface is important for our understanding of boundary-layer processes. We compared turbulence profiles measured at three locations lying about 3 km apart and found that the deployment of the instruments in different crop fields has no direct influence on turbulence statistics on cloud-free days. Nevertheless, spatial differences as well as correlations were found, indicating the existence of organized structures of turbulence.
G. Fratini and M. Mauder
Atmos. Meas. Tech., 7, 2273–2281, https://doi.org/10.5194/amt-7-2273-2014, https://doi.org/10.5194/amt-7-2273-2014, 2014
S. Metzger, W. Junkermann, M. Mauder, K. Butterbach-Bahl, B. Trancón y Widemann, F. Neidl, K. Schäfer, S. Wieneke, X. H. Zheng, H. P. Schmid, and T. Foken
Biogeosciences, 10, 2193–2217, https://doi.org/10.5194/bg-10-2193-2013, https://doi.org/10.5194/bg-10-2193-2013, 2013
Related subject area
Subject: Biosphere Interactions | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Why do inverse models disagree? A case study with two European CO2 inversions
Net ecosystem exchange (NEE) estimates 2006–2019 over Europe from a pre-operational ensemble-inversion system
Interpreting machine learning prediction of fire emissions and comparison with FireMIP process-based models
Distinguishing the impacts of natural and anthropogenic aerosols on global gross primary productivity through diffuse fertilization effect
Was Australia a sink or source of CO2 in 2015? Data assimilation using OCO-2 satellite measurements
CO2-equivalence metrics for surface albedo change based on the radiative forcing concept: a critical review
Effects of aerosol dynamics and gas–particle conversion on dry deposition of inorganic reactive nitrogen in a temperate forest
Ozone–vegetation feedback through dry deposition and isoprene emissions in a global chemistry–carbon–climate model
Pathway dependence of ecosystem responses in China to 1.5 °C global warming
A model-based analysis of foliar NOx deposition
Quantifying the UK's carbon dioxide flux: an atmospheric inverse modelling approach using a regional measurement network
Prediction of photosynthesis in Scots pine ecosystems across Europe by a needle-level theory
Technical note: How are NH3 dry deposition estimates affected by combining the LOTOS-EUROS model with IASI-NH3 satellite observations?
Isoprene and monoterpene emissions in south-east Australia: comparison of a multi-layer canopy model with MEGAN and with atmospheric observations
Particulate matter air pollution may offset ozone damage to global crop production
Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone
Technical Note: Atmospheric CO2 inversions on the mesoscale using data-driven prior uncertainties: methodology and system evaluation
Atmospheric CO2 inversions on the mesoscale using data-driven prior uncertainties: quantification of the European terrestrial CO2 fluxes
Modeling the contributions of global air temperature, synoptic-scale phenomena and soil moisture to near-surface static energy variability using artificial neural networks
Future inhibition of ecosystem productivity by increasing wildfire pollution over boreal North America
Multi-model ensemble simulations of olive pollen distribution in Europe in 2014: current status and outlook
Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems
A wedge strategy for mitigation of urban warming in future climate scenarios
The boundary condition for vertical velocity and its interdependence with surface gas exchange
Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region
Greenhouse gas simulations with a coupled meteorological and transport model: the predictability of CO2
Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI
A study of the influence of forest gaps on fire–atmosphere interactions
Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate
Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past 3 decades
Granger causality from changes in level of atmospheric CO2 to global surface temperature and the El Niño–Southern Oscillation, and a candidate mechanism in global photosynthesis
MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe
Stably stratified canopy flow in complex terrain
Fire emission heights in the climate system – Part 1: Global plume height patterns simulated by ECHAM6-HAM2
Fire emission heights in the climate system – Part 2: Impact on transport, black carbon concentrations and radiation
Reliable, robust and realistic: the three R's of next-generation land-surface modelling
Biases in atmospheric CO2 estimates from correlated meteorology modeling errors
Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements
Greenhouse gas network design using backward Lagrangian particle dispersion modelling − Part 1: Methodology and Australian test case
Sensitivity analysis of an updated bidirectional air–surface exchange model for elemental mercury vapor
Nitrous oxide emissions 1999 to 2009 from a global atmospheric inversion
Quantifying the constraint of biospheric process parameters by CO2 concentration and flux measurement networks through a carbon cycle data assimilation system
Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model
Present and future nitrogen deposition to national parks in the United States: critical load exceedances
Global mapping of maximum emission heights and resulting vertical profiles of wildfire emissions
Scorched Earth: how will changes in the strength of the vegetation sink to ozone deposition affect human health and ecosystems?
The effect of climate and climate change on ammonia emissions in Europe
Observing the continental-scale carbon balance: assessment of sampling complementarity and redundancy in a terrestrial assimilation system by means of quantitative network design
CO2 flux estimation errors associated with moist atmospheric processes
DO3SE modelling of soil moisture to determine ozone flux to forest trees
Saqr Munassar, Guillaume Monteil, Marko Scholze, Ute Karstens, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, and Christoph Gerbig
Atmos. Chem. Phys., 23, 2813–2828, https://doi.org/10.5194/acp-23-2813-2023, https://doi.org/10.5194/acp-23-2813-2023, 2023
Short summary
Short summary
Using different transport models results in large errors in optimized fluxes in the atmospheric inversions. Boundary conditions and inversion system configurations lead to a smaller but non-negligible impact. The findings highlight the importance to validate transport models for further developments but also to properly account for such errors in inverse modelling. This will help narrow the convergence of gas estimates reported in the scientific literature from different inversion frameworks.
Saqr Munassar, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, Michał Gałkowski, Sophia Walther, and Christoph Gerbig
Atmos. Chem. Phys., 22, 7875–7892, https://doi.org/10.5194/acp-22-7875-2022, https://doi.org/10.5194/acp-22-7875-2022, 2022
Short summary
Short summary
The results obtained from ensembles of inversions over 13 years show the largest spread in the a posteriori fluxes over the station set ensemble. Using different prior fluxes in the inversions led to a smaller impact. Drought occurrences in 2018 and 2019 affected CO2 fluxes as seen in net ecosystem exchange estimates. Our study highlights the importance of expanding the atmospheric site network across Europe to better constrain CO2 fluxes in inverse modelling.
Sally S.-C. Wang, Yun Qian, L. Ruby Leung, and Yang Zhang
Atmos. Chem. Phys., 22, 3445–3468, https://doi.org/10.5194/acp-22-3445-2022, https://doi.org/10.5194/acp-22-3445-2022, 2022
Short summary
Short summary
This study develops an interpretable machine learning (ML) model predicting monthly PM2.5 fire emission over the contiguous US at 0.25° resolution and compares the prediction skills of the ML and process-based models. The comparison facilitates attributions of model biases and better understanding of the strengths and uncertainties in the two types of models at regional scales, for informing future model development and their applications in fire emission projection.
Hao Zhou, Xu Yue, Yadong Lei, Chenguang Tian, Jun Zhu, Yimian Ma, Yang Cao, Xixi Yin, and Zhiding Zhang
Atmos. Chem. Phys., 22, 693–709, https://doi.org/10.5194/acp-22-693-2022, https://doi.org/10.5194/acp-22-693-2022, 2022
Short summary
Short summary
Aerosols enhance plant photosynthesis by increasing diffuse radiation. In this study, we found that the aerosol impacts are quite different for varied species. Scattering aerosols such as sulfate and organic carbon promote photosynthesis while absorbing aerosols such as black carbon have negative impacts. Earth system models should consider the impacts of cloud and aerosol species on terrestrial ecosystems so as to better predict carbon cycles under different emission scenarios.
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys., 21, 17453–17494, https://doi.org/10.5194/acp-21-17453-2021, https://doi.org/10.5194/acp-21-17453-2021, 2021
Short summary
Short summary
Semi-arid ecosystems such as those in Australia are evolving and might play an essential role in the future of climate change. We use carbon dioxide concentrations derived from the OCO-2 satellite instrument and a regional transport model to understand if Australia was a carbon sink or source of CO2 in 2015. Our research's main findings suggest that Australia acted as a carbon sink of about −0.41 ± 0.08 petagrams of carbon in 2015, driven primarily by savanna and sparsely vegetated ecosystems.
Ryan M. Bright and Marianne T. Lund
Atmos. Chem. Phys., 21, 9887–9907, https://doi.org/10.5194/acp-21-9887-2021, https://doi.org/10.5194/acp-21-9887-2021, 2021
Short summary
Short summary
Humans affect the reflective properties (albedo) of Earth's surface and the amount of solar energy that it absorbs, in turn affecting climate. In recent years, a variety of climate metrics have been applied to characterize albedo perturbations in terms of their
CO2-equivalenteffects, despite the lack of scientific consensus surrounding the methods behind them. We review these metrics, evaluate their (de)merits, provide guidance for future application, and suggest avenues for future research.
Genki Katata, Kazuhide Matsuda, Atsuyuki Sorimachi, Mizuo Kajino, and Kentaro Takagi
Atmos. Chem. Phys., 20, 4933–4949, https://doi.org/10.5194/acp-20-4933-2020, https://doi.org/10.5194/acp-20-4933-2020, 2020
Short summary
Short summary
This work quantified the role of aerosol dynamics and gas–particle conversion processes in the dry deposition of inorganic reactive nitrogen using a new multilayer land surface model. It also revealed a potential impact of the above processes on improving the predictive accuracy of chemical transport models.
Cheng Gong, Yadong Lei, Yimian Ma, Xu Yue, and Hong Liao
Atmos. Chem. Phys., 20, 3841–3857, https://doi.org/10.5194/acp-20-3841-2020, https://doi.org/10.5194/acp-20-3841-2020, 2020
Short summary
Short summary
We evaluate ozone–vegetation feedback using a fully coupled chemistry–carbon–climate global model (ModelE2-YIBs). Ozone damage to photosynthesis, stomatal conductance, and isoprene emissions parameterized by different schemes and sensitivities is jointly considered. In general, surface ozone concentrations are increased due to ozone–vegetation interactions, especially over the regions with a high ambient ozone level such as the eastern US, eastern China, and western Europe.
Xu Yue, Hong Liao, Huijun Wang, Tianyi Zhang, Nadine Unger, Stephen Sitch, Zhaozhong Feng, and Jia Yang
Atmos. Chem. Phys., 20, 2353–2366, https://doi.org/10.5194/acp-20-2353-2020, https://doi.org/10.5194/acp-20-2353-2020, 2020
Short summary
Short summary
We explore ecosystem responses in China to 1.5 °C global warming under stabilized versus transient pathways. Remarkably, GPP shows 30 % higher enhancement in the stabilized than the transient pathway because of the lower ozone (smaller damages to photosynthesis) and fewer aerosols (higher light availability) in the former pathway. Our analyses suggest that an associated reduction of CO2 and pollution emissions brings more benefits to ecosystems in China via 1.5 °C global warming.
Erin R. Delaria and Ronald C. Cohen
Atmos. Chem. Phys., 20, 2123–2141, https://doi.org/10.5194/acp-20-2123-2020, https://doi.org/10.5194/acp-20-2123-2020, 2020
Short summary
Short summary
Uptake of nitrogen dioxide (NO2) through pores in the surfaces of leaves has been identified as a significant, but inadequately understood, loss process of atmospheric nitrogen oxides. We have constructed a simple model for examining the impact of NO2 foliar uptake on the atmospheric chemistry of nitrogen oxides. We show that an accurate representation in atmospheric models of the effects of weather and soil conditions on leaf NO2 uptake may be important for accurately predicting NO2 deposition.
Emily D. White, Matthew Rigby, Mark F. Lunt, T. Luke Smallman, Edward Comyn-Platt, Alistair J. Manning, Anita L. Ganesan, Simon O'Doherty, Ann R. Stavert, Kieran Stanley, Mathew Williams, Peter Levy, Michel Ramonet, Grant L. Forster, Andrew C. Manning, and Paul I. Palmer
Atmos. Chem. Phys., 19, 4345–4365, https://doi.org/10.5194/acp-19-4345-2019, https://doi.org/10.5194/acp-19-4345-2019, 2019
Short summary
Short summary
Understanding carbon dioxide (CO2) fluxes from the terrestrial biosphere on a national scale is important for evaluating land use strategies to mitigate climate change. We estimate emissions of CO2 from the UK biosphere using atmospheric data in a top-down approach. Our findings show that bottom-up estimates from models of biospheric fluxes overestimate the amount of CO2 uptake in summer. This suggests these models wrongly estimate or omit key processes, e.g. land disturbance due to harvest.
Pertti Hari, Steffen Noe, Sigrid Dengel, Jan Elbers, Bert Gielen, Veli-Matti Kerminen, Bart Kruijt, Liisa Kulmala, Anders Lindroth, Ivan Mammarella, Tuukka Petäjä, Guy Schurgers, Anni Vanhatalo, Markku Kulmala, and Jaana Bäck
Atmos. Chem. Phys., 18, 13321–13328, https://doi.org/10.5194/acp-18-13321-2018, https://doi.org/10.5194/acp-18-13321-2018, 2018
Short summary
Short summary
The development of eddy-covariance measurements of ecosystem CO2 fluxes began a new era in the field studies of photosynthesis. The interpretation of the very variable CO2 fluxes in evergreen forests has been problematic especially in seasonal transition times. We apply two theoretical needle-level equations and show they can predict photosynthetic CO2 flux between the atmosphere and Scots pine forests. This has strong implications for the interpretation of the global change and boreal forests.
Shelley C. van der Graaf, Enrico Dammers, Martijn Schaap, and Jan Willem Erisman
Atmos. Chem. Phys., 18, 13173–13196, https://doi.org/10.5194/acp-18-13173-2018, https://doi.org/10.5194/acp-18-13173-2018, 2018
Short summary
Short summary
A combination of NH3 satellite observations from IASI and the LOTOS-EUROS model is used to derive NH3 surface concentrations and dry deposition fluxes over Europe. The results were evaluated using surface measurements (EMEP, LML, MAN) and a sensitivity study. This is a first step in further integration of surface measurements, satellite observations and an atmospheric transport model to derive accurate NH3 surface concentrations and dry deposition fluxes on a large scale.
Kathryn M. Emmerson, Martin E. Cope, Ian E. Galbally, Sunhee Lee, and Peter F. Nelson
Atmos. Chem. Phys., 18, 7539–7556, https://doi.org/10.5194/acp-18-7539-2018, https://doi.org/10.5194/acp-18-7539-2018, 2018
Short summary
Short summary
We compare the CSIRO in-house biogenic emissions model (ABCGEM) with the Model of Emissions of Gases and Aerosols from Nature (MEGAN), for eucalypt-rich south-east Australia. Differences in emissions are not only due to the emission factors, but also how these emission factors are processed. ABCGEM assumes monoterpenes are not light dependent, whilst MEGAN does. Comparison with observations suggests that Australian monoterpenes may not be as light dependent as other vegetation globally.
Luke D. Schiferl and Colette L. Heald
Atmos. Chem. Phys., 18, 5953–5966, https://doi.org/10.5194/acp-18-5953-2018, https://doi.org/10.5194/acp-18-5953-2018, 2018
Short summary
Short summary
Global population growth and industrialization have contributed to poor air quality worldwide, and increasing population will put pressure on global food production. We therefore assess how air pollution may impact crop growth. Ozone has previously been shown to damage crops. We demonstrate that the impact of particles associated with enhanced light scattering promotes growth, offsetting much, if not all, ozone damage. This has implications for air quality management and global food security.
Alessandro Anav, Chiara Proietti, Laurent Menut, Stefano Carnicelli, Alessandra De Marco, and Elena Paoletti
Atmos. Chem. Phys., 18, 5747–5763, https://doi.org/10.5194/acp-18-5747-2018, https://doi.org/10.5194/acp-18-5747-2018, 2018
Short summary
Short summary
Soil moisture and water stress play a pivotal role in regulating stomatal behaviour of plants; however, the role of water availability is often neglected in atmospheric chemistry modelling studies.
We show how dry deposition significantly declines when soil moisture is used to regulate the stomatal opening, mainly in semi-arid environments. Despite the fact that dry deposition occurs from the top of canopy to ground level, it affects the concentration of gases remaining in the lower atmosphere.
Panagiotis Kountouris, Christoph Gerbig, Christian Rödenbeck, Ute Karstens, Thomas Frank Koch, and Martin Heimann
Atmos. Chem. Phys., 18, 3027–3045, https://doi.org/10.5194/acp-18-3027-2018, https://doi.org/10.5194/acp-18-3027-2018, 2018
Panagiotis Kountouris, Christoph Gerbig, Christian Rödenbeck, Ute Karstens, Thomas F. Koch, and Martin Heimann
Atmos. Chem. Phys., 18, 3047–3064, https://doi.org/10.5194/acp-18-3047-2018, https://doi.org/10.5194/acp-18-3047-2018, 2018
Sara C. Pryor, Ryan C. Sullivan, and Justin T. Schoof
Atmos. Chem. Phys., 17, 14457–14471, https://doi.org/10.5194/acp-17-14457-2017, https://doi.org/10.5194/acp-17-14457-2017, 2017
Short summary
Short summary
The air temperature and water vapor content are increasing globally due to the increased concentration of "heat-trapping" (greenhouse) gases. But not all regions are warming at the same rate. This analysis is designed to improve understanding of the causes of recent trends and year-to-year variability in summertime heat indices over the eastern US and to present a new model that can be used to make projections of future events that may cause loss of life and/or decreased human well-being.
Xu Yue, Susanna Strada, Nadine Unger, and Aihui Wang
Atmos. Chem. Phys., 17, 13699–13719, https://doi.org/10.5194/acp-17-13699-2017, https://doi.org/10.5194/acp-17-13699-2017, 2017
Short summary
Short summary
Climate change will significantly increase wildfire emissions in boreal North America by the midcentury, leading to increased surface ozone and atmospheric aerosols. These air pollutants can affect vegetation photosynthesis through stomatal uptake (for ozone) and radiative and climatic perturbations (for aerosols). Using a carbon–chemistry–climate model, we estimate trivial ozone vegetation damages but significant aerosol-induced reduction in ecosystem productivity by the 2050s.
Mikhail Sofiev, Olga Ritenberga, Roberto Albertini, Joaquim Arteta, Jordina Belmonte, Carmi Geller Bernstein, Maira Bonini, Sevcan Celenk, Athanasios Damialis, John Douros, Hendrik Elbern, Elmar Friese, Carmen Galan, Gilles Oliver, Ivana Hrga, Rostislav Kouznetsov, Kai Krajsek, Donat Magyar, Jonathan Parmentier, Matthieu Plu, Marje Prank, Lennart Robertson, Birthe Marie Steensen, Michel Thibaudon, Arjo Segers, Barbara Stepanovich, Alvaro M. Valdebenito, Julius Vira, and Despoina Vokou
Atmos. Chem. Phys., 17, 12341–12360, https://doi.org/10.5194/acp-17-12341-2017, https://doi.org/10.5194/acp-17-12341-2017, 2017
Short summary
Short summary
This work presents the features and evaluates the quality of the Copernicus Atmospheric Monitoring Service forecasts of olive pollen distribution in Europe. It is shown that the models can predict the main features of the observed pollen distribution but have more difficulties in capturing the season start and end, which appeared shifted by a few days. We also demonstrated that the combined use of model predictions with up-to-date measurements (data fusion) can strongly improve the results.
Guocheng Wang, Wen Zhang, Wenjuan Sun, Tingting Li, and Pengfei Han
Atmos. Chem. Phys., 17, 11849–11859, https://doi.org/10.5194/acp-17-11849-2017, https://doi.org/10.5194/acp-17-11849-2017, 2017
Short summary
Short summary
Cropland soil carbon sequestration contribute to not only climate change mitigation but also to sustainable agricultural production. This paper investigates soil carbon dynamics across the global main cereal cropping systems at a fine spatial resolution, using a modeling approach based on state-of-the-art databases of soil and climate. The key environmental controls on soil carbon changes were also identified.
Lei Zhao, Xuhui Lee, and Natalie M. Schultz
Atmos. Chem. Phys., 17, 9067–9080, https://doi.org/10.5194/acp-17-9067-2017, https://doi.org/10.5194/acp-17-9067-2017, 2017
Short summary
Short summary
Heat stress associated with climate change is one of most severe threats to human society. The problem is further compounded in urban areas by urban heat islands (UHIs). We use an urban climate model to evaluate the cooling benefits of active urban heat mitigation strategies both individually and collectively. We show that by forming UHI mitigation wedges, these strategies have the potential to significantly reduce the UHI effect plus warming induced by greenhouse gases.
Andrew S. Kowalski
Atmos. Chem. Phys., 17, 8177–8187, https://doi.org/10.5194/acp-17-8177-2017, https://doi.org/10.5194/acp-17-8177-2017, 2017
Short summary
Short summary
An analysis based on physical conservation law demonstrates that surface–atmosphere exchanges include a non-diffusive component. This implies the need to revise flux gradient relationships including eddy diffusivities in micrometeorology and stomatal conductances in plant physiology.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
Saroja M. Polavarapu, Michael Neish, Monique Tanguay, Claude Girard, Jean de Grandpré, Kirill Semeniuk, Sylvie Gravel, Shuzhan Ren, Sébastien Roche, Douglas Chan, and Kimberly Strong
Atmos. Chem. Phys., 16, 12005–12038, https://doi.org/10.5194/acp-16-12005-2016, https://doi.org/10.5194/acp-16-12005-2016, 2016
Short summary
Short summary
CO2 predictions are used to compute model–data mismatches when estimating surfaces fluxes using atmospheric observations together with an atmospheric transport model. By isolating the component of transport error which is due to uncertain meteorological analyses, it is demonstrated that CO2 can only be defined on large spatial scales. Thus, there is a spatial scale below which we cannot infer fluxes simply due to the fact that meteorological analyes are imperfect.
Lisa R. Welp, Prabir K. Patra, Christian Rödenbeck, Rama Nemani, Jian Bi, Stephen C. Piper, and Ralph F. Keeling
Atmos. Chem. Phys., 16, 9047–9066, https://doi.org/10.5194/acp-16-9047-2016, https://doi.org/10.5194/acp-16-9047-2016, 2016
Short summary
Short summary
Boreal and arctic ecosystems have been responding to elevated temperatures and atmospheric CO2 over the last decades. It is not clear if these ecosystems are sequestering more carbon or possibly becoming sources. This is an important feedback of the carbon cycle to global warming. We studied monthly biological land CO2 fluxes inferred from atmospheric CO2 concentrations using inverse models and found that net summer CO2 uptake increased, resulting in a small increase in annual CO2 uptake.
Michael T. Kiefer, Warren E. Heilman, Shiyuan Zhong, Joseph J. Charney, and Xindi Bian
Atmos. Chem. Phys., 16, 8499–8509, https://doi.org/10.5194/acp-16-8499-2016, https://doi.org/10.5194/acp-16-8499-2016, 2016
Short summary
Short summary
Studies of fire–atmosphere interactions in horizontally heterogeneous forests are limited in number. This study considers the sensitivity of fire-perturbed variables (e.g., vertical velocity, turbulent kinetic energy) to gaps in forest cover using ARPS-CANOPY, an atmospheric numerical model with a canopy sub-model. Results show that the atmosphere is most sensitive to the fire when the gap is centered on the fire and least sensitive when the gap is upstream of the fire.
L. Xia, A. Robock, S. Tilmes, and R. R. Neely III
Atmos. Chem. Phys., 16, 1479–1489, https://doi.org/10.5194/acp-16-1479-2016, https://doi.org/10.5194/acp-16-1479-2016, 2016
Short summary
Short summary
Climate model simulations show that stratospheric sulfate geoengineering could impact the terrestrial carbon cycle by enhancing the carbon sink. Enhanced downward diffuse radiation, combined with cooling, could stimulate plants to grow more and absorb more carbon dioxide. This beneficial impact of stratospheric sulfate geoengineering would need to be balanced by a large number of potential risks in any future decisions about implementation of geoengineering.
X. Yue, N. Unger, and Y. Zheng
Atmos. Chem. Phys., 15, 11931–11948, https://doi.org/10.5194/acp-15-11931-2015, https://doi.org/10.5194/acp-15-11931-2015, 2015
Short summary
Short summary
We estimate decadal trends in land carbon fluxes and emissions of biogenic volatile organic compounds (BVOCs) during 1982-2011, with a focus on the feedback from biosphere (such as tree growth and phenology). Increases of LAI at peak season accounts for ~25% of the trends in GPP and isoprene emissions at the northern lands. However, phenological change alone does not promote regional carbon uptake and BVOC emissions.
L. M. W. Leggett and D. A. Ball
Atmos. Chem. Phys., 15, 11571–11592, https://doi.org/10.5194/acp-15-11571-2015, https://doi.org/10.5194/acp-15-11571-2015, 2015
Short summary
Short summary
The previously expected linear relationship between atmospheric CO2 and climate variables including temperature is showing an increasing mismatch. This paper nonetheless provides fresh and possibly definitive support for a major relationship between CO2 and climate. Granger causality analysis provides evidence that change in level not level of CO2 primarily influences both global temperature and the El Niño–Southern Oscillation. The results may contribute to the prediction of future climate.
M. Sofiev, U. Berger, M. Prank, J. Vira, J. Arteta, J. Belmonte, K.-C. Bergmann, F. Chéroux, H. Elbern, E. Friese, C. Galan, R. Gehrig, D. Khvorostyanov, R. Kranenburg, U. Kumar, V. Marécal, F. Meleux, L. Menut, A.-M. Pessi, L. Robertson, O. Ritenberga, V. Rodinkova, A. Saarto, A. Segers, E. Severova, I. Sauliene, P. Siljamo, B. M. Steensen, E. Teinemaa, M. Thibaudon, and V.-H. Peuch
Atmos. Chem. Phys., 15, 8115–8130, https://doi.org/10.5194/acp-15-8115-2015, https://doi.org/10.5194/acp-15-8115-2015, 2015
Short summary
Short summary
The paper presents the first ensemble modelling experiment for forecasting the atmospheric dispersion of birch pollen in Europe. The study included 7 models of MACC-ENS tested over the season of 2010 and applied for 2013 in forecasting and reanalysis modes. The results were compared with observations in 11 countries, members of European Aeroallergen Network. The models successfully reproduced the timing of the unusually late season of 2013 but had more difficulties with absolute concentration.
X. Xu, C. Yi, and E. Kutter
Atmos. Chem. Phys., 15, 7457–7470, https://doi.org/10.5194/acp-15-7457-2015, https://doi.org/10.5194/acp-15-7457-2015, 2015
A. Veira, S. Kloster, S. Wilkenskjeld, and S. Remy
Atmos. Chem. Phys., 15, 7155–7171, https://doi.org/10.5194/acp-15-7155-2015, https://doi.org/10.5194/acp-15-7155-2015, 2015
Short summary
Short summary
We discuss the representation of wildfire emission heights in global climate models. Our implementation of a simple, semi-empirical plume height parametrization in the aerosol-climate model ECHAM6-HAM2 shows reasonable agreement with observations and with a more complex plume rise model. In contrast, prescribed emission heights, which do not consider the intensity of individual fires, fail to adequately simulate global plume height patterns. Diurnal and seasonal cycles are of minor importance.
A. Veira, S. Kloster, N. A. J. Schutgens, and J. W. Kaiser
Atmos. Chem. Phys., 15, 7173–7193, https://doi.org/10.5194/acp-15-7173-2015, https://doi.org/10.5194/acp-15-7173-2015, 2015
Short summary
Short summary
Global aerosol-climate models usually prescribe wildfire emission injections at fixed atmospheric levels. Here, we quantify the impact of prescribed and parametrized emission heights on aerosol long-range transport and radiation. For global emission height changes of 1.5-3.5km, we find a top-of-atmosphere radiative forcing of 0.05-0.1Wm-2. Replacing prescribed emission heights by a simple plume height parametrization only marginally improves the model performance in aerosol optical thickness.
I. C. Prentice, X. Liang, B. E. Medlyn, and Y.-P. Wang
Atmos. Chem. Phys., 15, 5987–6005, https://doi.org/10.5194/acp-15-5987-2015, https://doi.org/10.5194/acp-15-5987-2015, 2015
Short summary
Short summary
Land surface models (LSMs) describe how carbon and water fluxes react to environmental change. They are key component of climate models, yet they differ enormously. Many perform poorly, despite having many parameters. We outline a development strategy emphasizing robustness, reliability and realism, none of which is guaranteed by complexity alone. We propose multiple constraints, benchmarking and data assimilation, and representing unresolved processes stochastically, as tools in this endeavour.
S. M. Miller, M. N. Hayek, A. E. Andrews, I. Fung, and J. Liu
Atmos. Chem. Phys., 15, 2903–2914, https://doi.org/10.5194/acp-15-2903-2015, https://doi.org/10.5194/acp-15-2903-2015, 2015
F. Jiang, H. M. Wang, J. M. Chen, T. Machida, L. X. Zhou, W. M. Ju, H. Matsueda, and Y. Sawa
Atmos. Chem. Phys., 14, 10133–10144, https://doi.org/10.5194/acp-14-10133-2014, https://doi.org/10.5194/acp-14-10133-2014, 2014
T. Ziehn, A. Nickless, P. J. Rayner, R. M. Law, G. Roff, and P. Fraser
Atmos. Chem. Phys., 14, 9363–9378, https://doi.org/10.5194/acp-14-9363-2014, https://doi.org/10.5194/acp-14-9363-2014, 2014
X. Wang, C.-J. Lin, and X. Feng
Atmos. Chem. Phys., 14, 6273–6287, https://doi.org/10.5194/acp-14-6273-2014, https://doi.org/10.5194/acp-14-6273-2014, 2014
R. L. Thompson, F. Chevallier, A. M. Crotwell, G. Dutton, R. L. Langenfelds, R. G. Prinn, R. F. Weiss, Y. Tohjima, T. Nakazawa, P. B. Krummel, L. P. Steele, P. Fraser, S. O'Doherty, K. Ishijima, and S. Aoki
Atmos. Chem. Phys., 14, 1801–1817, https://doi.org/10.5194/acp-14-1801-2014, https://doi.org/10.5194/acp-14-1801-2014, 2014
E. N. Koffi, P. J. Rayner, M. Scholze, F. Chevallier, and T. Kaminski
Atmos. Chem. Phys., 13, 10555–10572, https://doi.org/10.5194/acp-13-10555-2013, https://doi.org/10.5194/acp-13-10555-2013, 2013
N. Unger, K. Harper, Y. Zheng, N. Y. Kiang, I. Aleinov, A. Arneth, G. Schurgers, C. Amelynck, A. Goldstein, A. Guenther, B. Heinesch, C. N. Hewitt, T. Karl, Q. Laffineur, B. Langford, K. A. McKinney, P. Misztal, M. Potosnak, J. Rinne, S. Pressley, N. Schoon, and D. Serça
Atmos. Chem. Phys., 13, 10243–10269, https://doi.org/10.5194/acp-13-10243-2013, https://doi.org/10.5194/acp-13-10243-2013, 2013
R. A. Ellis, D. J. Jacob, M. P. Sulprizio, L. Zhang, C. D. Holmes, B. A. Schichtel, T. Blett, E. Porter, L. H. Pardo, and J. A. Lynch
Atmos. Chem. Phys., 13, 9083–9095, https://doi.org/10.5194/acp-13-9083-2013, https://doi.org/10.5194/acp-13-9083-2013, 2013
M. Sofiev, R. Vankevich, T. Ermakova, and J. Hakkarainen
Atmos. Chem. Phys., 13, 7039–7052, https://doi.org/10.5194/acp-13-7039-2013, https://doi.org/10.5194/acp-13-7039-2013, 2013
L. D. Emberson, N. Kitwiroon, S. Beevers, P. Büker, and S. Cinderby
Atmos. Chem. Phys., 13, 6741–6755, https://doi.org/10.5194/acp-13-6741-2013, https://doi.org/10.5194/acp-13-6741-2013, 2013
C. A. Skjøth and C. Geels
Atmos. Chem. Phys., 13, 117–128, https://doi.org/10.5194/acp-13-117-2013, https://doi.org/10.5194/acp-13-117-2013, 2013
T. Kaminski, P. J. Rayner, M. Voßbeck, M. Scholze, and E. Koffi
Atmos. Chem. Phys., 12, 7867–7879, https://doi.org/10.5194/acp-12-7867-2012, https://doi.org/10.5194/acp-12-7867-2012, 2012
N. C. Parazoo, A. S. Denning, S. R. Kawa, S. Pawson, and R. Lokupitiya
Atmos. Chem. Phys., 12, 6405–6416, https://doi.org/10.5194/acp-12-6405-2012, https://doi.org/10.5194/acp-12-6405-2012, 2012
P. Büker, T. Morrissey, A. Briolat, R. Falk, D. Simpson, J.-P. Tuovinen, R. Alonso, S. Barth, M. Baumgarten, N. Grulke, P. E. Karlsson, J. King, F. Lagergren, R. Matyssek, A. Nunn, R. Ogaya, J. Peñuelas, L. Rhea, M. Schaub, J. Uddling, W. Werner, and L. D. Emberson
Atmos. Chem. Phys., 12, 5537–5562, https://doi.org/10.5194/acp-12-5537-2012, https://doi.org/10.5194/acp-12-5537-2012, 2012
Cited articles
Albertson, J. and Parlange, M.: Natural integration of scalar fluxes from
complex terrain, Adv. Water Res., 23, 239–252, 1999. a
Avissar, R. and Chen, F.: Development and analysis of prognostic equations
for
mesoscale kinetic energy and mesoscale (subgrid-scale) fluxes for large scale
atmospheric models, J. Atmos. Sci., 50, 3751–3774, 1993. a
Avissar, R. and Schmidt, T.: An Evaluation of the Scale at which
Ground-Surface
Heat Flux Patchiness Affects the Convective Boundary Layer Using Large-Eddy
Simulations, J. Atmos. Sci., 55, 2666–2689, 1998. a
Banerjee, T., De Roo, F., and Mauder, M.: Explaining the convector effect in canopy turbulence by means of large-eddy simulation, Hydrol. Earth Syst. Sci., 21, 2987–3000, https://doi.org/10.5194/hess-21-2987-2017, 2017. a
Belcher, S., Harman, I., and Finnigan, J.: The Wind in the Willows: Flows in
Forest Canopies in Complex Terrain, Annu. Rev. Fluid Mech., 44, 479–504,
2012. a
Brunsell, N. A., Mechem, D. B., and Anderson, M. C.: Surface heterogeneity
impacts on boundary layer dynamics via energy balance partitioning, Atmos.
Chem. Phys., 11, 3403–3416, https://doi.org/10.5194/acp-11-3403-2011, 2011. a, b, c
Bünzli, D. and Schmid, H.: The influence of surface texture on regionally
aggregated evaporation and energy partitioning, J. Atmos. Sci., 55, 961–972,
1998. a
Charuchittipan, D., Babel, W., Mauder, M., Leps, J., and Foken, T.: Extension
of the averaging time in eddy-covariance measurements and its effect on the
energy balance closure, Bound.-Lay. Meteorol., 152, 303–327, 2014. a
Eder, F., De Roo, F., Kohnert, K., Desjardins, R., Schmid, H., and Mauder,
M.:
Evaluation of Two Energy Balance Closure Parametrizations, Bound.-Lay.
Meteorol., 151, 195–219, 2014. a
Finnigan, J. J., Clement, R., Malhi, Y., Leuning, R., and Cleugh, H. A.: A
re-evaluation of long-term flux measurement techniques part 1: Averaging and
coordinate rotation, Bound.-Lay. Meteorol., 107, 1–48, 2003. a
Foken, T.: The energy balance closure problem: an overview, Ecol. Appl., 18,
1351–1367, 2008. a
Frank, J. M., Massman, W. J., and Ewers, B. E.: Underestimates of sensible
heat
flux due to vertical velocity measurement errors in non-orthogonal sonic
anemometers, Agr. Forest Meteorol., 171, 72–81, 2013. a
Friedrich, K., Mölders, N., and Tetzlaff, G.: On the influence of surface
heterogeneity on the Bowen-ratio: A theoretical case study, Theor. Appl.
Climatol., 65, 181–196, 2000. a
Hechtel, L., Moeng, C., and Stull, R.: The effects of nonhomogeneous surface
fluxes on the convective boundary layer: a case study using large-eddy
simulation, J. Atmos. Sci., 47, 1721–1741, 1990. a
Hendricks-Franssen, H., Stöckli, R., Lehner, I., Rotenberg, E., and
Seneviratne, S.: Energy balance closure of eddy-covariance data: a multisite
analysis for European FLUXNET stations, Agr. Forest Meteorol., 150,
1553–1567, 2010. a
Horst, T., Semmer, S., and MacLean, G.: Correction of a non-orthogonal and
three-component sonic anemometer for flow distortion by transducer shadowing,
Bound.-Lay. Meteorol., 155, 371–395, 2015. a
Huq, S., De Roo, F., Foken, T., and Mauder, M.: Evaluation of probe-induced
flow distortion of Campbell CSAT3 sonic anemometers by numerical simulation,
Bound.-Lay. Meteorol., 165, 9–28, https://doi.org/10.1007/s10546-017-0264-z,
2017. a
Kaimal, J. C. and Finnigan, J. J.: Atmospheric boundary-layer flows: their
structure and measurement, Oxford University Press, 1994. a
Kochendorfer, J., Meyers, T. P., Frank, J., Massman, W. J., and Heuer, M. W.:
How well can we measure the vertical wind speed? Implications for fluxes of
energy and mass, Bound.-Lay. Meteorol., 145, 383–398, 2012. a
Leuning, R., van Gorsel, E., Massman, W. J., and Isaac, P. R.: Reflections on
the surface energy imbalance problem, Agr. Forest Meteorol., 156, 65–74,
https://doi.org/10.1016/j.agrformet.2011.12.002,
2012. a
Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F.,
Keck, M., Ketelsen, K., Letzel, M. O., Sühring, M., and Raasch, S.: The
Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric
and oceanic flows: model formulation, recent developments, and future
perspectives, Geosci. Model Dev., 8, 2515–2551,
https://doi.org/10.5194/gmd-8-2515-2015, 2015. a
Mauder, M.: A Comment on “How well can we measure the vertical wind speed?
Implications for fluxes of energy and mass” by Kochendorfer et al,
Bound.-Lay. Meteorol., 147, 329–335, 2013. a
Mauder, M., Desjardins, R., and MacPherson, I.: Scale analysis of airborne
flux
measurements over heterogeneous terrain in a boreal ecosystem, J. Geophys.
Res., 112, D13112, https://doi.org/10.1029/2006JD008133, 2007. a, b
Orlanski, I.: A rational subdivision of scales for atmospheric processes, B.
Am. Meteorol. Soc., 56, 527–530, 1975. a
Patton, E., Sullivan, P., and Moeng, C.: The influence of idealized
heterogeneity on wet and dry planetary boundary layers coupled to the land
surface, J. Atmos. Sci., 62, 2078–2097, 2005. a
Raasch, S. and Harbusch, G.: An analysis of secondary circulations and their
effects caused by small-scale surface inhomogeneities using large-eddy
simulation, Bound.-Lay. Meteorol., 101, 31–59, 2001. a
Schmid, H., Cleugh, H., Grimmond, C., and Oke, T.: Spatial variability of
energy fluxes in suburban terrain, Bound.-Lay. Meteorol., 54, 249–276,
1990. a
Schmidt, H. and Schumann, U.: Coherent structure of the convective boundary
layer derived from large-eddy simulations, J. Fluid. Mech., 200, 511–562,
1989. a
Shen, S. and Leclerc, M.: How large must surface inhomogeneities be before
they
influence the convective boundary layer structure? A case study, Q. J. Roy.
Meteor. Soc., 121, 1209–1228, 1995. a
Stoy, P., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain,
M.,
Arneth, A., Aurela, M., Bernhofer, C., Cescatti, A., Dellwik, E., Duce, P.,
Gianelle, D., van Gorsel, E., Kiely, G., Knohl, A., Margolis, H., McCaughey,
J., Merbold, L., Montagnani, L., Papale, D., and Reichstein, M.: A
data-driven analysis of energy balance closure across FLUXNET research
sites: The role of landscape-scale heterogeneity, Agr. Forest Meteorol.,
171–172, 137–152, 2013. a, b, c, d, e, f
Suehring, M. and Raasch, S.: Heterogeneity-Induced Heat-Flux Patterns in the
Convective Boundary Layer: Can they be Detected from Observations and is
There a Blending Height? – A Large-Eddy Simulation Study for the LITFASS-2003
Experiment, Bound.-Lay. Meteorol., 148, 309–333, 2013. a
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements
for density effects due to heat and water vapour transfer, Q. J. Roy.
Meteor. Soc., 106, 85–100, 1980. a
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier,
R., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom,
A., Law, B. E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel,
W., Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at
FLUXNET sites, Agr. Forest Meteorol., 113, 223–243, 2002. a
Zacharias, S., Bogena, H., Samaniego, S., Mauder, M., Fuß, R., Pütz, T.,
Frenzel, M., Schwank, M., Baessler, C., Butterbach-Bahl, K., Bens, O., Borg,
E., Brauer, A., Dietrich, P., Hajnsek, I., Helle, G., Kiese, R., Kunstmann,
H., Klotz, S., Munch, J., Papen, H., Priesack, E., Schmid, H., Steinbrecher,
R., Rosenbaum, U., Teutsch, F., and Vereecken, H.: A Network of Terrestrial
Environmental Observatories in Germany, Vadose Zone J., 10, 955–973,
https://doi.org/10.2136/vzj2010.0139,
2011. a
Short summary
We investigate the mismatch between incoming energy and the turbulent flux of sensible heat at the Earth's surface and how surface heterogeneity affects this imbalance. To resolve the turbulent fluxes we employ large-eddy simulations. We study terrain with different heterogeneity lengths and quantify the contributions of advection by the mean flow and horizontal flux-divergence in the surface energy budget. We find that the latter contributions depend on the scale of the heterogeneity length.
We investigate the mismatch between incoming energy and the turbulent flux of sensible heat at...
Altmetrics
Final-revised paper
Preprint