Articles | Volume 18, issue 23
https://doi.org/10.5194/acp-18-16897-2018
https://doi.org/10.5194/acp-18-16897-2018
Research article
 | 
29 Nov 2018
Research article |  | 29 Nov 2018

Effects of brown coatings on the absorption enhancement of black carbon: a numerical investigation

Jie Luo, Yongming Zhang, Feng Wang, and Qixing Zhang

Related authors

Technical note: Numerical quantification of the mixing states of partially-coated black carbon based on the single-particle soot photometer: Implication for global radiative forcing
Jie Luo, Miao Hu, Jibing Qiu, Kaitao Li, Hao He, Yuping Sun, and Xiulin Geng
EGUsphere, https://doi.org/10.5194/egusphere-2024-1155,https://doi.org/10.5194/egusphere-2024-1155, 2024
Short summary
Quantifying the effects of the microphysical properties of black carbon on the determination of brown carbon using measurements at multiple wavelengths
Jie Luo, Dan Li, Yuanyuan Wang, Dandan Sun, Weizhen Hou, Jinghe Ren, Hailing Wu, Peng Zhou, and Jibing Qiu
Atmos. Chem. Phys., 24, 427–448, https://doi.org/10.5194/acp-24-427-2024,https://doi.org/10.5194/acp-24-427-2024, 2024
Short summary
Regional impacts of black carbon morphologies on shortwave aerosol–radiation interactions: a comparative study between the US and China
Jie Luo, Zhengqiang Li, Chenchong Zhang, Qixing Zhang, Yongming Zhang, Ying Zhang, Gabriele Curci, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 22, 7647–7666, https://doi.org/10.5194/acp-22-7647-2022,https://doi.org/10.5194/acp-22-7647-2022, 2022
Short summary
The polarimetric characteristics of dust with irregular shapes: evaluation of the spheroid model for single particles
Jie Luo, Zhengqiang Li, Cheng Fan, Hua Xu, Ying Zhang, Weizhen Hou, Lili Qie, Haoran Gu, Mengyao Zhu, Yinna Li, and Kaitao Li
Atmos. Meas. Tech., 15, 2767–2789, https://doi.org/10.5194/amt-15-2767-2022,https://doi.org/10.5194/amt-15-2767-2022, 2022
Short summary
Effects of black carbon morphology on brown carbon absorption estimation: from numerical aspects
Jie Luo, Yongming Zhang, and Qixing Zhang
Geosci. Model Dev., 14, 2113–2126, https://doi.org/10.5194/gmd-14-2113-2021,https://doi.org/10.5194/gmd-14-2113-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024,https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 6787–6807, https://doi.org/10.5194/acp-24-6787-2024,https://doi.org/10.5194/acp-24-6787-2024, 2024
Short summary
Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024,https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Long-term variability in black carbon emissions constrained by gap-filled absorption aerosol optical depth and associated premature mortality in China
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024,https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Intercomparison of aerosol optical depths from four reanalyses and their multi-reanalysis consensus
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024,https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary

Cited articles

Adachi, K. and Buseck, P. R.: Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City, Atmos. Chem. Phys., 8, 6469–6481, https://doi.org/10.5194/acp-8-6469-2008, 2008. a
Adachi, K., Chung, S. H., and Buseck, P. R.: Shapes of soot aerosol particles and implications for their effects on climate, J. Geophys. Res.-Atmos., 115, D15206, https://doi.org/10.1029/2009JD012868, 2010. a, b, c
Alexander, D. T. L., Crozier, P. A., and Anderson, J. R.: Brown carbon spheres in East Asian outflow and their optical properties, Science, 321, 833–836, 2008. a, b
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006. a
Bergstrom, R. W.: Predictions of the spectral absorption and extinction coefficients of an urban air pollution aerosol model, Atmos. Environ., 6, 247–258, https://doi.org/10.1016/0004-6981(72)90083-2, 1972. a
Download
Short summary
The absorption enhancement of black carbon with brown coatings is investigated. In addition, the ratio of the absorption of BC coated by brown carbon (BrC) to an external mixture of BrC and BC (Eabs_internal) is also investigated. The lensing effect and sunglasses effect are clearly defined. The applicability of the core–shell sphere model was investigated. The effects of the size distribution, fractal dimension, and wavelength dependency are also explored.
Altmetrics
Final-revised paper
Preprint