Articles | Volume 18, issue 4
https://doi.org/10.5194/acp-18-2653-2018
https://doi.org/10.5194/acp-18-2653-2018
Research article
 | 
23 Feb 2018
Research article |  | 23 Feb 2018

Size distribution and coating thickness of black carbon from the Canadian oil sands operations

Yuan Cheng, Shao-Meng Li, Mark Gordon, and Peter Liu

Related authors

Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024,https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Measurement report: Diurnal variations of brown carbon during two distinct seasons in a megacity in northeast China
Yuan Cheng, Xu-bing Cao, Jiu-meng Liu, Ying-jie Zhong, Qin-qin Yu, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 23, 6241–6253, https://doi.org/10.5194/acp-23-6241-2023,https://doi.org/10.5194/acp-23-6241-2023, 2023
Short summary
Comprehensive characterization of particulate intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from heavy-duty diesel vehicles using two-dimensional gas chromatography time-of-flight mass spectrometry
Xiao He, Xuan Zheng, Shaojun Zhang, Xuan Wang, Ting Chen, Xiao Zhang, Guanghan Huang, Yihuan Cao, Liqiang He, Xubing Cao, Yuan Cheng, Shuxiao Wang, and Ye Wu
Atmos. Chem. Phys., 22, 13935–13947, https://doi.org/10.5194/acp-22-13935-2022,https://doi.org/10.5194/acp-22-13935-2022, 2022
Short summary
Dramatic changes in Harbin aerosol during 2018–2020: the roles of open burning policy and secondary aerosol formation
Yuan Cheng, Qin-qin Yu, Jiu-meng Liu, Xu-bing Cao, Ying-jie Zhong, Zhen-yu Du, Lin-lin Liang, Guan-nan Geng, Wan-li Ma, Hong Qi, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 21, 15199–15211, https://doi.org/10.5194/acp-21-15199-2021,https://doi.org/10.5194/acp-21-15199-2021, 2021
Short summary
Quantifying variability, source, and transport of CO in the urban areas over the Himalayas and Tibetan Plateau
Youwen Sun, Hao Yin​​​​​​​, Yuan Cheng, Qianggong Zhang, Bo Zheng, Justus Notholt, Xiao Lu, Cheng Liu, Yuan Tian, and Jianguo Liu
Atmos. Chem. Phys., 21, 9201–9222, https://doi.org/10.5194/acp-21-9201-2021,https://doi.org/10.5194/acp-21-9201-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Quantifying the dust direct radiative effect in the southwestern United States: findings from multiyear measurements
Alexandra Kuwano, Amato T. Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys., 24, 9843–9868, https://doi.org/10.5194/acp-24-9843-2024,https://doi.org/10.5194/acp-24-9843-2024, 2024
Short summary
How horizontal transport and turbulent mixing impact aerosol particle and precursor concentrations at a background site in the UAE
Jutta Kesti, Ewan J. O'Connor, Anne Hirsikko, John Backman, Maria Filioglou, Anu-Maija Sundström, Juha Tonttila, Heikki Lihavainen, Hannele Korhonen, and Eija Asmi
Atmos. Chem. Phys., 24, 9369–9386, https://doi.org/10.5194/acp-24-9369-2024,https://doi.org/10.5194/acp-24-9369-2024, 2024
Short summary
Markedly different impacts of primary emissions and secondary aerosol formation on aerosol mixing states revealed by simultaneous measurements of CCNC, H(/V)TDMA, and SP2
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys., 24, 9131–9154, https://doi.org/10.5194/acp-24-9131-2024,https://doi.org/10.5194/acp-24-9131-2024, 2024
Short summary
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet-season conditions
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024,https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis
Kristina Pistone, Eric M. Wilcox, Paquita Zuidema, Marco Giordano, James Podolske, Samuel E. LeBlanc, Meloë Kacenelenbogen, Steven G. Howell, and Steffen Freitag
Atmos. Chem. Phys., 24, 7983–8005, https://doi.org/10.5194/acp-24-7983-2024,https://doi.org/10.5194/acp-24-7983-2024, 2024
Short summary

Cited articles

Alberta Energy: Oil Sands Production Profile: 2004–2014, available at: https://open.alberta.ca/dataset/cd892173-c37f-4c68-bf5d-f79ef7d49e72/resource/ebd6b451-dfda-4218-b855-1416d94306fd/download/InitiativeOSPP.pdf (last access: 15 February 2018), 2016. 
Alberta Energy: Oil Sands Facts and Statistics, available at: http://www.energy.alberta.ca/OS/AOS/Pages/FAS.aspx (last access: 15 February 2018), 2017. 
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006. 
Baumgardner, D., Kok, G., and Raga, G.: Warming of the Arctic lower stratosphere by light absorbing particles, Geophys. Res. Lett., 31, L06117, https://doi.org/10.1029/2003GL018883, 2004. 
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles: an investigative review, Aerosol Sci. Tech., 40, 27–67, 2006. 
Download
Short summary
An aircraft campaign was conducted over the Athabasca oil sands (OS) region to characterize refractory black carbon (rBC) particles as they were emitted from the sources and as they were transported downwind; rBC size distributions were consistent at different downwind distances from the source area whereas coating thicknesses on the rBC cores increased considerably as the OS plumes were transported downwind. These results provide insights into the evolution of BC aerosol in the real atmosphere.
Altmetrics
Final-revised paper
Preprint