Articles | Volume 18, issue 5
Atmos. Chem. Phys., 18, 3147–3171, 2018
https://doi.org/10.5194/acp-18-3147-2018
Atmos. Chem. Phys., 18, 3147–3171, 2018
https://doi.org/10.5194/acp-18-3147-2018
Research article
05 Mar 2018
Research article | 05 Mar 2018

Ozone impacts of gas–aerosol uptake in global chemistry transport models

Scarlet Stadtler et al.

Related authors

Global, high-resolution mapping of tropospheric ozone – explainable machine learning and impact of uncertainties
Clara Betancourt, Timo T. Stomberg, Ann-Kathrin Edrich, Ankit Patnala, Martin G. Schultz, Ribana Roscher, Julia Kowalski, and Scarlet Stadtler
Geosci. Model Dev., 15, 4331–4354, https://doi.org/10.5194/gmd-15-4331-2022,https://doi.org/10.5194/gmd-15-4331-2022, 2022
Short summary
Temperature forecasting by deep learning methods
Bing Gong, Michael Langguth, Yan Ji, Amirpasha Mozaffari, Scarlet Stadtler, Karim Mache, and Martin G. Schultz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-430,https://doi.org/10.5194/gmd-2021-430, 2022
Revised manuscript accepted for GMD
Short summary
AQ-Bench: a benchmark dataset for machine learning on global air quality metrics
Clara Betancourt, Timo Stomberg, Ribana Roscher, Martin G. Schultz, and Scarlet Stadtler
Earth Syst. Sci. Data, 13, 3013–3033, https://doi.org/10.5194/essd-13-3013-2021,https://doi.org/10.5194/essd-13-3013-2021, 2021
Short summary
SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0
Harri Kokkola, Thomas Kühn, Anton Laakso, Tommi Bergman, Kari E. J. Lehtinen, Tero Mielonen, Antti Arola, Scarlet Stadtler, Hannele Korhonen, Sylvaine Ferrachat, Ulrike Lohmann, David Neubauer, Ina Tegen, Colombe Siegenthaler-Le Drian, Martin G. Schultz, Isabelle Bey, Philip Stier, Nikos Daskalakis, Colette L. Heald, and Sami Romakkaniemi
Geosci. Model Dev., 11, 3833–3863, https://doi.org/10.5194/gmd-11-3833-2018,https://doi.org/10.5194/gmd-11-3833-2018, 2018
Short summary
Isoprene-derived secondary organic aerosol in the global aerosol–chemistry–climate model ECHAM6.3.0–HAM2.3–MOZ1.0
Scarlet Stadtler, Thomas Kühn, Sabine Schröder, Domenico Taraborrelli, Martin G. Schultz, and Harri Kokkola
Geosci. Model Dev., 11, 3235–3260, https://doi.org/10.5194/gmd-11-3235-2018,https://doi.org/10.5194/gmd-11-3235-2018, 2018
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Comparison of model and ground observations finds snowpack and blowing snow aerosols both contribute to Arctic tropospheric reactive bromine
William F. Swanson, Chris D. Holmes, William R. Simpson, Kaitlyn Confer, Louis Marelle, Jennie L. Thomas, Lyatt Jaeglé, Becky Alexander, Shuting Zhai, Qianjie Chen, Xuan Wang, and Tomás Sherwen
Atmos. Chem. Phys., 22, 14467–14488, https://doi.org/10.5194/acp-22-14467-2022,https://doi.org/10.5194/acp-22-14467-2022, 2022
Short summary
Assimilation of S5P/TROPOMI carbon monoxide data with the global CAMS near-real-time system
Antje Inness, Ilse Aben, Melanie Ades, Tobias Borsdorff, Johannes Flemming, Luke Jones, Jochen Landgraf, Bavo Langerock, Philippe Nedelec, Mark Parrington, and Roberto Ribas
Atmos. Chem. Phys., 22, 14355–14376, https://doi.org/10.5194/acp-22-14355-2022,https://doi.org/10.5194/acp-22-14355-2022, 2022
Short summary
COVID-19 lockdown emission reductions have the potential to explain over half of the coincident increase in global atmospheric methane
David S. Stevenson, Richard G. Derwent, Oliver Wild, and William J. Collins
Atmos. Chem. Phys., 22, 14243–14252, https://doi.org/10.5194/acp-22-14243-2022,https://doi.org/10.5194/acp-22-14243-2022, 2022
Short summary
Transport patterns of global aviation NOx and their short-term O3 radiative forcing – a machine learning approach
Jin Maruhashi, Volker Grewe, Christine Frömming, Patrick Jöckel, and Irene C. Dedoussi
Atmos. Chem. Phys., 22, 14253–14282, https://doi.org/10.5194/acp-22-14253-2022,https://doi.org/10.5194/acp-22-14253-2022, 2022
Short summary
Inverse modelling of Chinese NOx emissions using deep learning: integrating in situ observations with a satellite-based chemical reanalysis
Tai-Long He, Dylan B. A. Jones, Kazuyuki Miyazaki, Kevin W. Bowman, Zhe Jiang, Xiaokang Chen, Rui Li, Yuxiang Zhang, and Kunna Li
Atmos. Chem. Phys., 22, 14059–14074, https://doi.org/10.5194/acp-22-14059-2022,https://doi.org/10.5194/acp-22-14059-2022, 2022
Short summary

Cited articles

Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson, L. D.: The effects of tropospheric ozone on net primary productivity and implications for climate change, Annu. Rev. Plant Biol., 63, 637–661, https://doi.org/10.1146/annurev-arplant-042110-103829, 2012.
Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., and Kunasek, S. A.: Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate, Atmos. Chem. Phys., 9, 5043–5056, https://doi.org/10.5194/acp-9-5043-2009, 2009.
Ammann, M., Cox, R. A., Crowley, J. N., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI – heterogeneous reactions with liquid substrates, Atmos. Chem. Phys., 13, 8045–8228, https://doi.org/10.5194/acp-13-8045-2013, 2013.
Andersson-Sköld, Y. and Simpson, D.: Comparison of the chemical schemes of the EMEP MSC-W and the IVL photochemical trajectory models, Atmos. Environ., 33, 1111–1129, 1999.
Download
Altmetrics
Final-revised paper
Preprint