Articles | Volume 18, issue 18
https://doi.org/10.5194/acp-18-13601-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-18-13601-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of low-pressure systems on winter heavy air pollution in the northwest Sichuan Basin, China
Guicai Ning
The Gansu Key Laboratory of Arid Climate Change and Reducing Disaster,
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Institute of Environment, Energy and Sustainability, The Chinese
University of Hong Kong, Hong Kong, China
Shigong Wang
CORRESPONDING AUTHOR
Sichuan Key Laboratory for Plateau Atmosphere and Environment, School of Atmospheric Sciences,
Chengdu University of Information Technology, Chengdu 610225, China
The Gansu Key Laboratory of Arid Climate Change and Reducing Disaster,
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Steve Hung Lam Yim
Department of Geography and Resource Management, The Chinese
University of Hong Kong, Hong Kong, China
Institute of Environment, Energy and Sustainability, The Chinese
University of Hong Kong, Hong Kong, China
Stanley Ho Big Data Decision Analytics Research Centre, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong, China
Jixiang Li
The Gansu Key Laboratory of Arid Climate Change and Reducing Disaster,
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Yuling Hu
The Gansu Key Laboratory of Arid Climate Change and Reducing Disaster,
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Ziwei Shang
The Gansu Key Laboratory of Arid Climate Change and Reducing Disaster,
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Jinyan Wang
The Gansu Key Laboratory of Arid Climate Change and Reducing Disaster,
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Jiaxin Wang
Sichuan Key Laboratory for Plateau Atmosphere and Environment, School of Atmospheric Sciences,
Chengdu University of Information Technology, Chengdu 610225, China
Related authors
No articles found.
Xingyu Wang, Yuhong Lei, Baolong Shi, Zhiyi Wang, Xu Li, and Jinyan Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-609, https://doi.org/10.5194/egusphere-2024-609, 2024
Short summary
Short summary
This study, employing the WRF-CALMET model, investigates the impact of terrain near Zhongchuan Airport on low-level wind shear. CALMET demonstrates higher simulation accuracy than WRF. Terrain sensitivity experiments emphasize CALMET's responsiveness to terrain changes during high wind speed periods. The research validates CALMET's effectiveness in simulating low-altitude wind shear, highlighting its superior capability in capturing terrain influences and mitigating aviation safety concerns.
Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, and Steve Hung Lam Yim
Atmos. Chem. Phys., 24, 649–661, https://doi.org/10.5194/acp-24-649-2024, https://doi.org/10.5194/acp-24-649-2024, 2024
Short summary
Short summary
This study developed an integrated model framework for accurate multi-air-pollutant exposure assessments in high-density and high-rise cities. Following the proposed integrated model framework, we established multi-air-pollutant exposure models for four major PM10 chemical species as well as four criteria air pollutants with R2 values ranging from 0.73 to 0.93. The proposed framework serves as an important tool for combined exposure assessment in epidemiological studies.
Jiachen Zhu, Amos P. K. Tai, and Steve Hung Lam Yim
Atmos. Chem. Phys., 22, 765–782, https://doi.org/10.5194/acp-22-765-2022, https://doi.org/10.5194/acp-22-765-2022, 2022
Short summary
Short summary
This study assessed O3 damage to plant and the subsequent effects on meteorology and air quality in China, whereby O3, meteorology, and vegetation can co-evolve with each other. We provided comprehensive understanding about how O3–vegetation impacts adversely affect plant growth and crop production, and contribute to global warming and severe O3 air pollution in China. Our findings clearly pinpoint the need to consider the O3 damage effects in both air quality studies and climate change studies.
Qingqing He, Mengya Wang, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 18375–18391, https://doi.org/10.5194/acp-21-18375-2021, https://doi.org/10.5194/acp-21-18375-2021, 2021
Short summary
Short summary
We explore the spatiotemporal relationship between PM2.5 and AOD over China using a multi-scale analysis with MODIS MAIAC 1 km aerosol observations and ground measurements. The impact factors (vertical distribution, relative humidity and terrain) on the relationship are quantitatively studied. Our results provide significant information on PM2.5 and AOD, which is informative for mapping high-resolution PM2.5 and furthering the understanding of aerosol properties and the PM2.5 pollution status.
Jianping Guo, Jian Zhang, Kun Yang, Hong Liao, Shaodong Zhang, Kaiming Huang, Yanmin Lv, Jia Shao, Tao Yu, Bing Tong, Jian Li, Tianning Su, Steve H. L. Yim, Ad Stoffelen, Panmao Zhai, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021, https://doi.org/10.5194/acp-21-17079-2021, 2021
Short summary
Short summary
The planetary boundary layer (PBL) is the lowest part of the troposphere, and boundary layer height (BLH) is the depth of the PBL and is of critical importance to the dispersion of air pollution. The study presents the first near-global BLH climatology by using high-resolution (5-10 m) radiosonde measurements. The variations in BLH exhibit large spatial and temporal dependence, with a peak at 17:00 local solar time. The most promising reanalysis product is ERA-5 in terms of modeling BLH.
Debing Kong, Guicai Ning, Shigong Wang, Jing Cong, Ming Luo, Xiang Ni, and Mingguo Ma
Atmos. Chem. Phys., 21, 14493–14505, https://doi.org/10.5194/acp-21-14493-2021, https://doi.org/10.5194/acp-21-14493-2021, 2021
Short summary
Short summary
This study provides the first attempt to examine the diurnal cycles of day-to-day temperature change and reveals their impacts on air quality forecasting in mountain-basin areas. Three different diurnal cycles of the preceding day-to-day temperature change are identified and exhibit notably distinct effects on the air quality evolutions. The mechanisms of the identified diurnal cycles' effects on air quality are also revealed, which exhibit promising potential for air quality forecasting.
Zixia Liu, Martin Osborne, Karen Anderson, Jamie D. Shutler, Andy Wilson, Justin Langridge, Steve H. L. Yim, Hugh Coe, Suresh Babu, Sreedharan K. Satheesh, Paquita Zuidema, Tao Huang, Jack C. H. Cheng, and James Haywood
Atmos. Meas. Tech., 14, 6101–6118, https://doi.org/10.5194/amt-14-6101-2021, https://doi.org/10.5194/amt-14-6101-2021, 2021
Short summary
Short summary
This paper first validates the performance of an advanced aerosol observation instrument POPS against a reference instrument and examines any biases introduced by operating it on a quadcopter drone. The results show the POPS performs relatively well on the ground. The impact of the UAV rotors on the POPS is small at low wind speeds, but when operating under higher wind speeds, larger discrepancies occur. It appears that the POPS measures sub-micron aerosol particles more accurately on the UAV.
Ifeanyichukwu C. Nduka, Chi-Yung Tam, Jianping Guo, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 13443–13454, https://doi.org/10.5194/acp-21-13443-2021, https://doi.org/10.5194/acp-21-13443-2021, 2021
Short summary
Short summary
This study analyzed the nature, mechanisms and drivers for hot-and-polluted episodes (HPEs) in the Pearl River Delta, China. A total of eight HPEs were identified and can be grouped into three clusters of HPEs that were respectively driven (1) by weak subsidence and convection induced by approaching tropical cyclones, (2) by calm conditions with low wind speed in the lower atmosphere and (3) by the combination of both aforementioned conditions.
Zhiyuan Li, Kin-Fai Ho, Hsiao-Chi Chuang, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 5063–5078, https://doi.org/10.5194/acp-21-5063-2021, https://doi.org/10.5194/acp-21-5063-2021, 2021
Short summary
Short summary
This study established land-use regression (LUR) models using only routine air quality measurement data to support long-term health studies in an Asian metropolitan area. The established LUR models captured the spatial variability in exposure to air pollution with remarkable predictive accuracy. This is the first Asian study to evaluate intercity transferability of LUR models, and it highlights that there exist uncertainties when transferring LUR models between nearby cities.
Zhen Liu, Yi Ming, Chun Zhao, Ngar Cheung Lau, Jianping Guo, Massimo Bollasina, and Steve Hung Lam Yim
Atmos. Chem. Phys., 20, 223–241, https://doi.org/10.5194/acp-20-223-2020, https://doi.org/10.5194/acp-20-223-2020, 2020
Short summary
Short summary
OH and HO2 radicals are important trace constituents of the atmosphere that are closely coupled via several types of reaction. This paper describes a new laboratory method to simultaneously determine OH kinetics and HO2 yields from chemical processes. The instrument also provides some time resolution on HO2 detection allowing one to separate HO2 produced from the target reaction from HO2 arising from secondary chemistry. Examples of applications are presented.
Steve Hung Lam Yim, Yefu Gu, Matthew A. Shapiro, and Brent Stephens
Atmos. Chem. Phys., 19, 13309–13323, https://doi.org/10.5194/acp-19-13309-2019, https://doi.org/10.5194/acp-19-13309-2019, 2019
Short summary
Short summary
This study assessed and quantified the transboundary air pollution (TAP) impact in Japan and South Korea. We found that ~70 % of annual ambient PM2.5 in Japan and South Korea was contributed by other countries in the region, and wet deposition had a greater impact on mixed forests in Japan and savannas in South Korea. Given these significant impacts of TAP in the region, it is paramount that cross–national efforts be taken to mitigate air pollution problems across East Asia.
Hsiang-He Lee, Oussama Iraqui, Yefu Gu, Steve Hung-Lam Yim, Apisada Chulakadabba, Adam Yiu-Ming Tonks, Zhengyu Yang, and Chien Wang
Atmos. Chem. Phys., 18, 6141–6156, https://doi.org/10.5194/acp-18-6141-2018, https://doi.org/10.5194/acp-18-6141-2018, 2018
Short summary
Short summary
Our study shows that across ASEAN 50 cities, these model results reveal that 39 % of observed low-visibility days can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. The remaining 28 % of observed low-visibility days remains unexplained, likely due to emissions sources that have not been accounted for.
Jingyue Mo, Tao Huang, Xiaodong Zhang, Yuan Zhao, Xiao Liu, Jixiang Li, Hong Gao, and Jianmin Ma
Atmos. Chem. Phys., 17, 14239–14252, https://doi.org/10.5194/acp-17-14239-2017, https://doi.org/10.5194/acp-17-14239-2017, 2017
Short summary
Short summary
Wind power is known as one of the cleanest energies. However, wind farms can alter surface characters and meteorological conditions and can affect pollutant distribution around there. We reported an "edge effect" of air pollutants within and around a wind farm, higher concentrations of air pollutants in the adjacent upwind and border regions of a wind farm, and lower concentrations within and in the immediate downwind region. This will provide useful information for air quality forecasting.
Zaili Ling, Tao Huang, Yuan Zhao, Jixiang Li, Xiaodong Zhang, Jinxiang Wang, Lulu Lian, Xiaoxuan Mao, Hong Gao, and Jianmin Ma
Atmos. Chem. Phys., 17, 9115–9131, https://doi.org/10.5194/acp-17-9115-2017, https://doi.org/10.5194/acp-17-9115-2017, 2017
Short summary
Short summary
This paper assesses OMI-measured SO2 levels and emission burdens in northwestern China over the last decade. In contrast to widespread decline of SO2 in eastern and southern China, the OMI remote sensing data reveal increasing SO2 level and emissions in energy-abundant northwestern China under the national energy relocation strategy to this part of China, which are mostly from large-scale energy industry parks in northwestern China and pose a threat to the poor local ecological environment.
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis
Shipborne observations of black carbon aerosols in the western Arctic Ocean during summer and autumn 2016–2020: impact of boreal fires
Attribution of aerosol particle number size distributions to main sources using an 11-year urban dataset
Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals
Opinion: New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science
Measurement report: A comparison of ground-level ice-nucleating-particle abundance and aerosol properties during autumn at contrasting marine and terrestrial locations
Efficient droplet activation of ambient black carbon particles in a suburban environment
Tropospheric sulfate from Cumbre Vieja (La Palma) observed over Cabo Verde contrasted with background conditions: a lidar case study of aerosol extinction, backscatter, depolarization and lidar ratio profiles at 355, 532 and 1064 nm
The radiative impact of biomass burning aerosols on dust emissions over Namibia and the long-range transport of smoke observed during the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) campaign
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Amazonian aerosol size distributions in a lognormal phase space: characteristics and trajectories
Measurement report: Hygroscopicity of size-selected aerosol particles in the heavily polluted urban atmosphere of Delhi: impacts of chloride aerosol
An observation-constrained estimation of brown carbon aerosol direct radiative effects
The Puy de Dôme ICe Nucleation Intercomparison Campaign (PICNIC): comparison between online and offline methods in ambient air
Optical properties and simple forcing efficiency of the organic aerosols and black carbon emitted by residential wood burning in rural central Europe
Biological and dust aerosol as sources of ice nucleating particles in the Eastern Mediterranean: source apportionment, atmospheric processing and parameterization
Particle phase state and aerosol liquid water greatly impact secondary aerosol formation: insights into phase transition and its role in haze events
Measurement report: Nocturnal subsidence behind the cold front enhances surface particulate matter in plains regions: observations from the mobile multi-lidar system
Increase in precipitation scavenging contributes to long-term reductions of light-absorbing aerosol in the Arctic
Sea spray emissions from the Baltic Sea: comparison of aerosol eddy covariance fluxes and chamber-simulated sea spray emissions
Higher absorption enhancement of black carbon in summer shown by 2-year measurements at the high-altitude mountain site of Pic du Midi Observatory in the French Pyrenees
Quantifying the dust direct radiative effect in the Southwestern United States: findings from multiyear measurements
Variations of the atmospheric polycyclic aromatic hydrocarbon concentrations, sources, and health risk and the direct medical costs of lung cancer around the Bohai Sea against a background of pollution prevention and control in China
Contrail processed aviation soot aerosol are poor ice nucleating particles at cirrus temperatures
Measurement report: Contribution of atmospheric new particle formation to ultrafine particle concentration, cloud condensation nuclei and radiative forcing: Results from five-year observations in Central Europe
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet season conditions
Introducing the novel concept of cumulative concentration roses for studying the transport of ultrafine particles from an airport to adjacent residential areas
Significant spatial gradients in new particle formation frequency in Greece during summer
Impact of desert dust on new particle formation events and the cloud condensation nuclei budget in dust-influenced areas
Active thermokarst regions contain rich sources of ice-nucleating particles
Examining the vertical heterogeneity of aerosols over the Southern Great Plains
Drivers controlling black carbon temporal variability in the lower troposphere of the European Arctic
Opinion: The strength of long-term comprehensive observations to meet multiple grand challenges in different environments and in the atmosphere
Measurement report: Size-resolved mass concentration of equivalent black carbon-containing particles larger than 700 nm and their role in radiation
Aerosol absorption using in situ filter-based photometers and ground-based sun photometry in the Po Valley urban atmosphere
Aerosol and dynamical contributions to cloud droplet formation in Arctic low-level clouds
Aircraft ice-nucleating particle and aerosol composition measurements in the western North American Arctic
Mechanisms controlling giant sea salt aerosol size distributions along a tropical orographic coastline
New particle formation leads to enhanced cloud condensation nuclei concentrations on the Antarctic Peninsula
Mixing state and effective density of aerosol particles during the Beijing 2022 Olympic Winter Games
Quantified effect of seawater biogeochemistry on the temperature dependence of sea spray aerosol fluxes
Annual cycle of aerosol properties over the central Arctic during MOSAiC 2019–2020 – light-extinction, CCN, and INP levels from the boundary layer to the tropopause
3D assimilation and radiative impact assessment of aerosol black carbon over the Indian region using aircraft, balloon, ground-based, and multi-satellite observations
Evaluation of aerosol- and gas-phase tracers for identification of transported biomass burning emissions in an industrially influenced location in Texas, USA
Physicochemical characterization and source apportionment of Arctic ice-nucleating particles observed in Ny-Ålesund in autumn 2019
Cyclones enhance the transport of sea spray aerosols to the high atmosphere in the Southern Ocean
Impact of 2020 COVID-19 lockdowns on particulate air pollution across Europe
New particle formation in the tropical free troposphere during CAMP2Ex: statistics and impact of emission sources, convective activity, and synoptic conditions
Explaining apparent particle shrinkage related to new particle formation events in western Saudi Arabia does not require evaporation
Investigation of the effects of the Greek extreme wildfires of August 2021 on air quality and spectral solar irradiance
Kristina Pistone, Eric M. Wilcox, Paquita Zuidema, Marco Giordano, James Podolske, Samuel E. LeBlanc, Meloë Kacenelenbogen, Steven G. Howell, and Steffen Freitag
Atmos. Chem. Phys., 24, 7983–8005, https://doi.org/10.5194/acp-24-7983-2024, https://doi.org/10.5194/acp-24-7983-2024, 2024
Short summary
Short summary
The springtime southeast Atlantic atmosphere contains lots of smoke from continental fires. This smoke travels with water vapor; more smoke means more humidity. We use aircraft observations and models to describe how the values change through the season and over the region. We sort the atmosphere into different types by vertical structure and amount of smoke and humidity. Since our work shows how frequently these components coincide, it helps to better quantify heating effects over this region.
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024, https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Short summary
Black carbon (BC) aerosols play important roles in Arctic climate change, yet they are not well understood because of limited observational data. We observed BC mass concentrations (mBC) in the western Arctic Ocean during summer and early autumn 2016–2020. The mean mBC in 2019 was much higher than in other years. Biomass burning was likely the dominant BC source. Boreal fire BC transport occurring near the surface and/or in the mid-troposphere contributed to high-BC events in the Arctic Ocean.
Máté Vörösmarty, Philip K. Hopke, and Imre Salma
Atmos. Chem. Phys., 24, 5695–5712, https://doi.org/10.5194/acp-24-5695-2024, https://doi.org/10.5194/acp-24-5695-2024, 2024
Short summary
Short summary
The World Health Organization identified ultrafine particles, which make up most of the particle number concentrations, as a potential risk factor for humans. The sources of particle numbers are very different from those of the particulate matter mass. We performed source apportionment of size-segregated particle number concentrations over the diameter range of 6–1000 nm in Budapest for 11 full years. Six source types were identified, characterized and quantified.
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024, https://doi.org/10.5194/acp-24-5479-2024, 2024
Short summary
Short summary
Bioaerosols can participate in ice formation within clouds. In the Arctic, where global warming manifests most, they may become more important as their sources prevail for longer periods of the year. We have directly measured bioaerosols within clouds for a full year at an Arctic mountain site using a novel combination of cloud particle sampling and single-particle techniques. We show that bioaerosols act as cloud seeds and may influence the presence of ice within clouds.
Andreas Petzold, Ulrich Bundke, Anca Hienola, Paolo Laj, Cathrine Lund Myhre, Alex Vermeulen, Angeliki Adamaki, Werner Kutsch, Valerie Thouret, Damien Boulanger, Markus Fiebig, Markus Stocker, Zhiming Zhao, and Ari Asmi
Atmos. Chem. Phys., 24, 5369–5388, https://doi.org/10.5194/acp-24-5369-2024, https://doi.org/10.5194/acp-24-5369-2024, 2024
Short summary
Short summary
Easy and fast access to long-term and high-quality observational data is recognised as fundamental to environmental research and the development of climate forecasting and assessment services. We discuss the potential new directions in atmospheric sciences offered by the atmosphere-centric European research infrastructures ACTRIS, IAGOS, and ICOS, building on their capabilities for standardised provision of data through open access combined with tools and methods of data-intensive science.
Elise K. Wilbourn, Larissa Lacher, Carlos Guerrero, Hemanth S. K. Vepuri, Kristina Höhler, Jens Nadolny, Aidan D. Pantoya, Ottmar Möhler, and Naruki Hiranuma
Atmos. Chem. Phys., 24, 5433–5456, https://doi.org/10.5194/acp-24-5433-2024, https://doi.org/10.5194/acp-24-5433-2024, 2024
Short summary
Short summary
Ambient ice particles were measured at terrestrial and temperate marine sites. Ice particles were more abundant in the former site, while the fraction of ice particles relative to total ambient particles, representing atmospheric ice nucleation efficiency, was higher in the latter site. Ice nucleation parameterizations were developed as a function of examined freezing temperatures from two sites for our study periods (autumn).
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
Henriette Gebauer, Athena Augusta Floutsi, Moritz Haarig, Martin Radenz, Ronny Engelmann, Dietrich Althausen, Annett Skupin, Albert Ansmann, Cordula Zenk, and Holger Baars
Atmos. Chem. Phys., 24, 5047–5067, https://doi.org/10.5194/acp-24-5047-2024, https://doi.org/10.5194/acp-24-5047-2024, 2024
Short summary
Short summary
Sulfate aerosol from the volcanic eruption at La Palma in 2021 was observed over Cabo Verde. We characterized the aerosol burden based on a case study of lidar and sun photometer observations. We compared the volcanic case to the typical background conditions (reference case) to quantify the volcanic pollution. We show the first ever measurements of the extinction coefficient, lidar ratio and depolarization ratio at 1064 nm for volcanic sulfate.
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024, https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Short summary
In the austral dry season, the atmospheric composition over southern Africa is dominated by biomass burning aerosols and terrigenous aerosols (so-called mineral dust). This study suggests that the radiative effect of biomass burning aerosols needs to be taken into account to properly forecast dust emissions in Namibia.
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024, https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
Short summary
The current study explores the temporal variation of size-selected particle hygroscopicity in Delhi for the first time. Here, we report that the high volume fraction contribution of ammonium chloride to aerosol governs the high aerosol hygroscopicity and associated liquid water content based on the experimental data. The episodically high ammonium chloride present in Delhi's atmosphere could lead to haze and fog formation under high relative humidity in the region.
Yueyue Cheng, Chao Liu, Jiandong Wang, Jiaping Wang, Zhouyang Zhang, Li Chen, Dafeng Ge, Caijun Zhu, Jinbo Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 3065–3078, https://doi.org/10.5194/acp-24-3065-2024, https://doi.org/10.5194/acp-24-3065-2024, 2024
Short summary
Short summary
Brown carbon (BrC), a light-absorbing aerosol, plays a pivotal role in influencing global climate. However, assessing BrC radiative effects remains challenging because the required observational data are hardly accessible. Here we develop a new BrC radiative effect estimation method combining conventional observations and numerical models. Our findings reveal that BrC absorbs up to a third of the sunlight at 370 nm that black carbon does, highlighting its importance in aerosol radiative effects.
Larissa Lacher, Michael P. Adams, Kevin Barry, Barbara Bertozzi, Heinz Bingemer, Cristian Boffo, Yannick Bras, Nicole Büttner, Dimitri Castarede, Daniel J. Cziczo, Paul J. DeMott, Romy Fösig, Megan Goodell, Kristina Höhler, Thomas C. J. Hill, Conrad Jentzsch, Luis A. Ladino, Ezra J. T. Levin, Stephan Mertes, Ottmar Möhler, Kathryn A. Moore, Benjamin J. Murray, Jens Nadolny, Tatjana Pfeuffer, David Picard, Carolina Ramírez-Romero, Mickael Ribeiro, Sarah Richter, Jann Schrod, Karine Sellegri, Frank Stratmann, Benjamin E. Swanson, Erik S. Thomson, Heike Wex, Martin J. Wolf, and Evelyn Freney
Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024, https://doi.org/10.5194/acp-24-2651-2024, 2024
Short summary
Short summary
Aerosol particles that trigger ice formation in clouds are important for the climate system but are very rare in the atmosphere, challenging measurement techniques. Here we compare three cloud chambers and seven methods for collecting aerosol particles on filters for offline analysis at a mountaintop station. A general good agreement of the methods was found when sampling aerosol particles behind a whole air inlet, supporting their use for obtaining data that can be implemented in models.
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, Dominik van Pinxteren, Hartmut Herrmann, Alfred Wiedensohler, Mira Pöhlker, and Thomas Müller
Atmos. Chem. Phys., 24, 2583–2605, https://doi.org/10.5194/acp-24-2583-2024, https://doi.org/10.5194/acp-24-2583-2024, 2024
Short summary
Short summary
This study evaluated the air pollution and climate impacts of residential-wood-burning particle emissions from a rural European site. The authors investigate the optical and physical properties that connect the aerosol emissions with climate by evaluating atmospheric radiative impacts via simple-forcing calculations. The study contributes to reducing the lack of information on the understanding of the optical properties of air pollution from anthropogenic sources.
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papagiannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
EGUsphere, https://doi.org/10.5194/egusphere-2024-511, https://doi.org/10.5194/egusphere-2024-511, 2024
Short summary
Short summary
Ice nucleating particle concentrations (INPs) are required for correct predictions of clouds & precipitation in a changing climate and is poorly constrained in climate models. We unravel airmass & source contributions to INPs in the E.Mediterranean & find that biological particles are important regardless of origin (continental/marine – even during Saharan dust events). The parameterizations developed exhibit superior performance & enable models to consider biological particle effects on INPs.
Xiangxinyue Meng, Zhijun Wu, Jingchuan Chen, Yanting Qiu, Taomou Zong, Mijung Song, Jiyi Lee, and Min Hu
Atmos. Chem. Phys., 24, 2399–2414, https://doi.org/10.5194/acp-24-2399-2024, https://doi.org/10.5194/acp-24-2399-2024, 2024
Short summary
Short summary
Our study revealed that particles predominantly exist in a semi-solid or solid state during clean winter days with RH below 30 %. However, a non-liquid to a liquid phase transition occurred when the aerosol liquid water (ALW) mass fraction surpassed 15 % (dry mass) at transition RH thresholds ranging from 40 % to 60 %. We also provide insights into the increasingly important roles of particle phase state variation and ALW in secondary particulate growth during haze formation in Beijing, China.
Yiming Wang, Haolin Wang, Yujie Qin, Xinqi Xu, Guowen He, Nanxi Liu, Shengjie Miao, Xiao Lu, Haichao Wang, and Shaojia Fan
Atmos. Chem. Phys., 24, 2267–2285, https://doi.org/10.5194/acp-24-2267-2024, https://doi.org/10.5194/acp-24-2267-2024, 2024
Short summary
Short summary
We conducted a vertical measurement of winter PM2.5 using a mobile multi-lidar system in four cities. Combined with the surface PM2.5 data, the ERA5 reanalysis data, and GEOS-Chem simulations during Dec 2018–Feb 2019, we found that transport nocturnal PM2.5 enhancement by subsidence (T-NPES) events widely occurred with high frequencies in plains regions in eastern China but happened less often in basin regions like Xi’an and Chengdu. We propose a conceptual model of the T-NPES events.
Dominic Heslin-Rees, Peter Tunved, Johan Ström, Roxana Cremer, Paul Zieger, Ilona Riipinen, Annica M. L. Ekman, Konstantinos Eleftheriadis, and Radovan Krejci
Atmos. Chem. Phys., 24, 2059–2075, https://doi.org/10.5194/acp-24-2059-2024, https://doi.org/10.5194/acp-24-2059-2024, 2024
Short summary
Short summary
Light-absorbing atmospheric particles (e.g. black carbon – BC) exert a warming effect on the Arctic climate. We show that the amount of particle light absorption decreased from 2002 to 2023. We conclude that in addition to reductions in emissions of BC, wet removal plays a role in the long-term reduction of BC in the Arctic, given the increase in surface precipitation experienced by air masses arriving at the site. The potential impact of biomass burning events is shown to have increased.
Julika Zinke, Ernst Douglas Nilsson, Piotr Markuszewski, Paul Zieger, Eva Monica Mårtensson, Anna Rutgersson, Erik Nilsson, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 1895–1918, https://doi.org/10.5194/acp-24-1895-2024, https://doi.org/10.5194/acp-24-1895-2024, 2024
Short summary
Short summary
We conducted two research campaigns in the Baltic Sea, during which we combined laboratory sea spray simulation experiments with flux measurements on a nearby island. To combine these two methods, we scaled the laboratory measurements to the flux measurements using three different approaches. As a result, we derived a parameterization that is dependent on wind speed and wave state for particles with diameters 0.015–10 μm. This parameterization is applicable to low-salinity waters.
Sarah Tinorua, Cyrielle Denjean, Pierre Nabat, Thierry Bourrianne, Véronique Pont, François Gheusi, and Emmanuel Leclerc
Atmos. Chem. Phys., 24, 1801–1824, https://doi.org/10.5194/acp-24-1801-2024, https://doi.org/10.5194/acp-24-1801-2024, 2024
Short summary
Short summary
At a French high-altitude site, where many complex interactions between black carbon (BC), radiation, clouds and snow impact climate, 2 years of refractive BC (rBC) and aerosol optical and microphysical measurements have been made. We observed strong seasonal rBC properties variations, with an enhanced absorption in summer compared to winter. The combination of rBC emission sources, transport pathways, atmospheric dynamics and chemical processes explains the rBC light absorption seasonality.
Alexandra Meiko Kuwano, Amato Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2024-1, https://doi.org/10.5194/acp-2024-1, 2024
Revised manuscript accepted for ACP
Short summary
Short summary
The dust direct radiative effect is highly uncertain. Here we used new measurements collected over three years and during dust storms at a field site in a desert region in southwestern United States to estimate the regional dust direct radiative effect. We also used novel soil mineralogy retrieved from an airborne spectrometer to estimate this parameter with model output. We find that, in this region, dust has a minimal net cooling effect on this region's climate.
Wenwen Ma, Rong Sun, Xiaoping Wang, Zheng Zong, Shizhen Zhao, Zeyu Sun, Chongguo Tian, Jianhui Tang, Song Cui, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 24, 1509–1523, https://doi.org/10.5194/acp-24-1509-2024, https://doi.org/10.5194/acp-24-1509-2024, 2024
Short summary
Short summary
This is the first report of long-term atmospheric PAH monitoring around the Bohai Sea. The results showed that the concentrations of PAHs in the atmosphere around the Bohai Sea decreased from June 2014 to May 2019, especially the concentrations of highly toxic PAHs. This indicates that the contributions from PAH sources changed to a certain extent in different areas, and it also led to reductions in the related health risk and medical costs following pollution prevention and control.
Baptiste Testa, Lukas Durdina, Jacinta Edebeli, Curdin Spirig, and Zamin A. Kanji
EGUsphere, https://doi.org/10.5194/egusphere-2024-151, https://doi.org/10.5194/egusphere-2024-151, 2024
Short summary
Short summary
Aviation soot residuals released from contrail can become compacted upon sublimation of the ice crystals, generating new voids in the aggregates, where ice nucleation can occur. Here we show that contrail processed soot are highly compact but that they remain unable to form ice at relative humidity different from that required for the formation of background cirrus from the more ubiquitous aqueous solution droplets, suggesting that they will not perturb cirrus cloud formation via ice nucleation.
Jia Sun, Markus Hermann, Kay Weinhold, Maik Merkel, Wolfram Birmili, Yifan Yang, Thomas Tuch, Harald Flentje, Björn Briel, Ludwig Ries, Cedric Couret, Michael Elsasser, Ralf Sohmer, Klaus Wirtz, Frank Meinhardt, Maik Schütze, Olaf Bath, Bryan Hellack, Veli-Matti Kerminen, Markku Kulmala, Nan Ma, and Alfred Wiedensohler
EGUsphere, https://doi.org/10.5194/egusphere-2023-2359, https://doi.org/10.5194/egusphere-2023-2359, 2024
Short summary
Short summary
We investigated the characteristics of new particle formation (NPF) for various environments from urban background to high Alpine, and the impacts of NPF on cloud condensation nuclei and aerosol radiative forcing. The NPF features differ between site categories, implying the crucial role of local environments such as degree of emissions and meteorological conditions. The results also underscore the importance of the local environments when assessing the impact of NPF on climate in models.
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2607, https://doi.org/10.5194/egusphere-2023-2607, 2024
Short summary
Short summary
The Amazon wet season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m height) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical properties recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
Julius Seidler, Markus N. Friedrich, Christoph K. Thomas, and Anke C. Nölscher
Atmos. Chem. Phys., 24, 137–153, https://doi.org/10.5194/acp-24-137-2024, https://doi.org/10.5194/acp-24-137-2024, 2024
Short summary
Short summary
Here, we study the transport of ultrafine particles (UFPs) from an airport to two new adjacent measuring sites for 1 year. The number of UFPs in the air and the diurnal variation are typical urban. Winds from the airport show increased number concentrations. Additionally, considering wind frequencies, we estimate that, from all UFPs measured at the two sites, 10 %–14 % originate from the airport and/or other UFP sources from between the airport and site.
Andreas Aktypis, Christos Kaltsonoudis, David Patoulias, Panayiotis Kalkavouras, Angeliki Matrali, Christina N. Vasilakopoulou, Evangelia Kostenidou, Kalliopi Florou, Nikos Kalivitis, Aikaterini Bougiatioti, Konstantinos Eleftheriadis, Stergios Vratolis, Maria I. Gini, Athanasios Kouras, Constantini Samara, Mihalis Lazaridis, Sofia-Eirini Chatoutsidou, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 65–84, https://doi.org/10.5194/acp-24-65-2024, https://doi.org/10.5194/acp-24-65-2024, 2024
Short summary
Short summary
Extensive continuous particle number size distribution measurements took place during two summers (2020 and 2021) at 11 sites in Greece for the investigation of the frequency and the spatial extent of new particle formation. The frequency during summer varied from close to zero in southwestern Greece to more than 60 % in the northern, central, and eastern regions. The spatial variability can be explained by the proximity of the sites to coal-fired power plants and agricultural areas.
Juan Andrés Casquero-Vera, Daniel Pérez-Ramírez, Hassan Lyamani, Fernando Rejano, Andrea Casans, Gloria Titos, Francisco José Olmo, Lubna Dada, Simo Hakala, Tareq Hussein, Katrianne Lehtipalo, Pauli Paasonen, Antti Hyvärinen, Noemí Pérez, Xavier Querol, Sergio Rodríguez, Nikos Kalivitis, Yenny González, Mansour A. Alghamdi, Veli-Matti Kerminen, Andrés Alastuey, Tuukka Petäjä, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 23, 15795–15814, https://doi.org/10.5194/acp-23-15795-2023, https://doi.org/10.5194/acp-23-15795-2023, 2023
Short summary
Short summary
Here we present the first study of the effect of mineral dust on the inhibition/promotion of new particle formation (NPF) events in different dust-influenced areas. Unexpectedly, we show that the occurrence of NPF events is highly frequent during mineral dust outbreaks, occurring even during extreme dust outbreaks. We also show that the occurrence of NPF events during mineral dust outbreaks significantly affects the potential cloud condensation nuclei budget.
Kevin R. Barry, Thomas C. J. Hill, Marina Nieto-Caballero, Thomas A. Douglas, Sonia M. Kreidenweis, Paul J. DeMott, and Jessie M. Creamean
Atmos. Chem. Phys., 23, 15783–15793, https://doi.org/10.5194/acp-23-15783-2023, https://doi.org/10.5194/acp-23-15783-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) are important for the climate due to their influence on cloud properties. To understand potential land-based sources of them in the Arctic, we carried out a survey near the northernmost point of Alaska, a landscape connected to the permafrost (thermokarst). Permafrost contained high concentrations of INPs, with the largest values near the coast. The thermokarst lakes were found to emit INPs, and the water contained elevated concentrations.
Yang Wang, Chanakya Bagya Ramesh, Scott E. Giangrande, Jerome Fast, Xianda Gong, Jiaoshi Zhang, Ahmet Tolga Odabasi, Marcus Vinicius Batista Oliveira, Alyssa Matthews, Fan Mei, John E. Shilling, Jason Tomlinson, Die Wang, and Jian Wang
Atmos. Chem. Phys., 23, 15671–15691, https://doi.org/10.5194/acp-23-15671-2023, https://doi.org/10.5194/acp-23-15671-2023, 2023
Short summary
Short summary
We report the vertical profiles of aerosol properties over the Southern Great Plains (SGP), a region influenced by shallow convective clouds, land–atmosphere interactions, boundary layer turbulence, and the aerosol life cycle. We examined the processes that drive the aerosol population and distribution in the lower troposphere over the SGP. This study helps improve our understanding of aerosol–cloud interactions and the model representation of aerosol processes.
Stefania Gilardoni, Dominic Heslin-Rees, Mauro Mazzola, Vito Vitale, Michael Sprenger, and Radovan Krejci
Atmos. Chem. Phys., 23, 15589–15607, https://doi.org/10.5194/acp-23-15589-2023, https://doi.org/10.5194/acp-23-15589-2023, 2023
Short summary
Short summary
Models still fail in reproducing black carbon (BC) temporal variability in the Arctic. Analysis of equivalent BC concentrations in the European Arctic shows that BC seasonal variability is modulated by the efficiency of removal by precipitation during transport towards high latitudes. Short-term variability is controlled by synoptic-scale circulation patterns. The advection of warm air from lower latitudes is an effective pollution transport pathway during summer.
Markku Kulmala, Anna Lintunen, Hanna Lappalainen, Annele Virtanen, Chao Yan, Ekaterina Ezhova, Tuomo Nieminen, Ilona Riipinen, Risto Makkonen, Johanna Tamminen, Anu-Maija Sundström, Antti Arola, Armin Hansel, Kari Lehtinen, Timo Vesala, Tuukka Petäjä, Jaana Bäck, Tom Kokkonen, and Veli-Matti Kerminen
Atmos. Chem. Phys., 23, 14949–14971, https://doi.org/10.5194/acp-23-14949-2023, https://doi.org/10.5194/acp-23-14949-2023, 2023
Short summary
Short summary
To be able to meet global grand challenges, we need comprehensive open data with proper metadata. In this opinion paper, we describe the SMEAR (Station for Measuring Earth surface – Atmosphere Relations) concept and include several examples (cases), such as new particle formation and growth, feedback loops and the effect of COVID-19, and what has been learned from these investigations. The future needs and the potential of comprehensive observations of the environment are summarized.
Weilun Zhao, Ying Li, Gang Zhao, Song Guo, Nan Ma, Shuya Hu, and Chunsheng Zhao
Atmos. Chem. Phys., 23, 14889–14902, https://doi.org/10.5194/acp-23-14889-2023, https://doi.org/10.5194/acp-23-14889-2023, 2023
Short summary
Short summary
Studies have concentrated on particles containing black carbon (BC) smaller than 700 nm because of technical limitations. In this study, BC-containing particles larger than 700 nm (BC>700) were measured, highlighting their importance to total BC mass and absorption. The contribution of BC>700 to the BC direct radiative effect was estimated, highlighting the necessity to consider the whole size range of BC-containing particles in the model estimation of BC radiative effects.
Alessandro Bigi, Giorgio Veratti, Elisabeth Andrews, Martine Collaud Coen, Lorenzo Guerrieri, Vera Bernardoni, Dario Massabò, Luca Ferrero, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 23, 14841–14869, https://doi.org/10.5194/acp-23-14841-2023, https://doi.org/10.5194/acp-23-14841-2023, 2023
Short summary
Short summary
Atmospheric particles include compounds that play a key role in the greenhouse effect and air toxicity. Concurrent observations of these compounds by multiple instruments are presented, following deployment within an urban environment in the Po Valley, one of Europe's pollution hotspots. The study compares these data, highlighting the impact of ground emissions, mainly vehicular traffic and biomass burning, on the absorption of sun radiation and, ultimately, on climate change and air quality.
Ghislain Motos, Gabriel Freitas, Paraskevi Georgakaki, Jörg Wieder, Guangyu Li, Wenche Aas, Chris Lunder, Radovan Krejci, Julie Thérèse Pasquier, Jan Henneberger, Robert Oscar David, Christoph Ritter, Claudia Mohr, Paul Zieger, and Athanasios Nenes
Atmos. Chem. Phys., 23, 13941–13956, https://doi.org/10.5194/acp-23-13941-2023, https://doi.org/10.5194/acp-23-13941-2023, 2023
Short summary
Short summary
Low-altitude clouds play a key role in regulating the climate of the Arctic, a region that suffers from climate change more than any other on the planet. We gathered meteorological and aerosol physical and chemical data over a year and utilized them for a parameterization that help us unravel the factors driving and limiting the efficiency of cloud droplet formation. We then linked this information to the sources of aerosol found during each season and to processes of cloud glaciation.
Alberto Sanchez-Marroquin, Sarah L. Barr, Ian T. Burke, James B. McQuaid, and Benjamin J. Murray
Atmos. Chem. Phys., 23, 13819–13834, https://doi.org/10.5194/acp-23-13819-2023, https://doi.org/10.5194/acp-23-13819-2023, 2023
Short summary
Short summary
The sources and concentrations of ice-nucleating particles (INPs) in the Arctic are still poorly understood. Here we report aircraft-based INP concentrations and aerosol composition in the western North American Arctic. The concentrations of INPs and all aerosol particles were low. The aerosol samples contained mostly sea salt and dust particles. Dust particles were more relevant for the INP concentrations than sea salt. However, dust alone cannot account for all of the measured INPs.
Katherine L. Ackerman, Alison D. Nugent, and Chung Taing
Atmos. Chem. Phys., 23, 13735–13753, https://doi.org/10.5194/acp-23-13735-2023, https://doi.org/10.5194/acp-23-13735-2023, 2023
Short summary
Short summary
Sea salt aerosol is an important marine aerosol that may be produced in greater quantities in coastal regions than over the open ocean. This study observed these particles along the windward coastline of O'ahu, Hawai'i, to understand how wind and waves influence their production and dispersal. Overall, wave heights were the strongest variable correlated with changes in aerosol concentrations, while wind speeds played an important role in their horizontal dispersal and vertical mixing.
Jiyeon Park, Hyojin Kang, Yeontae Gim, Eunho Jang, Ki-Tae Park, Sangjong Park, Chang Hoon Jung, Darius Ceburnis, Colin O'Dowd, and Young Jun Yoon
Atmos. Chem. Phys., 23, 13625–13646, https://doi.org/10.5194/acp-23-13625-2023, https://doi.org/10.5194/acp-23-13625-2023, 2023
Short summary
Short summary
We measured the number size distribution of 2.5–300 nm particles and cloud condensation nuclei (CCN) number concentrations at King Sejong Station on the Antarctic Peninsula continuously from 1 January to 31 December 2018. During the pristine and clean periods, 97 new particle formation (NPF) events were detected. For 83 of these, CCN concentrations increased by 2 %–268 % (median 44 %) following 1 to 36 h (median 8 h) after NPF events.
Aodong Du, Jiaxing Sun, Hang Liu, Weiqi Xu, Wei Zhou, Yuting Zhang, Lei Li, Xubing Du, Yan Li, Xiaole Pan, Zifa Wang, and Yele Sun
Atmos. Chem. Phys., 23, 13597–13611, https://doi.org/10.5194/acp-23-13597-2023, https://doi.org/10.5194/acp-23-13597-2023, 2023
Short summary
Short summary
We characterized the impacts of emission controls on particle mixing state and density during the Beijing Olympic Winter Games using a SPAMS in tandem with a DMA and an AAC. OC and sulfate-containing particles increased, while those from primary emissions decreased. The effective particle densities increased and varied largely for different particles, highlighting the impacts of aging and formation processes on the changes of particle density and mixing state.
Karine Sellegri, Theresa Barthelmeß, Jonathan Trueblood, Antonia Cristi, Evelyn Freney, Clémence Rose, Neill Barr, Mike Harvey, Karl Safi, Stacy Deppeler, Karen Thompson, Wayne Dillon, Anja Engel, and Cliff Law
Atmos. Chem. Phys., 23, 12949–12964, https://doi.org/10.5194/acp-23-12949-2023, https://doi.org/10.5194/acp-23-12949-2023, 2023
Short summary
Short summary
The amount of sea spray emitted to the atmosphere depends on the ocean temperature, but this dependency is not well understood, especially when ocean biology is involved. In this study, we show that sea spray emissions are increased by up to a factor of 4 at low seawater temperatures compared to moderate temperatures, and we quantify the temperature dependence as a function of the ocean biogeochemistry.
Albert Ansmann, Kevin Ohneiser, Ronny Engelmann, Martin Radenz, Hannes Griesche, Julian Hofer, Dietrich Althausen, Jessie M. Creamean, Matthew C. Boyer, Daniel A. Knopf, Sandro Dahlke, Marion Maturilli, Henriette Gebauer, Johannes Bühl, Cristofer Jimenez, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 23, 12821–12849, https://doi.org/10.5194/acp-23-12821-2023, https://doi.org/10.5194/acp-23-12821-2023, 2023
Short summary
Short summary
The 1-year MOSAiC (2019–2020) expedition with the German ice breaker Polarstern was the largest polar field campaign ever conducted. The Polarstern, with our lidar aboard, drifted with the pack ice north of 85° N for more than 7 months (October 2019 to mid-May 2020). We measured the full annual cycle of aerosol conditions in terms of aerosol optical and cloud-process-relevant properties. We observed a strong contrast between polluted winter and clean summer aerosol conditions.
Nair Krishnan Kala, Narayana Sarma Anand, Mohanan R. Manoj, Srinivasan Prasanth, Harshavardhana S. Pathak, Thara Prabhakaran, Pramod D. Safai, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 23, 12801–12819, https://doi.org/10.5194/acp-23-12801-2023, https://doi.org/10.5194/acp-23-12801-2023, 2023
Short summary
Short summary
We present a 3D data set of aerosol black carbon over the Indian mainland by assimilating data from surface, aircraft, and balloon measurements, along with multi-satellite observations. Radiative transfer computations using height-resolved aerosol absorption show higher warming in the free troposphere and will have large implications for atmospheric stability. This data set will help reduce the uncertainty in aerosol radiative effects in climate model simulations over the Indian region.
Sujan Shrestha, Shan Zhou, Manisha Mehra, Meghan Guagenti, Subin Yoon, Sergio L. Alvarez, Fangzhou Guo, Chun-Ying Chao, James H. Flynn III, Yuxuan Wang, Robert J. Griffin, Sascha Usenko, and Rebecca J. Sheesley
Atmos. Chem. Phys., 23, 10845–10867, https://doi.org/10.5194/acp-23-10845-2023, https://doi.org/10.5194/acp-23-10845-2023, 2023
Short summary
Short summary
We evaluated different methods for assessing the influence of long-range transport of biomass burning (BB) plumes at a coastal site in Texas, USA. We show that the aerosol composition and optical properties exhibited good agreement, while CO and acetonitrile trends were less specific for assessing BB source influence. Our results demonstrate that the network of aerosol optical measurements can be useful for identifying the influence of aged BB plumes in anthropogenically influenced areas.
Guangyu Li, Elise K. Wilbourn, Zezhen Cheng, Jörg Wieder, Allison Fagerson, Jan Henneberger, Ghislain Motos, Rita Traversi, Sarah D. Brooks, Mauro Mazzola, Swarup China, Athanasios Nenes, Ulrike Lohmann, Naruki Hiranuma, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 10489–10516, https://doi.org/10.5194/acp-23-10489-2023, https://doi.org/10.5194/acp-23-10489-2023, 2023
Short summary
Short summary
In this work, we present results from an Arctic field campaign (NASCENT) in Ny-Ålesund, Svalbard, on the abundance, variability, physicochemical properties, and potential sources of ice-nucleating particles (INPs) relevant for mixed-phase cloud formation. This work improves the data coverage of Arctic INPs and aerosol properties, allowing for the validation of models predicting cloud microphysical and radiative properties of mixed-phase clouds in the rapidly warming Arctic.
Jun Shi, Jinpei Yan, Shanshan Wang, Shuhui Zhao, Miming Zhang, Suqing Xu, Qi Lin, Hang Yang, and Siying Dai
Atmos. Chem. Phys., 23, 10349–10359, https://doi.org/10.5194/acp-23-10349-2023, https://doi.org/10.5194/acp-23-10349-2023, 2023
Short summary
Short summary
An underway aerosol-monitoring system was used to determine the Na+ concentration during different cyclone periods in the Southern Ocean in order to assess the potential effects of cyclones on sea spray aerosol (SSA) emissions. It was estimated that more than 23 % of SSAs were transported upwards during cyclone periods. Vertically transported SSAs can be regarded as an important source of CCN and hence have an effect on climate in the middle and high latitudes of the Southern Hemisphere.
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023, https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Short summary
Many European people are still exposed to levels of air pollution that can affect their health. COVID-19 lockdowns in 2020 were used to assess the impact of the reduction in human mobility on air pollution across Europe by comparing measurement data with values that would be expected if no lockdown had occurred. We show that lockdown measures did not lead to consistent decreases in the concentrations of fine particulate matter suspended in the air, and we investigate why.
Qian Xiao, Jiaoshi Zhang, Yang Wang, Luke D. Ziemba, Ewan Crosbie, Edward L. Winstead, Claire E. Robinson, Joshua P. DiGangi, Glenn S. Diskin, Jeffrey S. Reid, K. Sebastian Schmidt, Armin Sorooshian, Miguel Ricardo A. Hilario, Sarah Woods, Paul Lawson, Snorre A. Stamnes, and Jian Wang
Atmos. Chem. Phys., 23, 9853–9871, https://doi.org/10.5194/acp-23-9853-2023, https://doi.org/10.5194/acp-23-9853-2023, 2023
Short summary
Short summary
Using recent airborne measurements, we show that the influences of anthropogenic emissions, transport, convective clouds, and meteorology lead to new particle formation (NPF) under a variety of conditions and at different altitudes in tropical marine environments. NPF is enhanced by fresh urban emissions in convective outflow but is suppressed in air masses influenced by aged urban emissions where reactive precursors are mostly consumed while particle surface area remains relatively high.
Simo Hakala, Ville Vakkari, Heikki Lihavainen, Antti-Pekka Hyvärinen, Kimmo Neitola, Jenni Kontkanen, Veli-Matti Kerminen, Markku Kulmala, Tuukka Petäjä, Tareq Hussein, Mamdouh I. Khoder, Mansour A. Alghamdi, and Pauli Paasonen
Atmos. Chem. Phys., 23, 9287–9321, https://doi.org/10.5194/acp-23-9287-2023, https://doi.org/10.5194/acp-23-9287-2023, 2023
Short summary
Short summary
Things are not always as they first seem in ambient aerosol measurements. Observations of decreasing particle sizes are often interpreted as resulting from particle evaporation. We show that such observations can counterintuitively be explained by particles that are constantly growing in size. This requires one to account for the previous movements of the observed air. Our explanation implies a larger number of larger particles, meaning more significant effects of aerosols on climate and health.
Akriti Masoom, Ilias Fountoulakis, Stelios Kazadzis, Ioannis-Panagiotis Raptis, Anna Kampouri, Basil E. Psiloglou, Dimitra Kouklaki, Kyriakoula Papachristopoulou, Eleni Marinou, Stavros Solomos, Anna Gialitaki, Dimitra Founda, Vasileios Salamalikis, Dimitris Kaskaoutis, Natalia Kouremeti, Nikolaos Mihalopoulos, Vassilis Amiridis, Andreas Kazantzidis, Alexandros Papayannis, Christos S. Zerefos, and Kostas Eleftheratos
Atmos. Chem. Phys., 23, 8487–8514, https://doi.org/10.5194/acp-23-8487-2023, https://doi.org/10.5194/acp-23-8487-2023, 2023
Short summary
Short summary
We analyse the spatial and temporal aerosol spectral optical properties during the extreme wildfires of August 2021 in Greece and assess their effects on air quality and solar radiation quantities related to health, agriculture, and energy. Different aerosol conditions are identified (pure smoke, pure dust, dust–smoke together); the largest impact on solar radiation quantities is found for cases with mixed dust–smoke aerosols. Such situations are expected to occur more frequently in the future.
Cited articles
Bei, N., Li, G., Huang, R.-J., Cao, J., Meng, N., Feng, T., Liu, S., Zhang,
T., Zhang, Q., and Molina, L. T.: Typical synoptic situations and their
impacts on the wintertime air pollution in the Guanzhong basin, China, Atmos.
Chem. Phys., 16, 7373–7387, https://doi.org/10.5194/acp-16-7373-2016, 2016.
Beljaars, A.: Chapter 3: Turbulent transport and interactions with the
surface, Part IV: Physical Processes, IFS Documentation, Operational
implementation 12 September 2006 Cy31r1 31, ECMWF, Shinfield Park, Reading,
RG2 9AX, England, 2006.
Chen, Y. and Xie, S.: Temporal and spatial visibility trends in the Sichuan
Basin, China, 1973 to 2010, Atmos. Res., 112, 25–34,
https://doi.org/10.1016/j.atmosres.2012.04.009, 2012.
Chen, Y., Xie, S., Luo, B., and Zhai, C.: Characteristics and origins of
carbonaceous aerosol in the Sichuan Basin, China, Atmos. Environ., 94,
215–223, https://doi.org/10.1016/j.atmosenv.2014.05.037, 2014.
Chen, Y., Zhao, C., Zhang, Q., Deng, Z., Huang, M., and Ma, X.: Aircraft
study of mountain chimney effect of Beijing, China, J. Geophys. Res., 114,
D08306, https://doi.org/10.1029/2008JD010610, 2009.
Chen, Y., Li, Y., and Zhao, T.: Cause analysis on eastward movement of
Southwest China vortex and its induced heavy rainfall in South China, Adv.
Meteorol., 2015, 1–22, https://doi.org/10.1155/2015/481735, 2015.
Chen, Z. H., Cheng, S. Y., Li, J. B., Guo, X. R., Wang, W. H., and Chen, D.
S.: Relationship between atmospheric pollution processes and synoptic
pressure patterns in northern China, Atmos. Environ., 42, 6078–6087,
https://doi.org/10.1016/j.atmosenv.2008.03.043, 2008.
Chow, J. C., Watson, J. G., Mauderly, J. L., Costa, D. L., Wyzga, R. E.,
Vedal, S., Hidy, G. M., Altshuler, S. L., Marrack, D., Heuss, J. M., Wolff,
G. T., Arden Pope Iii, C., and Dockery, D. W.: Health effects of fine
particulate air pollution: Lines that connect, J. Air Waste Manage. Assoc.,
56, 1368–1380, https://doi.org/10.1080/10473289.2006.10464545, 2006.
Deng, T., Wu, D., Deng, X., Tan, H., Li, F., and Liao, B.: A vertical
sounding of severe haze process in Guangzhou area, Sci. China Earth Sci., 57,
2650–2656, https://doi.org/10.1007/s11430-014-4928-y, 2014.
Feng, X., Liu, C., Fan, G., Liu, X., and Feng, C.: Climatology and structures
of southwest vortices in the NCEP Climate Forecast System Reanalysis, J.
Climate., 29, 7675–7701, https://doi.org/10.1175/jcli-d-15-0813.1, 2016.
Fu, S., Sun, J., Zhao, S., and Li, W.: The energy budget of a southwest
vortex with heavy rainfall over south China, Adv. Atmos. Sci., 28, 709–724,
https://doi.org/10.1007/s00376-010-0026-z, 2011.
Gu, Y. and Yim, S. H. L.: The air quality and health impacts of domestic
trans-boundary pollution in various regions of China, Environ. Int., 97,
117–124, https://doi.org/10.1016/j.envint.2016.08.004, 2016.
Gao, Y., Liu, X., Zhao, C., and Zhang, M.: Emission controls versus
meteorological conditions in determining aerosol concentrations in Beijing
during the 2008 Olympic Games, Atmos. Chem. Phys., 11, 12437–12451,
https://doi.org/10.5194/acp-11-12437-2011, 2011.
Guo, J., Deng, M., Lee, S. S., Wang, F., Li, Z., Zhai, P., Liu, H., Lv, W.,
Yao, W., and Li, X.: Delaying precipitation and lightning by air pollution
over the Pearl River Delta, Part I: Observational analyses, J. Geophys.
Res.-Atmos., 121, 6472–6488, https://doi.org/10.1002/2015JD023257, 2016a.
Guo, J., Miao, Y., Zhang, Y., Liu, H., Li, Z., Zhang, W., He, J., Lou, M.,
Yan, Y., Bian, L., and Zhai, P.: The climatology of planetary boundary layer
height in China derived from radiosonde and reanalysis data, Atmos. Chem.
Phys., 16, 13309–13319, https://doi.org/10.5194/acp-16-13309-2016, 2016b.
Guo, Y., Zeng, H., Zheng, R., Li, S., Barnett, A. G., Zhang, S., Zou, X.,
Huxley, R., Chen, W., and Williams, G.: The association between lung cancer
incidence and ambient air pollution in China: A spatiotemporal analysis,
Environ. Res., 144, 60–65, https://doi.org/10.1016/j.envres.2015.11.004, 2016.
He, H., Tie, X., Zhang, Q., Liu, X., Gao, Q., Li, X., and Gao, Y.: Analysis
of the causes of heavy aerosol pollution in Beijing, China: A case study with
the WRF-Chem model, Particuology, 20, 32–40,
https://doi.org/10.1016/j.partic.2014.06.004, 2015.
He, J., Gong, S., Yu, Y., Yu, L., Wu, L., Mao, H., Song, C., Zhao, S., Liu,
H., Li, X., and Li, R.: Air pollution characteristics and their relation to
meteorological conditions during 2014–2015 in major Chinese cities, Environ.
Pollut., 223, 484–496, https://doi.org/10.1016/j.envpol.2017.01.050, 2017.
Hu, X.-M., Ma, Z., Lin, W., Zhang, H., Hu, J., Wang, Y., Xu, X., Fuentes, J.
D., and Xue, M.: Impact of the Loess Plateau on the atmospheric boundary
layer structure and air quality in the North China Plain: A case study, Sci.
Total Environ., 499, 228–237, https://doi.org/10.1016/j.scitotenv.2014.08.053, 2014.
Huang, K., Zhuang, G., Lin, Y., Wang, Q., Fu, J. S., Zhang, R., Li, J., Deng,
C., and Fu, Q.: Impact of anthropogenic emission on air quality over a
megacity – revealed from an intensive atmospheric campaign during the
Chinese Spring Festival, Atmos. Chem. Phys., 12, 11631–11645,
https://doi.org/10.5194/acp-12-11631-2012, 2012.
Huang, Q., Cai, X., Song, Y., and Zhu, T.: Air stagnation in China
(1985–2014): climatological mean features and trends, Atmos. Chem. Phys.,
17, 7793–7805, https://doi.org/10.5194/acp-17-7793-2017, 2017.
Ji, D., Wang, Y., Wang, L., Chen, L., Hu, B., Tang, G., Xin, J., Song, T.,
Wen, T., Sun, Y., Pan, Y., and Liu, Z.: Analysis of heavy pollution episodes
in selected cities of northern China, Atmos. Environ., 50, 338–348,
https://doi.org/10.1016/j.atmosenv.2011.11.053, 2012.
Ji, D., Li, L., Wang, Y., Zhang, J., Cheng, M., Sun, Y., Liu, Z., Wang, L.,
Tang, G., Hu, B., Chao, N., Wen, T., and Miao, H.: The heaviest particulate
air-pollution episodes occurred in northern China in January, 2013: Insights
gained from observation, Atmos. Environ., 92, 546–556,
https://doi.org/10.1016/j.atmosenv.2014.04.048, 2014.
Kuo, Y.-H., Cheng, L., and Anthes, R. A.: Mesoscale analyses of the Sichuan
flood catastrophe, 11–15 July 1981, Mon. Weather Rev., 114, 1984–2003,
https://doi.org/10.1175/1520-0493(1986)114<1984:maotsf>2.0.co;2, 1986.
Kuo, Y.-H., Cheng, L., and Bao, J.-W.: Numerical simulation of the 1981
Sichuan flood. Part I: Evolution of a mesoscale southwest vortex, Mon.
Weather Rev., 116, 2481–2504,
https://doi.org/10.1175/1520-0493(1988)116<2481:nsotsf>2.0.co;2, 1988.
Langrish, J. P., Li, X., Wang, S., Lee, M. M. Y., Barnes, G. D., Miller, M.
R., Cassee, F. R., Boon, N. A., Donaldson, K., Li, J., Li, L., Mills, N. L.,
Newby, D. E., and Jiang, L.: Reducing personal exposure to particulate air
pollution improves cardiovascular health in patients with coronary heart
disease, Environ. Health Perspect., 120, 367–372, https://doi.org/10.1289/ehp.1103898,
2012.
Leng, C., Duan, J., Xu, C., Zhang, H., Wang, Y., Wang, Y., Li, X., Kong, L.,
Tao, J., Zhang, R., Cheng, T., Zha, S., and Yu, X.: Insights into a historic
severe haze event in Shanghai: synoptic situation, boundary layer and
pollutants, Atmos. Chem. Phys., 16, 9221–9234,
https://doi.org/10.5194/acp-16-9221-2016, 2016.
Leśniok, M., Małarzewski, Ł., and Niedźwiedź, T.:
Classification of circulation types for Southern Poland with an application
to air pollution concentration in Upper Silesia, Phys. Chem. Earth, 35,
516–522, https://doi.org/10.1016/j.pce.2009.11.006, 2010.
Li, L. and Chan, P. W.: LIDAR observation and numerical simulation of
vortex/wave shedding at the eastern runway corridor of the Hong Kong
international airport, Meteorol. Appl., 23, 379–388, https://doi.org/10.1002/met.1562,
2016.
Li, L., Li, J., Xin, L., Li, H., and Wei, Q.: Analysis of atmospheric air
pollution of Beijing City in Spring Festival period, China Environ. Sci, 26,
537–541, http://manu36.magtech.com.cn/Jweb_zghjkx/CN/ (last access:
20 August 2018) 2006 (in Chinese).
Li, Y., Yan, J., and Sui, X.: Tropospheric temperature inversion over central
China, Atmos. Res., 116, 105–115, https://doi.org/10.1016/j.atmosres.2012.03.009,
2012.
Li, Y., Chen, Q., Zhao, H., Wang, L., and Tao, R.: Variations in
PM10, PM2.5 and PM1.0 in an urban area of the
Sichuan Basin and their relation to meteorological factors, Atmosphere, 6,
150–163, 2015.
Liao, T., Wang, S., Ai, J., Gui, K., Duan, B., Zhao, Q., Zhang, X., Jiang,
W., and Sun, Y.: Heavy pollution episodes, transport pathways and potential
sources of PM2.5 during the winter of 2013 in Chengdu (China), Sci.
Total Environ., 584–585, 1056–1065, https://doi.org/10.1016/j.scitotenv.2017.01.160,
2017.
Lim, S. S., Vos, T., Flaxman, A. D., et al.: A comparative risk assessment of burden of disease and injury
attributable to 67 risk factors and risk factor clusters in 21 regions,
1990–2010: a systematic analysis for the Global Burden of Disease Study
2010, Lancet., 380, 2224–2260, https://doi.org/10.1016/S0140-6736(12)61766-8, 2012.
Liu, S., Liu, Z., Li, J., Wang, Y., Ma, Y., Sheng, L., Liu, H., Liang, F.,
Xin, G., and Wang, J.: Numerical simulation for the coupling effect of local
atmospheric circulations over the area of Beijing, Tianjin and Hebei
Province, Sci. China Ser. D Earth Sci., 52, 382–392,
https://doi.org/10.1007/s11430-009-0030-2, 2009.
Lu, C., Deng, Q.-H., Liu, W.-W., Huang, B.-L., and Shi, L.-Z.:
Characteristics of ventilation coefficient and its impact on urban air
pollution, J. Cent. South Univ., 19, 615–622, https://doi.org/10.1007/s11771-012-1047-9,
2012.
Luo, M., Hou, X., Gu, Y., Lau, N.-C., and Yim, S. H.-L.: Trans-boundary air
pollution in a city under various atmospheric conditions, Sci. Total
Environ., 618, 132–141, https://doi.org/10.1016/j.scitotenv.2017.11.001, 2018.
Luo, Y., Lu, D., Zhou, X., Li, W., and He, Q.: Characteristics of the spatial
distribution and yearly variation of aerosol optical depth over China in last
30 years, J. Geophys. Res., 106, 14501–14513, https://doi.org/10.1029/2001JD900030,
2001.
MEP: China National Ambient Air Quality Standards, MEP, Beijing, China, 2012.
Miao, Y., Liu, S., Zheng, Y., Wang, S., Chen, B., Zheng, H., and Zhao, J.:
Numerical study of the effects of local atmospheric circulations on a
pollution event over Beijing–Tianjin–Hebei, China, J. Environ. Sci., 30,
9–20, https://doi.org/10.1016/j.jes.2014.08.025, 2015.
Ni, C., Li, G., and Xiong, X.: Analysis of a vortex precipitation event over
Southwest China using AIRS and in situ measurements, Adv. Atmos. Sci., 34,
559–570, https://doi.org/10.1007/s00376-016-5262-4, 2017.
Ning, G., Wang, S., Ma, M., Ni, C., Shang, Z., Wang, J., and Li, J.:
Characteristics of air pollution in different zones of Sichuan Basin, China,
Sci. Total Environ., 612, 975–984, https://doi.org/10.1016/j.scitotenv.2017.08.205,
2018.
Peng, X. and Cheng, L.: A case numerical study on the evolution of the
plateau-east-side low vortex and shear lineline, Part I: Analysis and
diagnosis, J. Lanzhou Univ. Nat. Sci., 28, 163–168,
https://doi.org/10.13885/j.issn.0455-2059.1992.02.029, 1992.
Qu, Y., Han, Y., Wu, Y., Gao, P., and Wang, T.: Study of PBLH and its
correlation with particulate matter from one-year observation over Nanjing,
Southeast China, Remote Sens., 9, 668, https://doi.org/10.3390/rs9070668, 2017.
Quan, J., Gao, Y., Zhang, Q., Tie, X., Cao, J., Han, S., Meng, J., Chen, P.,
and Zhao, D.: Evolution of planetary boundary layer under different weather
conditions, and its impact on aerosol concentrations, Particuology, 11,
34–40, https://doi.org/10.1016/j.partic.2012.04.005, 2013.
Shi, Y., Zhang, N., Gao, J., Li, X., and Cai, Y.: Effect of fireworks display
on perchlorate in air aerosols during the Spring Festival, Atmos. Environ.,
45, 1323–1327, https://doi.org/10.1016/j.atmosenv.2010.11.056, 2011.
Slingo, J. M.: The development and verification of a cloud prediction scheme
for the ECWMF Model, Q. J. Roy. Meteor. Soc., 113, 899–927,
https://doi.org/10.1002/qj.49711347710, 1987.
Tang, G., Zhu, X., Hu, B., Xin, J., Wang, L., Münkel, C., Mao, G., and
Wang, Y.: Impact of emission controls on air quality in Beijing during APEC
2014: lidar ceilometer observations, Atmos. Chem. Phys., 15, 12667–12680,
https://doi.org/10.5194/acp-15-12667-2015, 2015.
Tao, J., Cheng, T., Zhang, R., Cao, J., Zhu, L., Wang, Q., Luo, L., and
Zhang, L.: Chemical composition of PM2.5 at an urban site of
Chengdu in southwestern China, Adv. Atmos. Sci., 30, 1070–1084,
https://doi.org/10.1007/s00376-012-2168-7, 2013a.
Tao, J., Zhang, L., Engling, G., Zhang, R., Yang, Y., Cao, J., Zhu, C., Wang,
Q., and Luo, L.: Chemical composition of PM2.5 in an urban
environment in Chengdu, China: Importance of springtime dust storms and
biomass burning, Atmos. Res., 122, 270–283,
https://doi.org/10.1016/j.atmosres.2012.11.004, 2013b.
Tao, M., Chen, L., Su, L., and Tao, J.: Satellite observation of regional
haze pollution over the North China Plain, J. Geophys. Res.-Atmos., 117,
D12203, https://doi.org/10.1029/2012JD017915, 2012.
Tao, M., Chen, L., Xiong, X., Zhang, M., Ma, P., Tao, J., and Wang, Z.:
Formation process of the widespread extreme haze pollution over northern
China in January 2013: Implications for regional air quality and climate,
Atmos. Environ., 98, 417–425, https://doi.org/10.1016/j.atmosenv.2014.09.026, 2014.
Tian, P., Cao, X., Zhang, L., Sun, N., Sun, L., Logan, T., Shi, J., Wang, Y.,
Ji, Y., Lin, Y., Huang, Z., Zhou, T., Shi, Y., and Zhang, R.: Aerosol
vertical distribution and optical properties over China from long-term
satellite and ground-based remote sensing, Atmos. Chem. Phys., 17,
2509–2523, https://doi.org/10.5194/acp-17-2509-2017, 2017.
Wang, Q.-W. and Tan, Z.-M.: Multi-scale topographic control of southwest
vortex formation in Tibetan Plateau region in an idealized simulation, J.
Geophys. Res.-Atmos., 119, 11543–11561, https://doi.org/10.1002/2014JD021898, 2014.
Wang, T., Nie, W., Gao, J., Xue, L. K., Gao, X. M., Wang, X. F., Qiu, J.,
Poon, C. N., Meinardi, S., Blake, D., Wang, S. L., Ding, A. J., Chai, F. H.,
Zhang, Q. Z., and Wang, W. X.: Air quality during the 2008 Beijing Olympics:
secondary pollutants and regional impact, Atmos. Chem. Phys., 10, 7603–7615,
https://doi.org/10.5194/acp-10-7603-2010, 2010.
Wang, X., Dickinson, R. E., Su, L., Zhou, C., and Wang, K.: PM2.5
pollution in China and how it has been exacerbated by terrain and
meteorological conditions, B. Am. Meteorol. Soc., 99, 105–119,
https://doi.org/10.1175/BAMS-D-16-0301.1, 2018.
Wang, Y., Zhuang, G., Xu, C., and An, Z.: The air pollution caused by the
burning of fireworks during the lantern festival in Beijing, Atmos. Environ.,
41, 417–431, https://doi.org/10.1016/j.atmosenv.2006.07.043, 2007.
Wang, Y., Hao, J., McElroy, M. B., Munger, J. W., Ma, H., Chen, D., and
Nielsen, C. P.: Ozone air quality during the 2008 Beijing Olympics:
effectiveness of emission restrictions, Atmos. Chem. Phys., 9, 5237–5251,
https://doi.org/10.5194/acp-9-5237-2009, 2009.
Wang, Y., Yao, L., Wang, L., Liu, Z., Ji, D., Tang, G., Zhang, J., Sun, Y.,
Hu, B., and Xin, J.: Mechanism for the formation of the January 2013 heavy
haze pollution episode over central and eastern China, Sci. China Earth.
Sci., 57, 14–25, https://doi.org/10.1007/s11430-013-4773-4, 2014.
Wei, P., Cheng, S., Li, J., and Su, F.: Impact of boundary-layer anticyclonic
weather system on regional air quality, Atmos. Environ., 45, 2453–2463,
https://doi.org/10.1016/j.atmosenv.2011.01.045, 2011.
Whiteman, C. D., Hoch, S. W., Horel, J. D., and Charland, A.: Relationship
between particulate air pollution and meteorological variables in Utah's Salt
Lake Valley, Atmos. Environ., 94, 742–753,
https://doi.org/10.1016/j.atmosenv.2014.06.012, 2014.
Wu, P., Ding, Y., and Liu, Y.: Atmospheric circulation and dynamic mechanism
for persistent haze events in the Beijing–Tianjin–Hebei region, Adv. Atmos.
Sci., 34, 429–440, https://doi.org/10.1007/s00376-016-6158-z, 2017.
Yang, L., Wu, Y., Davis, J. M., and Hao, J.: Estimating the effects of
meteorology on PM2.5 reduction during the 2008 Summer Olympic Games
in Beijing, China, Front Environ Sci Eng., 5, 331,
https://doi.org/10.1007/s11783-011-0307-5, 2011.
Ye, X., Song, Y., Cai, X., and Zhang, H.: Study on the synoptic flow patterns
and boundary layer process of the severe haze events over the North China
Plain in January 2013, Atmos. Environ., 124, 129–145,
https://doi.org/10.1016/j.atmosenv.2015.06.011, 2016.
Yu, S., Gao, W., Xiao, D., and Peng, J.: Observational facts regarding the
joint activities of the southwest vortex and plateau vortex after its
departure from the Tibetan Plateau, Adv. Atmos. Sci., 33, 34–46,
https://doi.org/10.1007/s00376-015-5039-1, 2016.
Zeng, S. and Zhang, Y.: The effect of meteorological elements on continuing
heavy air pollution: A case study in the Chengdu area during the 2014 Spring
Festival, Atmosphere, 8, 71, https://doi.org/10.3390/atmos8040071, 2017.
Zhang, J., Luo, B., Zhang, J., Ouyang, F., Song, H., Liu, P., Cao, P.,
Schäfer, K., Wang, S., Huang, X., and Lin, Y.: Analysis of the
characteristics of single atmospheric particles in Chengdu using single
particle mass spectrometry, Atmos. Environ., 157, 91–100,
https://doi.org/10.1016/j.atmosenv.2017.03.012, 2017.
Zhang, J. P., Zhu, T., Zhang, Q. H., Li, C. C., Shu, H. L., Ying, Y., Dai, Z.
P., Wang, X., Liu, X. Y., Liang, A. M., Shen, H. X., and Yi, B. Q.: The
impact of circulation patterns on regional transport pathways and air quality
over Beijing and its surroundings, Atmos. Chem. Phys., 12, 5031–5053,
https://doi.org/10.5194/acp-12-5031-2012, 2012.
Zhang, S.-T. and Niu, S.-J.: Haze-to-fog transformation during a long
lasting, low visibility episode in Nanjing, J. Trop. Meteorol., 22, 67–77,
https://doi.org/10.16555/j.1006-8775.2016.S1.007, 2016.
Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M.,
and Sun, J. Y.: Atmospheric aerosol compositions in China: spatial/temporal
variability, chemical signature, regional haze distribution and comparisons
with global aerosols, Atmos. Chem. Phys., 12, 779–799,
https://doi.org/10.5194/acp-12-779-2012, 2012.
Zhang, Z., Zhang, X., Gong, D., Kim, S.-J., Mao, R., and Zhao, X.: Possible
influence of atmospheric circulations on winter haze pollution in the
Beijing–Tianjin–Hebei region, northern China, Atmos. Chem. Phys., 16,
561–571, https://doi.org/10.5194/acp-16-561-2016, 2016.
Short summary
Under the effects of the Tibetan Plateau, dry low-pressure systems are often formed at 700 hPa in the Sichuan Basin, China, during winter. Here, we found that the activities of these dry low-pressure systems have significant influence on most winter heavy air pollution events in the Sichuan Basin. Influencing mechanisms have been summarized. The strong inversion layer above the atmospheric boundary layer induced by the low-pressure system plays a key role in the formation of heavy air pollution.
Under the effects of the Tibetan Plateau, dry low-pressure systems are often formed at 700 hPa...
Altmetrics
Final-revised paper
Preprint